
Freeman

US $59.99

Shelve in
.NET

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Expert ASP.NET Web API 2
for MVC Developers
Web API 2 is the latest evolution of Microsoft’s web services toolkit, which allows
the creation of RESTful applications built on the ASP.NET platform. It provides a
standards-based approach and a high-productivity development model that makes
it easy to deliver services to a wide-range of clients, including mobile devices.

Expert ASP.NET Web API 2 for MVC Developers puts Web API into context for the
experienced MVC Framework developer and dives deep into the tools and techniques
required to build Web API applications that integrate with the MVC Framework and
shows you how to create single-page applications to consume them.

Best-selling author Adam Freeman explains how to get the most from Web API 2
by building on the foundation of the MVC Framework and the ASP.NET platform.
He starts with the nuts-and-bolts and shows you everything through to advanced
features, going in-depth to give you the knowledge you need.

With this book you’ll:

• Gain a solid architectural understanding of RESTful services
• Learn how to leverage the MVC pattern and components to build web services
• Generate and process JSON data from data models
• Learn what’s new in Web API 2 and how best to apply these new features
• Build secure and scalable web services that integrate with MVC applications
• Extend Web API 2 to customize it to your needs

Each topic is covered clearly and concisely and is packed with the details you need to
learn to be truly effective. The most important features are given a no-nonsense in-depth
treatment and chapters include common problems and details of how to avoid them.

RELATED

9 781484 200865

55999
ISBN 978-1-4842-0086-5

www.it-ebooks.info

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a Glance

About the Author ��� xxiii

About the Technical Reviewer �� xxv

Part 1: Getting Ready ■ �� 1

Chapter 1: Getting Readys ■ ���3

Chapter 2: Your First Web API Application ■ ��9

Chapter 3: Essential Techniques ■ ��35

Chapter 4: Understanding HTTP Web Services ■ ��57

Chapter 5: SportsStore: Preparation ■ ���69

Chapter 6: SportsStore: A RESTful Application ■ ��99

Chapter 7: SportsStore: Creating the Clients ■ ���131

Chapter 8: SportsStore: Deployment ■ ���169

Part 2: Results and Parameters ■ �� 179

Chapter 9: The Anatomy of ASP�NET Web API ■ ��181

Chapter 10: Creating and Configuring a Web API Application ■ ���������������������������������������191

Chapter 11: Action Method Results ■ ���215

Chapter 12: Creating Media Type Formatters ■ ��243

Chapter 13: Using the Built-in Media Formatters ■ ��267

Chapter 14: Understanding Parameter and Model Binding ■ ���297

Chapter 15: Binding Simple Data Types ■ ���325

Chapter 16: Binding Complex Data Types Part I ■ ��351

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents at a GlanCe

vi

Chapter 17: Binding Complex Data Types Part II ■ ���389

Chapter 18: Model Validation ■ ��427

Part 3: Dispatching Requests ■ ��� 449

Chapter 19: Dispatching Requests ■ ��451

Chapter 20: URL Routing: Part I ■ ���483

Chapter 21: URL Routing: Part II ■ ��511

Chapter 22: Controllers and Actions ■ ��535

Chapter 23: Filters Part I ■ ���567

Chapter 24: Filters Part II ■ ��599

Chapter 25: Error Handling ■ ��623

Chapter 26: Using OWIN ■ ���645

Index ���651

www.it-ebooks.info

http://www.it-ebooks.info/

Part I

Getting Ready

www.it-ebooks.info

http://www.it-ebooks.info/

3

Chapter 1

Getting Readys

Web API 2 is the latest evolution of Microsoft’s web services toolkit, which allows you to create RESTful applications
built on the ASP.NET platform. It provides a standards-based approach and a high-productivity development model
that makes it easy to deliver services to a wide range of clients, including mobile devices.

In this book, I take you right from creating your first Web API web services to the most advanced techniques
and features. No prior knowledge of HTTP web services or Web API is required. I start with the basics and explain
everything you need to know. In short, this book will give you expert insight and understanding of how to create,
customize, and deploy complex, flexible, and robust HTTP web services.

Web services don’t exist in isolation, so I also show you how to write browser-based single-page applications to
consume them. I demonstrate how these clients influence the way that Web API web services respond and how you
can adapt your web service to different client types.

What Do You Need to Know?
You should be familiar with using the ASP.NET MVC framework to create web applications. This means you are able
to use Visual Studio to write C# classes and know how to use Razor and HTML to create views. The term Expert in the
title refers to the degree of depth that I cover in this book, and you don’t need any knowledge of Web API or HTTP web
services; however, if you don’t know how to use ASP.NET MVC, then you will struggle to follow many of the examples.
If you want to brush up on your knowledge of MVC, then read my Pro ASP.NET MVC 5 and Pro ASP.NET MVC
Platform books, both published by Apress.

What Does Expert Mean?
This book is for programmers who want to understand every aspect of web services development using ASP.NET Web
API. Or, put another way, you want to be an expert in Web API. I dig deeply into the details of how Web API works
behind the scenes in this book and give you a warts-and-all view of how Web API can be used to create sophisticated
and secure RESTful web services. You don’t have to know anything about Web API or HTTP web services before you
start. I build on your existing knowledge of the MVC framework to give you all the information you need.

What Is the Structure of This Book?
This book is split into three parts, each of which covers a set of related topics.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ GettinG readys

4

Part 1: Getting Ready
Part 1 of this book provides the information you need to get ready for the rest of the book. It includes this chapter and
a primer for the techniques you will need to follow the examples in this chapter. I also show you how to build your first
web service and single-page client and take you through the process of building a more realistic application, called
SportsStore.

Part 2: Results and Parameters
Part 2 of this book focuses on the aspect of Web API that you will spend most of your time on during your first real
projects: the data sent from clients and the responses that you produce in return. I explain how to create different
kinds of HTTP responses using Web API, how to master the data binding process that Web API uses to process request
data, and how to ensure that the data you receive from clients is valid.

Part 3: Dispatching Requests
Part 3 of this book explains how Web API dispatches HTTP requests from the moment they arrive from the client
until the response is generated. I describe all of the steps that a request goes through and show you how to configure
and customize just about every class and interface that Web API relies on to get fine-grain control over how your
web services operate. I show you how Web API uses the URL routing system to support RESTful web services, how
controllers and action methods are selected, and how to deal with errors and cross-cutting concerns. Many of
these techniques are similar to the ones you know from MVC framework development, but Web API uses its own
namespaces and classes and has a different approach than the one you are used to using.

Are There Lots of Examples?
There are loads of examples. The best way to learn Web API is by example, and I have packed as many of them as I can
into this book. To maximize the number of examples in this book, I have adopted a simple convention to avoid listing
the contents of files over and over again. The first time I use a file in a chapter, I’ll list the complete contents, just as I
have in Listing 1-1.

Listing 1-1. A Complete Example Document

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;

namespace SportsStore {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ GettinG readys

5

 config.Formatters.Remove(config.Formatters.XmlFormatter);
 }
 }
}

This listing is taken from Chapter 6. Don’t worry about what it does; just be aware that the first time I use a file
in each chapter there will be complete listing, similar to Listing 1-1 shown here. For the second and subsequent
examples, I show you just the elements that change, in a partial listing. You can spot a partial the listing because it
starts and ends with ellipsis (...), as shown in Listing 1-2.

Listing 1-2. A Partial Listing

...
public Product GetProduct(int id) {
 Product result = Repository.Products.Where(p => p.Id == id).FirstOrDefault();
 if (result == null) {
 throw new HttpResponseException(HttpStatusCode.BadRequest);
 } else {
 return result;
 }
}
...

This is a subsequent listing from Chapter 6. You can see that just the GetProduct method is shown and that I
have highlighted a number of statements. This is how I draw your attention to the part of the example that shows the
feature or technique I am describing. In a partial listing like this, only those parts shown have changed from the full
listing earlier in the chapter.

This convention lets me pack in more examples, but it does mean it can be hard to locate a specific technique.
To this end, all of the chapters in which I describe Web API features in Parts 2 and 3 begin with a summary table that
describes the techniques contained in the chapter and the listings that demonstrate how they are used.

Where Can You Get the Example Code?
You can download all of the examples for all of the chapters in this book from www.apress.com. The download is
available without charge and includes all of the supporting resources that are required to re-create the examples
without having to type them in. You don’t have to download the code, but it is the easiest way of experimenting with
the examples and cutting and pasting them into your own projects.

If you do want to re-create the examples from scratch, then you will find that every chapter contains detailed
listings of all the files I create and modify. I never refer you to an external file or hand-wave about leaving the rest of
the example as an exercise; every detail you need to re-create every example is contained within this book.

How Do You Set Up a Development Environment?
The most important software you need for this book is Visual Studio 2013, which contains everything you need
to get started, including a built-in application server for running and debugging Web API applications, an
administration-free edition of SQL Server for developing database-driven applications, and, of course, a code
editor compiler and debugger.

www.it-ebooks.info

http://www.apress.com/
http://www.it-ebooks.info/

Chapter 1 ■ GettinG readys

6

Getting Visual Studio
There are several editions of Visual Studio, but I will be using the one that Microsoft makes available free of charge,
called Visual Studio Express 2013 for Web. Microsoft adds some nice features to the paid-for editions of Visual Studio,
but you will not need them for this book, and all of the figures that you see throughout this book have been taken
using the Express edition, which you can download from www.visualstudio.com.

There are several versions of Visual Studio 2013 Express, each of which is used for a different kind of
development. Make sure you get the Web version, which supports ASP.NET applications.

Note ■ all of the examples in this book will work with Visual studio express 2013 for Web, except those in Chapter 26
where i use Visual studio express 2013 for Windows desktop, which allows me to create a console application.

I follow a specific approach to creating ASP.NET projects: I don’t use the predefined templates that Microsoft
provides, preferring to explicitly add all of the packages I require. This means more work is required to get set up, but
the benefit is that you end up with a much better understanding of how an application fits together. I provide a primer
in Chapter 2 that gives an example of what you can expect.

Tip ■ Visual studio includes nuGet for downloading and installing software packages. i use nuGet throughout this
book and always specify the version of each nuGet package so that you are sure to get the results that i demonstrate.
if you are in doubt, download the source code for this book from www.apress.com, which contains complete projects for
each chapter.

Preparing Visual Studio
Visual Studio Express contains all the features you need to create, test, and deploy Web API applications, but some
of those features are hidden away until you ask for them. To enable all of the features, select Expert Settings from the
Visual Studio Tools ➤ Settings menu.

Tip ■ Microsoft has decided that the top-level menus in Visual studio should be all in uppercase, which means that
the menu to which i just referred is really tOOLs. i think this is rather like shouting, and i will capitalize menu names like
tools is here throughout this book.

Getting Google Chrome
In this book, I use the Google Chrome browser. In part this is because it has some excellent F12 developer tools
(so-called because they are accessed by pressing the F12 key) but also because using Chrome allows me to use
Postman, an outstanding HTTP client that makes it easy to test web services by manually crafting HTTP requests.

You can download Chrome from https://www.google.com/chrome/browser and, once it is installed, get the
Postman client from www.getpostman.com. Both are available without charge, but I encourage you to donate to the
Postman developers if you find it useful.

www.it-ebooks.info

http://www.visualstudio.com/
http://www.apress.com/
https://www.google.com/chrome/browser
http://www.getpostman.com/
http://www.it-ebooks.info/

Chapter 1 ■ GettinG readys

7

You will also need the Postman Interceptor extension, which increases the functionality and is available through
the Google Chrome Extension Store as a zero-cost installation. Click the Chrome settings button (the one with three
horizontal lines at the right side of the screen) and select Tools ➤ Extensions. Search for Postman Interceptor and
follow the installation instructions.

Selecting Chrome for Debugging
You can select Chrome as the browser that Visual Studio will start when you debug a project by selecting it from the
drop-down list of browsers, as shown in Figure 1-1.

Figure 1-1. Selecting Google Chrome in Visual Studio

Summary
In this chapter, I outlined the content and structure of this book and outlined the software that is required for Web API
web development. As I said earlier, the best way to learn Web API is by example, and in Chapter 2 I jump right in and
show you how to create your first web service and client application.

www.it-ebooks.info

http://www.it-ebooks.info/

9

Chapter 2

Your First Web API Application

The best way to get a feel for a new technology is by applying it, so in this chapter I jump right in and demonstrate one
of the most common uses for Web API: adding an HTTP web service to an existing MVC framework application.

This is nowhere near as awkward as it might sound, not least because the MVC framework and Web API share a
common heritage and can use the same data models. In fact, you may be surprised at how little time I spend in this
chapter creating the web service compared with building the example MVC framework application and writing the
JavaScript code that consumes the web service in the browser.

You don’t need to retrofit an HTTP web service to an existing application, of course, and in Chapters 5–8 I build a
more complex example that begins with Web API and puts the HTTP web service right at the heart of the development
process.

Note ■ I start slowly in this chapter and spell out every detail. I’ll pick up the pace—and the depth of detail—in later
chapters, but I want to make clear the process by which I create projects and emphasize the relationship between the
components in the application.

Preparing the Example Project
Visual Studio includes templates for different kinds of projects. The basic starting point is the Empty project, which
can be set up to include just the files and references required for an MVC or Web API application. Other options add
models, views, and controllers to help kick-start a project by providing commonly used features.

I prefer to work with the Empty template and just have Visual Studio add the minimum initial content—and I
recommend you do the same. This approach gives you greater insight into how an application is put together and
where you need to start looking when something goes wrong. Throughout this book, I’ll be creating projects in the
way that I describe here, so I’ll walk through the process step-by-step in this chapter so you know what to expect.

Note ■ The example projects that I created in this chapter and in Chapters 5–8 are derived from the ones I used in Pro
ASP.NET MVC 5. You don’t need to have any of my other books to understand the examples, but if you already have
a copy, then you may find it interesting to compare the different approaches required for creating a pure MVC framework
application and one that integrates Web API.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

10

Creating the Visual Studio Project
To get started, I created a new Visual Studio project. Select New Project from the File menu to open the New Project
dialog window. Navigate through the Templates section to select the Visual C# ➤ Web ➤ ASP.NET Web Application
template and set the name of the project to PartyInvites, as shown in Figure 2-1.

Figure 2-1. Creating the new project

Click the OK button to move to the New ASP.NET Project dialog window. Ensure that the Empty option is selected
and check the MVC and Web API options, as shown in Figure 2-2. Click the OK button, and Visual Studio will create a
new project called PartyInvites.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

11

Adding and Updating NuGet Packages
One of the most useful enhancements to Visual Studio in recent years has been the addition of NuGet, which makes it
easy to download, install, and update software packages in a project.

I am going to be working with specific versions of NuGet packages in this book to make sure you are able to
re-create the examples and get the same results. The days where Microsoft made enormous releases of the entire
.NET stack every 18 months have passed, and each piece of technology receives more frequent small updates. This
means the versions of the MVC and Web API that are added to projects by Visual Studio may not be the latest versions
available.

Select Package Manager Console from the Visual Studio Tools ➤ NuGet Package Manager menu and enter the
following commands to update the MVC and Web API packages, as well as the package that is used to process JSON
data (I describe JSON in more detail in Chapter 3):

Update-Package microsoft.aspnet.mvc -version 5.1.1
Update-Package microsoft.aspnet.webapi -version 5.1.1
Update-Package Newtonsoft.json -version 6.0.1

There are two other packages that I rely on for the example application in this chapter and those in later chapters.

The first is Bootstrap, which is a CSS package that makes it easy to style the HTML generated by MVC views. I have no
visual design skills at all—to the extent that I was excused from art lessons at school and allowed to do extra math—
but even I can hack together something that looks appealing with Bootstrap. I prefer to work with a real designer on
complex projects, but for simple applications, Bootstrap works just fine.

Figure 2-2. Selecting the ASP.NET project type

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

12

Tip ■ I don’t describe bootstrap in this book, but you can get details of the Css classes I apply at
http://getbootstrap.com.

The second package I use is jQuery, which provides an abstraction layer that simplifies working with the HTML
Document Object Model API and makes Ajax requests simpler and more elegant. jQuery is the de facto JavaScript
library for developing the client-side part of web applications and—just like Bootstrap—has recently been adopted by
Microsoft in the Visual Studio project templates. I provide a primer for using jQuery to make Ajax requests in Chapter 3.

The final package I use is Knockout, which makes it easy to build an HTML client that responds dynamically to the
data returned by a web service or by interactions with the user. I give a brief introduction to using Knockout in Chapter 3.

To add Bootstrap, jQuery, and Knockout to the project, enter the following commands into the Package
Manager Console:

Install-Package jquery -version 2.1.0
Install-Package bootstrap -version 3.1.1
Install-Package knockoutjs –version 3.1.0

Setting the Port and Start URL
The final preparations I need to make specify the TCP port that will be used to receive requests and the initial URL
that will be passed to the browser when the project is started. Select Party Invites Properties from the Visual Studio
Project menu and click Web to open the settings for ASP.NET projects.

Enable the Specific Page option and enter Home/Index in the field. On the same page, change the value in the
Project Url field to http://localhost:37993/ and click the Create Virtual Directory button.

The first change prevents Visual Studio from trying to work out what URL should be shown when the application
starts based on the file you edited most recently, and the second change means that requests will be received on TCP
port 37993.

Creating the MVC Application
In this section, I create a simple MVC framework application that gathers responses from invitees to a party. This is
a variation on the project with which I start the Pro ASP.NET MVC 5 book, and I chose it to emphasize the ease with
which Web API can be applied to MVC framework applications. I spend much of the rest of the book explaining the
differences, so it is good to start with something that focuses on just how much you already know how to do.

Creating the Model
Now that I have created the project, I can add the model. The structure of a Web API application shares a lot with
the MVC framework, which is one of the reasons that both technologies can coexist so well. I created a file called
GuestResponse.cs in the Models folder and used it to define the class shown in Listing 2-1.

www.it-ebooks.info

http://getbootstrap.com/
http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

13

Listing 2-1. The Contents of the GuestResponse.cs File

using System.ComponentModel.DataAnnotations;

namespace PartyInvites.Models {
 public class GuestResponse {
 [Required]
 public string Name { get; set; }
 [Required]
 public string Email { get; set; }
 [Required]
 public bool? WillAttend { get; set; }
 }
}

To create a simple model repository, I created a class file called Repository.cs in the Models folder and used it to
define the class shown in Listing 2-2.

Listing 2-2. The Contents of the Repository.cs File

using System.Collections.Generic;

namespace PartyInvites.Models {
 public class Repository {
 private static Dictionary<string, GuestResponse> responses;

 static Repository() {
 responses = new Dictionary<string, GuestResponse>();
 responses.Add("Bob", new GuestResponse {Name = "Bob",
 Email="bob@example.com", WillAttend=true});
 responses.Add("Alice", new GuestResponse { Name = "Alice",
 Email = "alice@example.com", WillAttend = true });
 responses.Add("Paul", new GuestResponse { Name = "Paul",
 Email = "paul@example.com", WillAttend = true });
 }

 public static void Add(GuestResponse newResponse) {
 string key = newResponse.Name.ToLowerInvariant();
 if (responses.ContainsKey(key)) {
 responses[key] = newResponse;
 } else {
 responses.Add(key, newResponse);
 }
 }

 public static IEnumerable<GuestResponse> Responses {
 get { return responses.Values; }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

14

The repository for this application is simple and stores its data objects as a collection in memory that is exposed
through static properties. This means the model state will be lost when the application is restarted, but it does allow
me to keep the example simple. (I show a more persistent model in Chapter 5 when I create a larger and more realistic
MVC/Web API application that stores its model in a database.) In the static constructor, I add some default data so
that the model is populated with responses.

Creating the MVC Controller
My next step is to create an MVC controller that will generate content and receive form data from my application
clients. Web API also has controllers—as you will see in the “Creating the Web Service” section—and I will be clear
about which kind of controller I am using throughout this book. I created an MVC controller by right-clicking the
Controllers folder and selecting Add ➤ Controller from the pop-up menu. Figure 2-3 shows the options that Visual
Studio presents for creating controllers for both MVC and Web API.

Figure 2-3. Selecting a controller type

Visual Studio is able to generate a templated set of action methods for controllers, but I will be using empty
controllers for both MVC and Web API throughout this book. Just as with the project template, I prefer to define just
the code I need for my applications, and I follow the same approach for the examples in this book so that you know
where every action methods comes from and why I have added it.

I selected the MVC 5 Controller – Empty option from the list, clicked the Add button, and set the name to
HomeController, as shown in Figure 2-4.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

15

Clicking the Add button creates the Controllers/HomeController.cs file, which I used to define the controller
shown in Listing 2-3.

Listing 2-3. The Contents of the HomeController.cs File

using System.Web.Mvc;
using PartyInvites.Models;
using System.Linq;

namespace PartyInvites.Controllers {
 public class HomeController : Controller {

 public ActionResult Index() {
 return View();
 }

 public ActionResult Rsvp() {
 return View();
 }

 [HttpPost]
 public ActionResult Rsvp(GuestResponse response) {
 if (ModelState.IsValid) {
 Repository.Add(response);
 return View("Thanks", response);
 } else {
 return View();
 }
 }

 [ChildActionOnly]
 public ActionResult Attendees() {
 return View(Repository.Responses.Where(x => x.WillAttend == true));
 }
 }
}

The controller defines four action methods. The Index action simply renders a view that welcomes the user to
the application. The Rsvp methods allow the user to populate the fields of a GuestResponse model object through
model binding and validate using the model state feature. When the user submits a complete set of values for the

Figure 2-4. Creating an MVC controller

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

16

GuestResponse object (enforced by the use of the Required attribute in Listing 2-1), I update the repository and
render a view called Thanks. The final action method can be called only as a child action, and it returns the collection
of GuestResponse objects that represent users who have indicated they will attend.

This is a pretty basic controller, but it captures the core characteristics of most MVC framework applications, albeit
on a simplified basis. Operations are performed on the repository, form data values are bound to object properties
using model binding, and action methods are set up to be invoked based on the HTTP verb used in the request.

Creating the Views
I need to create a layout and four views for my example application. I created the Views/Shared folder, and Listing 2-4
shows the _Layout.cshtml file I added to it, which contains references for the Bootstrap, jQuery, and Knockout files.

Listing 2-4. The Contents of the _Layout.cshtml File

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <script src="~/Scripts/jquery-2.1.0.min.js"></script>
 <script src="~/Scripts/knockout-3.1.0.js"></script>
 <link href="~/Content/bootstrap.css" rel="stylesheet" />
 <link href="~/Content/bootstrap-theme.css" rel="stylesheet" />
 <title>@ViewBag.Title</title>
 <style>
 body { padding-top: 10px; }
 </style>
</head>
<body class="container">
 @RenderBody()
</body>
</html>

Listing 2-5 shows the Index.cshtml file that I created by right-clicking the Index action method in the Home
controller and selecting Add View from the pop-up menu. I set View Name to Index, ensured that the Use a Layout
Page option is checked, and clicked the Add button to create the view file. (Visual Studio also creates the
Views/_ViewStart.cshtml file, which ensures that the _Layout.cshtml file I created in Listing 2-4 is applied.)

Listing 2-5. The Contents of the Index.cshtml File

@{ ViewBag.Title = "Party!";}
<div class="text-center">
 <h2>We're going to have an exciting party!</h2>
 <h3>And you are invited.</h3>
 @Html.ActionLink("RSVP Now", "Rsvp", null, new { @class="btn btn-success"})
</div>

This view doesn’t contain any model data, but it does use the routing system to generate a link element that
targets the Rsvp action method on the same controller. Listing 2-6 shows the view that the Rsvp action renders, which
is the Rsvp.cshtml file I added to the /Views/Home folder.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

17

Listing 2-6. The Contents of the Rsvp.cshtml File

@model PartyInvites.Models.GuestResponse
@{ ViewBag.Title = "Rsvp"; }

<div class="panel panel-success">
 <div class="panel-heading"><h4>RSVP</h4></div>
 <div class="panel-body">
 @using (Html.BeginForm()) {
 <div class="form-group">
 <label>Your name:</label>
 @Html.TextBoxFor(x => x.Name, new { @class = "form-control" })
 </div>
 <div class="form-group">
 <label>Your email:</label>
 @Html.TextBoxFor(x => x.Email, new { @class = "form-control" })
 </div>
 <div class="form-group">
 <label>Will you attend?</label>
 @Html.DropDownListFor(x => x.WillAttend, new[] {
 new SelectListItem() {Text = "Yes, I'll be there",
 Value = bool.TrueString},
 new SelectListItem() {Text = "No, I can't come",
 Value = bool.FalseString}
 }, "Choose an option", new { @class = "form-control" })
 </div>
 <div class="text-center">
 <input class="btn btn-success" type="submit" value="Submit RSVP" />
 </div>
 }
 </div>
</div>

This view contains a standard HTML form that collects values from the user via input and select elements.
When the user submits the form with valid data, the Thanks.cshtml view in the Views/Home folder is rendered. You
can see the contents of the Thanks.cshtml file in Listing 2-7.

Listing 2-7. The Contents of the Thanks.cshtml File

@model PartyInvites.Models.GuestResponse
@{ ViewBag.Title = "Thanks";}
<h1>Thank you, @Model.Name!</h1>
<div class="lead">
 @if (Model.WillAttend == true) {
 @:It's great that you're coming. The drinks are already in the fridge!
 @Html.Action("Attendees", "Home")
 } else {
 @:Sorry to hear that you can't make it, but thanks for letting us know.
 }
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

18

If the user has indicated that they will attend the party, then I use the Html.Action helper to invoke the
Attendees child action method, which renders the /Views/Home/Attendees.cshtml view file, whose contents are
shown in Listing 2-8.

Listing 2-8. The Contents of the Attendees.cshtml File

@model IEnumerable<PartyInvites.Models.GuestResponse>

@if (Model.Count() == 1) {
 <p>You are the first to accept! Hurrah!</p>
} else {
 <p>Here is the list of cool people coming: @string.Join(", ",
 Model.Select(x => x.Name))</p>
}

Using the MVC Application
To test the basic functionality, start the application and navigate to the /Home/Index URL. Click the RSVP Now button,
fill out the form, and click Submit RSVP. Figure 2-5 shows the different views rendered by the application.

Figure 2-5. Testing the example application

Tip ■ If you get an error telling you that the Attendees action is accessible only as a child request, it is because Visual
studio has tried to be helpful and has told the browser to navigate to the /Home/Attendees url because that is the last
view you were editing. navigate to /Home/Index, and everything will be fine.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

19

Google Chrome, like all modern browsers, contains some useful developer tools, known as the F12 tools because
they are opened by pressing F12 on the keyboard. Before adding Web API to the application, I am going to use the F12
tools to measure the number of requests and the total amount of data sent from the server.

Getting an honest assessment of the requests required to go through the RSVP process entails some specific
steps, switching between the browser window that displays the applications and the F12 tools. Here is the sequence:

 1. Open the F12 tools, click the Network tab and check the Preserve Log option so that the list
of network requests isn’t cleared for each new request.

 2. Ensure that the first icon in the toolbar, which is a circle, is red, indicating that Chrome will
record the network requests it makes. If the circle isn’t red, then click it so that it is.

 3. Ensure that the browser window is showing the /Home/Index URL.

 4. Click the Clear button on the F12 toolbar (it is next to the red circle button).

 5. Right-click the Reload icon in the browser window and select Empty Cache and Hard
Reload from the pop-up menu, as shown in Figure 2-6.

Figure 2-6. Clearing the cache and reloading the page

 6. Click the RSVP Now button in the browser window, complete the form, and click the
Submit RSVP button to send the form data to the server.

Tip ■ The menu shown in Figure 2-6 is available only when the F12 tools window is open.

The F12 Network tab will detail requests that the browser makes as you work through the example application.
Not all of these are for action methods—I added link and script elements to the _Layout.cshtml file, which is
used as the layout for all the views and so the Bootstrap and JavaScript files have to be loaded from the server. (This
happens just for the initial request so that the files are in the browser cache. You can see which requests are cached
by the browser by looking at the Size column.) At the bottom of the F12 window, Chrome displays a summary of the
requests it has made, and I have put my results in Table 2-1. Don’t worry if you get different numbers; I just want to
give an illustrative reference.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

20

Creating the Web Service
Now that I have a basic MVC framework application in place, I can add some Web API functionality to create a web
service that exposes my RSVP model to HTTP clients. In the sections that follow, you will see just how easy it is to use
MVC and Web API side-by-side.

Tip ■ Adding an hTTP web service to an existing MVC framework isn’t the only way to use Web API, but it is the one
I have started with in this book because it is such a common task. It also lets me demonstrate how much commonality
there is between MVC and Web API and how that commonality can be leveraged for quick results. In Chapter 6, I show
you a more considered approach to using Web API when I start by designing the web service first.

Creating the Web API Controller
Just like MVC, Web API uses controllers that define action methods that handle HTTP requests. I created a Web API
controller by right-clicking the Controllers folder, selecting Add ➤ Controller from the pop-up menu, and selecting
Web API 2 Controller – Empty from the list of controller types, as shown in Figure 2-7.

Table 2-1. The Request Summary from Google Chrome

Description Value

Total number of requests 21, of which 13 were made to the server and 8 were
satisfied using the browser cache

Total amount of data 247KB

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

21

Just as with MVC controllers, Visual Studio can create controllers with templated content. I’ll be using the empty
controller for Web API throughout this book so that I can explain the purpose of all the code statements I use. Click
the Add button once you have selected the type, set the name of the new controller to RsvpController, and click the
Add button to create the Controllers/RsvpController.cs file. Listing 2-9 shows the action methods that I added to
the RsvpController class to create a simple web service.

Listing 2-9. The Contents of the RsvpController.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using PartyInvites.Models;

namespace PartyInvites.Controllers {

 public class RsvpController : ApiController {

 public IEnumerable<GuestResponse> GetAttendees() {
 return Repository.Responses.Where(x => x.WillAttend == true);
 }

Figure 2-7. Adding a Web API controller

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

22

 public void PostResponse(GuestResponse response) {
 if (ModelState.IsValid) {
 Repository.Add(response);
 }
 }
 }
}

The first thing to notice about my controller is that the base class is ApiController, which is defined in the
System.Web.Http namespace. This is a different base class and namespace than an MVC controller uses because Web
API doesn’t use the standard System.Web and System.Web.Mvc namespaces. Instead, Web API uses separate classes,
even for functionality that is shared with MVC, such as filter attributes. Hover the mouse over the HttpGet or HttpPost
attributes in the code editor, and the pop-up box will tell you that these are classes defined in the System.Web.Http
namespace, not the System.Web.Mvc namespace that defines the attribute I applied to the Home MVC controller.

Tip ■ The fact that MVC and Web API have distinct versions of classes with the same names that perform the same
function is confusing and is the most common cause of errors for developers new to Web API. be careful that you don’t
add the System.Web.Mvc namespace to Web API controllers.

Next, notice that the result from the GetAttendees action method is an enumeration of my GuestResponse model
class. Web services deliver data to their clients and don’t use views to generate HTML content, so there is no need for
the ActionResult objects you are familiar with from MVC applications. This makes Web API controllers more like
regular C# classes, although there are lots of options available for taking control over how the data returned from a
Web API action method is formatted and sent to the client, which I explain in Part 2 of this book.

IS that It?

The RsvpController class is the only one I need to add to the project to create an hTTP web service. The rest of
this chapter is given over to checking that the web service works and implementing the client-side jQuery code
that consumes the service.

You might be asking yourself, is that it? The answer is yes and no. Yes, because you can create a basic hTTP web
service just by adding a Web API controller to the project. In this example, I was able to minimize the amount of
work I had to do by reusing the model that I created for the MVC framework application and relying on the default
conventions and configuration of a Web API application.

And no, that isn’t it because this is a trivially simple example that I designed specifically to emphasize how easy
it is to get started with Web API. Creating sophisticated and robust hTTP web services requires more knowledge
about how Web API works and how to consume web services in the browser. happily, I explain everything you
need to know in the rest of this book, starting with the sportsstore application in Chapter 5, where I define an
equally simple Web API controller and show its transformation as I enable more features.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

23

Testing the Web API Controller
As simple as the RsvpController is, it is all that I need to add a basic HTTP web service to my application. I am relying
on some convention and default configuration settings, of course—which I’ll explain in depth in Part 2, but with the
addition of one simple class I have a web service that is capable of delivering data over HTTP.

There are different levels of testing that you can perform on a web service created with Web API. There is unit
testing, which can be applied in much the same way as for MVC framework application. And, of course, you can
perform system-level testing once the web service is integrated into the client. For this chapter, I am going to use the
Postman tool that I described and installed in Chapter 1. To recap, Postman is a Chrome application that provides
excellent support for testing web services, even the basic kind that I have created here. It is free to use, although
donations are accepted, and it makes it easy to explore a web service without having to write any code at all.

Tip ■ If you have not installed Google Chrome and Postman, then now is the time to do so. I provided instructions and
urls in Chapter 1.

Start the application and then start Postman by opening a new Chrome tab, clicking the Apps icon in the top-left
corner of the toolbar, and clicking the Postman icon. Postman will open a new window. Replace the “Enter request
URL here” text with, the following URL:

http://localhost:37993/api/rsvp

Once you have entered the URL, click the Send button, and Postman will send a request to the web service and

display the data that it gets, as shown in Figure 2-8.

Figure 2-8. Making a request using Postman

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

24

Tip ■ Web API uses the AsP.neT routing system to match requests to controllers and action methods, which means that
urls can be customized. The default convention is that all urls for Web API web services are prefixed with /api, followed
by the controller name. The selection of the action method is made using the hTTP verb from the request, matched to an
action method whose name begins with the verb—so the GeT request sent by Postman to /api/rsvp is mapped to the
GetAttendees action method in the RsvpController class. I explain more about how this mapping works in Chapter 22.

The URL I specified targeted the GetAttendees action method on the Web API Rsvp controller, and the data that
is returned represents the responses from potential guests. It can be hard to make out from the figure, but here is the
data that Postman receives from the web service:

[{"Name":"Bob","Email":"bob@example.com","WillAttend":true},
 {"Name":"Alice","Email":"alice@example.com","WillAttend":true},
 {"Name":"Paul","Email":"paul@example.com","WillAttend":true}]

This is the JSON data format, which is especially easy to work with in JavaScript—as you’ll see when I implement

the client-side part of the application in the “Implementing the Client” section. I describe JSON in a little more detail
in Chapter 3, but the initial [and final] characters indicate an array of objects—just like in C# each set of braces (the
{ and } characters) denotes a single object. Each object in this array has Name, Email, and WillAttend properties, and
the values correspond to the initial model data that I defined in the Repository class in Listing 2-2.

Tip ■ notice that Web API automatically converted the result from the GetAttendees action method from
IEnumerable<GuestResponse> to a Json array. I explain how this happens—and show you how to control the conversion
process—in Part 2.

Postman can also be used to test HTTP POST requests, which allows me to test my PostResponse action method
as well, although care must be taken to configure the request correctly. To target the PostResponse action method,
change the HTTP verb for the request to POST by clicking the button marked GET to the right of the URL and selecting
POST from the drop-down list.

Now click the x-www-form-urlencoded button to select the format in which Web API expects to receive form data
and enter key/value pairs to define the properties in Table 2-2.

Table 2-2. The Key and Value Pairs for Testing the Web Service

Key Value

name Jane

email jane@example.com

willattend true

Figure 2-9 shows the section of the Postman interface that displays the required settings.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

25

Click the Send button to send the POST request to the application. The PostResponse action method doesn’t
return any data, so the response area of the Postman interface doesn’t show any data, but if you send a GET request
to the GetAttendees method (which you can easily do from the Postman History area), you will see that a new RSVP
object is included in the JSON data, like this:

[{"Name":"Bob","Email":"bob@example.com","WillAttend":true},
 {"Name":"Alice","Email":"alice@example.com","WillAttend":true},
 {"Name":"Paul","Email":"paul@example.com","WillAttend":true},
 {"Name":"Jane","Email":"jane@example.com","WillAttend":true}]

Implementing the Single-Page Client
Using Postman allows a web service to be tested by manually composing requests. It is a nice way to test the web
service separately from the MVC framework part of the application, but that isn’t good for users, who generally don’t
want to type URLs and read JSON strings. In this section, I will update the MVC part of the application to use jQuery to
consume the HTTP web service I created using Web API. My goal is to create a simple single-page application, where
a single HTML document is requested by the browser and then manipulated and populated using JavaScript and data
obtained via Ajax requests.

For this example, I am also going to ensure that non-JavaScript clients can still use the application. JavaScript is
remarkably prevalent these days, but there are still devices that don’t support it and a substantial minority of users
who disable JavaScript in their browsers, mostly for reasons of security.

Figure 2-9. Preparing a POST request

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

26

Tip ■ Don’t worry if you are unfamiliar with some of the techniques I use here. Chapter 3 contains a primer to get you
started, focused on what you need to follow the examples in this book and create clients that can consume web applications.

Setting Up JavaScript IntelliSense
Visual Studio is capable of providing the same kind of IntelliSense editor support for JavaScript like it does for C#.
This makes working with libraries such as jQuery quicker and less error-prone, especially since JavaScript code
doesn’t go through a compiler in the same that that C# does—any errors in the code are not revealed until runtime.
To enable JavaScript IntelliSense, add a new JavaScript file called _references.js (don’t forget the leading underscore
character) in the Scripts folder. Listing 2-10 shows the additions I made to the new file to set up IntelliSense for the
jQuery file present in the project.

Listing 2-10. Adding IntelliSense References to the _references.js File

/// <reference path="jquery-2.1.0.js" />
/// <reference path="knockout-3.1.0.debug.js" />

A reference element has a path attribute that refers to one of the JavaScript files in the Scripts folder.

Tip ■ You don’t have to type the resource elements by hand—you can just drop Javascript files from the solution
explorer onto the editor window for the _resources.js file, and Visual studio will create the reference element for you.

Defining the Client-Side Data Model and Controller
The basic model for creating single-page applications with jQuery and Knockout is to follow the same approach
taken on the server side: a data model that is manipulated by a controller, which selects the views to be displayed and
responds to user input. To get started, I added a JavaScript file called rsvp.js to the Scripts folder, the contents of
which are shown in Listing 2-11.

Listing 2-11. The Contents of the rsvp.js File

var model = {
 view: ko.observable("welcome"),
 rsvp: {
 name: ko.observable(""),
 email: "",
 willattend: ko.observable("true")
 },
 attendees: ko.observableArray([])
}

var showForm = function() {
 model.view("form");
}

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

27

var sendRsvp= function () {
 $.ajax("/api/rsvp", {
 type: "POST",
 data: {
 name: model.rsvp.name(),
 email: model.rsvp.email,
 willattend: model.rsvp.willattend()
 },
 success: function () {
 getAttendees();
 }
 });
}

var getAttendees = function () {
 $.ajax("/api/rsvp", {
 type: "GET",
 success: function (data) {
 model.attendees.removeAll();
 model.attendees.push.apply(model.attendees, data.map(function(rsvp) {
 return rsvp.Name;
 }));
 model.view("thanks");
 }
 });
}

$(document).ready(function () {
 ko.applyBindings();
})

The PartyInvites application is sufficiently simple that I have defined the data model and the functions that
comprise the controller in the same JavaScript file. For more complex projects (like the SportsStore application
I created in Chapters 5–8), I use several files. In the sections that follow, I describe the contents of the JavaScript file.

Defining the Model
The data model is at the heart of the client-side part of the application, just as it is in the server. I have defined a JavaScript
object called model that has properties that correspond to the data items I need in the application, as follows:

...
var model = {
 view: ko.observable("welcome"),
 rsvp: {
 name: ko.observable(""),
 email: "",
 willattend: ko.observable("true")
 },
 attendees: ko.observableArray([])
}
...

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

28

There are two Knockout-specific features in the model object. The first is the use of the ko.observable method,
which is used to create a data value that can be used to automatically update HTML elements when it changes. I use
the view property, for example, to keep track of which client-side view should be displayed to the user, and I don’t
have to write any additional code to change the view—I just set the value for the view property. The hard work is
done by a Knockout binding, which I apply to the HTML in the “Adding Data Bindings” section. Data values that are
created with the ko.observable method are known as observables. The other Knockout feature is similar;
the ko.observableArray method performs the same role as ko.observable but for an array of objects, creating what
is known as an observable array.

To help you understand what is happening as I apply the data model in the application, Table 2-3 explains the
purpose of each property in the model.

Table 2-3. The PartyInvites Data Model Properties

Name Description

view This property is used to keep track of which part of the client interface is shown to the user.

rsvp This property is set to an object that I use to capture the user’s response to the party invitation.
The object has fields for name, e-mail address, and attendance. The name and willattend
properties are observable.

attendees This property is an array of the names of the other attendees, which are obtained from the web
service after the user has responded to the invitation.

Defining the Controller
The showForm, sendRsvp, and getAttendees functions collectively form the client-side controller. JavaScript isn’t as
structured as C#, and I want to keep the example simple, but these are the functions that are used to manipulate the data
model and select the content shown to the user, just like an MVC framework controller. The main difference—language
aside—is that the data is obtained from the web service using Ajax, rather than from a local repository. I am not going to
explain these functions in detail in chapter, but I explain how to make changes to a Knockout data model and how to use
jQuery to make Ajax requests in Chapter 3. To help provide context, Table 2-4 describes the purpose of the functions.

Table 2-4. The PartyInvites Controller Functions

Name Description

showForm This function shows the user the HTML form that gathers their responses to the invitation and
allows the response to be sent to the web service.

sendRsvp This function sends a POST request to the web service to submit the RSVP data.

getAttendees This function sends a GET request to the web service to get the list of attendees, and it is called
after a successful POST request.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

29

Initializing Knockout
Knockout requires initialization to associate the observables and observable arrays in the data model with the bindings
attached to the HTML elements (which I define shortly). Here is the code that starts the initialization process:

...
$(document).ready(function () {
 ko.applyBindings();
})
...

The ko.applyBindings method is called to initialize Knockout but should not be called until the browser has
loaded and processed all of the HTML and JavaScript files. The call to $(document).ready is a common incantation
in a JavaScript web application. The ready function is provided by jQuery, and when called in this way, it defers
execution of the function it is passed until the browser is ready. In this case, it allows me to defer initializing Knockout
until the elements that it will operate on have been processed by the browser.

Registering the JavaScript File
Listing 2-12 shows the script element I added to the _Layout.cshtml file so that the browser will request the contents
of the rsvp.js file and execute the code it contains.

Tip ■ You don’t have to type script elements into the editor. You can just drag and drop the Javascript files from the
solution explorer to the code editor, and a script element will be created automatically. Visual studio shows a cursor so
you can control where the element is added.

Listing 2-12. Adding a script Element to the _Layout.cshtml File

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <script src="~/Scripts/jquery-2.1.0.min.js"></script>
 <script src="~/Scripts/knockout-3.1.0.js"></script>
 <link href="~/Content/bootstrap.css" rel="stylesheet" />
 <link href="~/Content/bootstrap-theme.css" rel="stylesheet" />
 <title>@ViewBag.Title</title>
 <script src="~/Scripts/rsvp.js"></script>
 <style>
 body { padding-top: 10px; }
 </style>
</head>
<body class="container">
 @RenderBody()
</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

30

Appling Data Bindings
Now that I have a model and controller in place, I can update the HTML so that it responds dynamically to data
changes. Knockout uses a system of bindings, which are applied to elements through the data-bind attribute. Listing
2-13 shows the changes I made to the Index.cshtml file to apply the bindings I need for the application. I have also
taken the opportunity to combine the HTML into one file.

Tip ■ A single-page application doesn’t have to be defined in a single hTMl page—the principle of updating the
content with data obtained via Ajax requests. For large applications, it often makes sense to have several hTMl hub
pages that represent each major area of the application, which is what I do with the sportsstore application in
Chapters 5–8. As with all patterns, don’t let the ideal interfere with pragmatic implementation.

Listing 2-13. Creating a Dynamic Client in the Index.cshtml File

@{ ViewBag.Title = "Party!";}

<div class="text-center" data-bind="visible: model.view() == 'welcome'">
 <h2>We're going to have an exciting party!</h2>
 <h3>And you are invited.</h3>
 <button class="btn btn-success" data-bind="click: showForm">RSVP Now</button>
</div>

<div data-bind="visible: model.view() == 'form'">
 <div class="panel panel-success">
 <div class="panel-heading"><h4>RSVP</h4></div>
 <div class="panel-body">
 <div class="form-group">
 <label>Your name:</label>
 <input class="form-control" data-bind="value: model.rsvp.name" />
 </div>
 <div class="form-group">
 <label>Your email:</label>
 <input class="form-control" data-bind="value: model.rsvp.email" />
 </div>
 <div class="form-group">
 <label>Will you attend?</label>
 <select class="form-control" data-bind="value: model.rsvp.willattend">
 <option value="true">Yes, I'll be there</option>
 <option value="false">No, I can't come</option>
 </select>
 </div>
 <div class="text-center">
 <button class="btn btn-success"
 data-bind="click: sendRsvp">Submit RSVP</button>
 </div>
 </div>
 </div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

31

<div data-bind="visible: model.view() == 'thanks'">
 <h1>Thank you, !</h1>
 <div class="lead">

 It's great that you're coming. The drinks are already in the fridge!

 Here is the list of cool people coming:

 Sorry to hear that you can't make it, but thanks for letting us know.

 </div>
</div>

There are three sections to the HTML, each of which represents a view. I control which view is shown to the user
through a Knockout binding, like this one:

...
<div class="text-center" data-bind="visible: model.view() == 'welcome'">
...

This is an example of the visible binding, which controls whether an element is shown to the user. There are a
range of bindings including text (which sets the text content of an element), value (which sets a model value based
on the contents of a form element), and click (which calls a function when an element, such as button, is clicked). I
describe the available bindings in more detail in Chapter 3.

Some bindings—including the visible binding—evaluate expressions to figure out what they need to do. In
this case, the element to which the binding has been applied will be shown to the user if the value of the model.view
property is welcome. The other views have their own visible bindings that are looking for different model.view values.

Tip ■ observable values are functions, which means you have to invoke them to read their value—like
model.view()—and pass values as arguments to set them, such as model.view(newView).

To change the view, I need to change the value of the model.view property. You can see an example of how I do
this on a button element, like this:

...
<button class="btn btn-success" data-bind="click: showForm">RSVP Now</button>
...

This is an example of the click binding, and I have configured it to invoke the showForm controller function when
the button element is clicked. The showForm function is defined as follows:

...
var showForm = function() {
 model.view("form");
}
...

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

32

The only other binding I have used in the example is value, which synchronizes the contents of a form element,
such as an input, with a model value. Here is an example:

...
<input class="form-control" data-bind="value: model.rsvp.name" />
...

The value that is entered into the input element is synchronized with the model.rsvp.name property, which I use
to generate the Ajax POST request to submit the RSVP to the web service.

Testing the Single-Page Client
Start the application to see the effect of the changes I made. There is little obvious difference when using the
application, other than being a little snappier, because I have implemented the same application model that the
round-trip version of the application used, as illustrated by Figure 2-10. To make sure everything is working, you will
need to use the browser F12 tools to see the Ajax requests that are being sent.

Figure 2-10. The single-page application

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 2 ■ Your FIrsT Web API APPlICATIon

33

Measuring the Single-Page Implementation
With the addition of a simple Web API controller, some changes to the views, and a little JavaScript code, I have
created an application that requests a single HTML document from the server and uses Ajax requests to take the user
through the RSVP process.

I want to confirm that my application is working the way that I expect, and a good way to do this is to repeat the
tests I performed in the “Using the MVC Application” section earlier in the chapter and use the browser F12 tools to
record the requests made by the browser. Table 2-5 shows the results I received.

Table 2-5. The Request Summary from Google Chrome

Description Value

Total number of requests 10, all of which were made to the server (none was cached)

Total amount of data 246KB

The effect of using Web API has been to eliminate several requests to the server, which is always a good thing.
But the amount of data that has been sent by the server remains the same. This is to be expected because all I did in
this example was move the content around so that it was all contained in the Index.cshtml file or obtained through
Ajax requests. The application does the same things, using the same content; it just does them in a different way.

The main advantage of adding a simple HTTP web service to an application like this is that it improves the user
experience because the application responds immediately to user input, rather than needing to send a request to the
server and wait for an HTML response that must then be parsed and displayed.

Tip ■ More complex applications, especially those that have the user perform the same task repeatedly, can obtain
some serious bandwidth savings—something that will become apparent in later examples in this book.

Summary
In this chapter, I showed you how to use Web API to add an HTTP web service to an MVC framework application and
consume that web service in the browser. The example in this chapter is rather simple, but it does emphasize the fact
that ASP.NET Web API is easy to work with and works happily alongside the MVC framework. It also demonstrates
that creating a web service is only part of the story. You must also create the client-side functionality that consumes
the web service. Throughout this book, I show you not only how to create and configure web services but how to use
them, too. As with most web application technologies, context and integration are important. In the next chapter,
I provide a primer on some important techniques that you need to understand to get the best from this book.

www.it-ebooks.info

http://www.it-ebooks.info/

35

Chapter 3

Essential Techniques

As I explained in Chapter 1, this book is targeted at MVC framework developers, which means you already know C#
and key components such as Razor and action results. In this chapter, I provide a quick primer for three topics that
you may not be as familiar with: using C# async methods, making Ajax requests using jQuery, and using the Knockout
library. Understanding all three will help you get the most from this book.

Asynchronous methods are important in Web API development, especially once you go beyond creating
action methods and start to customize the way that requests are processed using the techniques I describe in Part
3 of this book.

jQuery and Knockout are not part of Web API, but I use them throughout this book to create client applications
that demonstrate different kinds of interactions with web services that I create using Web API. jQuery and Knockout
are both packages with a rich range of functionality, but I describe only the features that I use in examples.

Preparing the Example Project
For this chapter, I created a new Visual Studio project by following the same process that I used in Chapter 2 and that
I use throughout this book. Select New Project from the File menu to open the New Project dialog window, and locate
the ASP.NET Web Application template in the Visual C# ➤ Web section. Set the name of the project to Primer, as
shown in Figure 3-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

36

Click the OK button to move to the New ASP.NET Project dialog window. Ensure that the Empty option is selected
and check the MVC and Web API core references options, as shown in Figure 3-2. Click the OK button, and Visual
Studio will create the project.

Figure 3-1. Creating the Primer project

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

37

Adding and Updating NuGet Packages
Select Package Manager Console from the Visual Studio Tools ➤ NuGet Package Manager menu and enter the
following commands to update the MVC and Web API packages and install the jQuery Bootstrap and Knockout
packages:

Update-Package microsoft.aspnet.mvc -version 5.1.1
Update-Package microsoft.aspnet.webapi -version 5.1.1
Update-Package Newtonsoft.json -version 6.0.1
Install-Package jquery -version 2.1.0
Install-Package bootstrap -version 3.1.1
Install-Package knockoutjs –version 3.1.0

Creating the Web API Controller
I need a simple web service for this chapter, which means creating a Web API controller class. The controller I create
in this chapter is basic, rather like the one I created in Chapter 2, and it exists only so I can demonstrate essential
techniques. You can see a more complete example in Chapter 6, when I create a more realistic Web API application,
and I explain how controllers fit into Web API in Chapter 22.

To create the controller, right-click the Controllers folder and select Add ➤ Controller from the pop-up menu.
Select Web API 2 Controller – Empty from the list of controller types, as shown in Figure 3-3.

Figure 3-2. Selecting the ASP.NET project type

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

38

Click the Add button once you have selected the type, set the name of the new controller to PageSizeController,
and click the Add button to create the Controllers/PageSizeController.cs file. Listing 3-1 shows the action method
I added to the controller.

Listing 3-1. Adding an Action Method to the PageSizeController.cs File

using System.Net;
using System.Web.Http;
using System.Diagnostics;

namespace Primer.Controllers {

 public class PageSizeController : ApiController {
 private static string TargetUrl = "http://apress.com";

 public long GetPageSize() {
 WebClient wc = new WebClient();
 Stopwatch sw = Stopwatch.StartNew();
 byte[] apressData = wc.DownloadData(TargetUrl);
 Debug.WriteLine("Elapsed ms: {0}", sw.ElapsedMilliseconds);
 return apressData.LongLength;
 }
 }
}

Figure 3-3. Adding a Web API controller

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

39

The action method is called GetPageSize, and it makes HTTP requests for the Apress home page and returns the
number of bytes returned. I use the Stopwatch class from the System.Diagnostics namespace to measure how long
the requests take and use the Debug class to write out the duration to the Visual Studio Output window.

Tip ■ Getting the number of bytes returned by a url isn’t something you will often need in a real project, but it is a
helpful demonstration of a task that can be performed synchronously and asynchronously without requiring me to write
any code beyond the Web api controller. if you are keen to see a more realistic example, then skip ahead to Chapter 5,
where i begin the development of the sportsstore application.

Creating the MVC Framework Controller
I will be using the MVC framework to deliver HTML and JavaScript to the browser so that I can explain how to send
Ajax requests back to the web service and use Knockout to respond to the data that is received. To create an MVC
controller, right-click the Controllers folder and select Add ➤ Controller from the pop-up menu. Figure 3-4 shows the
options that Visual Studio presents for creating controllers for both MVC and Web API.

Figure 3-4. Selecting a controller type

Select the MVC 5 Controller – Empty option from the list, click the Add button, and set the name to
HomeController, as shown in Figure 3-5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

40

Clicking the Add button creates the Controllers/HomeController.cs file, the contents of which are shown in
Listing 3-2.

Listing 3-2. The Contents of the HomeController.cs File

using System.Web.Mvc;

namespace Primer.Controllers {
 public class HomeController : Controller {

 public ActionResult Index() {
 return View();
 }
 }
}

The only action method is Index, which renders the default view. To create the view, right-click the action
method in the code editor and select Add View from the pop-up menu. Ensure that the View Name field is set to Index
and click the Add button to create the Views/Home/Index.cshtml file. Replace the contents of the file so they match
Listing 3-3.

Listing 3-3. The Contents of the Index.cshtml File

@{ Layout = null;}
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Primer</title>
 <script src="~/Scripts/jquery-2.1.0.min.js"></script>
 <script src="~/Scripts/knockout-3.1.0.js"></script>
 <link href="~/Content/bootstrap.css" rel="stylesheet" />
 <link href="~/Content/bootstrap-theme.css" rel="stylesheet" />
</head>
<body>
 <h2>Content will be added here</h2>
</body>
</html>

Figure 3-5. Creating an MVC controller

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

41

The view contains script elements for jQuery and Knockout and link elements for the Bootstrap files. I have left
a placeholder within the body element that I will replace when I start to demonstrate client-side features later in the
chapter.

Setting the Port and Start URL
The final preparations I need to make specify the TCP port that will be used to receive requests and the initial URL
that will be passed to the browser when the project is started, just as I did in Chapter 2. Select Primer Properties from
the Visual Studio Project menu and click Web to open the settings for ASP.NET projects.

Enable the Specific Page option and enter Home/Index into the field. On the same page, change the value shown
in the Project Url field to http://localhost:38000/ and click the Create Virtual Directory button.

The first change prevents Visual Studio from trying to work out what URL should be shown when the application
first starts based on the file you edited most recently, and the second change means that requests will be received on
TCP port 38000.

Testing the Web Service
Start the application by selecting Start Debugging from the Visual Studio Debug menu. Ignore the browser window
that is opened; I will not add any useful content to the view until the “Making Ajax Requests with jQuery” section.

Instead, start the Postman client (which I described in Chapter 1 and used in Chapter 2) and send a GET request
to the following URL:

http://localhost:38000/api/pagesize

The default behavior for the Web API controller is to use the HTTP verb to select the action method, and the GET

request will target GetPageSize. The action method will request the content from Apress.com and return the number
of bytes received, as shown in Figure 3-6.

Figure 3-6. Testing the Web API web service

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

42

Note ■ the apress web site changes often to reflect new releases and special offers. the number of bytes you receive
is likely to be different from the result i show here.

Understanding Asynchronous Methods
Asynchronous methods have been part of ASP.NET for a while, but as something of an afterthought. Web API adopts
asynchronous methods throughout its API. They are optional in controllers, but many of the classes that customize
the way that Web API processes requests define only asynchronous methods.

Asynchronous methods are one of the most misunderstood aspects of web application development. In the
sections that follow, I’ll explain the benefit they offer, dispel a commonly held misconception, and demonstrate the
patterns you will need to deal with asynchronous methods in Web API.

Understanding the Problem Asynchronous Methods Solve
When writing action methods—or any part of a web application—the natural tendency is to think about the path that
a single request follows through the code. In the case of the GetPageSize action method in the PageSize controller,
the path is simple: a request arrives at the action method, I make a request to the remote web server, and 500
milliseconds later, I get the data I need and can return the result, as illustrated by Figure 3-7. (The actual elapsed time
will differ, but I am going to assume a constant 500 milliseconds.)

GetPageSize

GetPageSize

Figure 3-8. The request sequence

GetPageSize

Invoke Action
Method

Send Request to
Apress.com

Wait 500ms Return Result

Figure 3-7. The request path for the GetPageSize action

The handler that is processing the request has nothing to do except wait during the 500 milliseconds it takes for
the action method to send the HTTP request to Apress.com and receive the response.

This isn’t a problem when you are thinking about only one request, but it causes problems for the overall
application. Imagine that the PageSize controller is being run in a web application server that processes only one
request at a time and that all of the requests target the GetPageSize action method. In such a situation, the server can
process two incoming client requests a second, as shown in Figure 3-8.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

43

Tip ■ an application server that handles only one request at a time isn’t as unlikely as it may seem, as the success of
node.js has demonstrated.

The handler can start processing a request only when it has finished processing the previous one, and for the
majority of the time, the handler is sitting idle. The problem isn’t the work that the action method is performing—it is
the way that the handler and the action method work together.

The solution is to perform the request to Apress.com asynchronously, which frees up the handler to process
other incoming client requests instead of waiting for the Apress.com response. Listing 3-4 shows the application of the
async and await keywords to the GetPageSize action method.

Listing 3-4. Creating an Asynchronous Action Method in the PageSizeController.cs File

using System.Net;
using System.Web.Http;
using System.Diagnostics;
using System.Threading.Tasks;

namespace Primer.Controllers {

 public class PageSizeController : ApiController {
 private static string TargetUrl = "http://apress.com";

 public async Task<long> GetPageSize() {
 WebClient wc = new WebClient();
 Stopwatch sw = Stopwatch.StartNew();
 byte[] apressData = await wc.DownloadDataTaskAsync(TargetUrl);
 Debug.WriteLine("Elapsed ms: {0}", sw.ElapsedMilliseconds);
 return apressData.LongLength;
 }
 }
}

The async keyword is applied to the method definition, and the result is changed to a Task<long>, which means
a Task object that will yield a long value when it completes. Within the action method, I have used an asynchronous
implementation of the method that gets the HTTP data, and I apply the await keyword to indicate that this is an
asynchronous operation and that the statements that follow can be packaged up by the complier to generate the
Task<long> result required as the method result.

This arrangement doesn’t change the work that the action method performs, but it does mean that the handler
is free to handle other client requests while the action method is waiting for the response from Apress.com. Figure 3-9
illustrates the effect.

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

44

Instead of waiting for the action method as it waits for Apress.com , the handler can process the next request or
process the results when Apress.com responds.

Using asynchronous methods increases the overall throughput of the web application, but it can degrade the
performance for each individual request. This is because there is only one handler, and it is now responsible for
managing several concurrent requests. In the synchronous model, the handler was able to deal with the result from the
action method immediately because it had been waiting for it to arrive, but in the asynchronous model, the handler
may be doing something else and not be available to process the result immediately. Or, put another way, asynchronous
methods increase the overall performance of the application by reducing the performance of individual requests.

Tip ■ the amount of delay will depend on how the application server is configured and what kind of requests are being
processed—and, of course, how many handlers are available to process those requests (because single-handler servers
are great for describing theory but are not often used in asp.net projects).

Implementing an Asynchronous Interface
You can choose between asynchronous and synchronous action methods in Web API controllers, but once you
start using some of the advanced features, you will need to implement interfaces that are written explicitly for
asynchronous execution. As an example, I created a folder called Infrastructure and added to it a class file called
ICustomController.cs that I used to define the interface shown in Listing 3-5.

Listing 3-5. The Contents of the ICustomController.cs File

using System.Threading;
using System.Threading.Tasks;

namespace Primer.Infrastructure {
 public interface ICustomController {

 Task<long> GetPageSize(CancellationToken cToken);
 }
}

You will see this pattern of interface method a lot in Part 3 of this book, when I describe the end-to-end dispatch
process: a return type of Task or Task<T> and a CancellationToken parameter. In the sections that follow, I’ll show
you how to deal with some common patterns of asynchronous method you will need to write.

If the method you are going to write calls another asynchronous method, then you can use the async and await
keywords, just as I did in Listing 3-4 and receive the CancellationToken parameter, as shown in Listing 3-6.

GetPageSize

GetPageSize

GetPageSize

Figure 3-9. The effect of an asynchronous action method

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

45

Listing 3-6. Implementing the Interface in the PageSizeController.cs File

using System.Net;
using System.Web.Http;
using System.Diagnostics;
using System.Threading.Tasks;
using Primer.Infrastructure;
using System.Threading;

namespace Primer.Controllers {

 public class PageSizeController : ApiController, ICustomController {
 private static string TargetUrl = "http://apress.com";

 public async Task<long> GetPageSize(CancellationToken cToken) {
 WebClient wc = new WebClient();
 Stopwatch sw = Stopwatch.StartNew();
 byte[] apressData = await wc.DownloadDataTaskAsync(TargetUrl);
 Debug.WriteLine("Elapsed ms: {0}", sw.ElapsedMilliseconds);
 return apressData.LongLength;
 }
 }
}

I come back to the CancellationToken parameter in the next section, but implementing the Web API
asynchronous interface pattern is simple when you are relying on other asynchronous methods to do your work,
something that is often the case in action methods that access services like the Entity Framework and ASP.NET
Identity, both of which I use in Chapter 5 when I prepare for the more realistic SportsStore application.

Tip ■ if you define a CancellationToken parameter on an action method, Web api will provide one for you that is
triggered when the request is terminated.

Not all methods can use this approach, however, either because they are going to perform the work directly or
because the implementation of the method is so simple that the overhead of creating and managing Task objects does
not justify the benefit of freeing the handler to process other requests. In the sections that follow, I show you how to
handle the most common scenarios you are likely to encounter.

Note ■ i don’t go into detail about what is happening behind the scenes in this chapter. if you want more information
about .net asynchronous programming, then see my Pro .NET 4 Parallel Programming in C# book or Pro Asynchronous
Programming with .NET, written by richard Blewett and andrew Clymer. Both books are published by apress.

Dealing with Cancellation
The CancellationToken parameter is used to signal when the request has been cancelled. You can ignore
cancellation in your asynchronous methods, but it is good practice to stop the work you are performing if you can,
not least because you know that the result you produce is going to be discarded. In Listing 3-7, I have changed the
implementation of the GetPageSize method in the PageSize controller so that it does more work and monitors its
cancellation token.

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

46

Listing 3-7. Using a Cancellation Token in the PageSizeController.cs File

using System.Net;
using System.Web.Http;
using System.Diagnostics;
using System.Threading.Tasks;
using Primer.Infrastructure;
using System.Threading;
using System.Collections.Generic;
using System.Linq;

namespace Primer.Controllers {

 public class PageSizeController : ApiController, ICustomController {
 private static string TargetUrl = "http://apress.com";

 public async Task<long> GetPageSize(CancellationToken cToken) {
 WebClient wc = new WebClient();
 Stopwatch sw = Stopwatch.StartNew();

 List<long> results = new List<long>();

 for (int i = 0; i < 10; i++) {
 if (!cToken.IsCancellationRequested) {
 Debug.WriteLine("Making Request: {0}", i);
 byte[] apressData = await wc.DownloadDataTaskAsync(TargetUrl);
 results.Add(apressData.LongLength);
 } else {
 Debug.WriteLine("Cancelled");
 return 0;
 }
 }

 Debug.WriteLine("Elapsed ms: {0}", sw.ElapsedMilliseconds);
 return (long)results.Average();
 }
 }
}

This implementation gets the content from the Apress web site ten times and averages the result. (Ignore the
fact that there is unlikely to be any variation between requests.) Before I send each request to Apress.com, I check the
value of the CancellationToken.IsCancellationRequested property to see whether the request has been cancelled.
If it has been cancelled, I know that the request has been terminated and do not perform any further work. I return
zero as the result from the method, although I could have returned any value from the method because it will be
discarded.

Tip ■ use the browser to test request cancellation by requesting the url http://localhost:38000/api/pagesize
and then clicking the Cancel button. Don’t use postman because the current version as i write this doesn’t terminate
the http request when its Cancel button is clicked—and this means that the Web api application will not trigger the
 cancellation token and all ten requests to apress.com will be performed.

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

47

Creating a Self-Contained Asynchronous Method Body
A common scenario in Web API development is where you have a series of synchronous statements that you want to
execute asynchronously. This is done by creating and starting a Task that wraps around the statements you need to
execute and return the Task as the result from the method, as shown in Listing 3-8.

Listing 3-8. Creating a Task in the PageSizeController.cs File

using System.Net;
using System.Web.Http;
using System.Diagnostics;
using System.Threading.Tasks;
using Primer.Infrastructure;
using System.Threading;
using System.Collections.Generic;
using System.Linq;

namespace Primer.Controllers {

 public class PageSizeController : ApiController, ICustomController {
 private static string TargetUrl = "http://apress.com";

 public Task<long> GetPageSize(CancellationToken cToken) {

 return Task<long>.Factory.StartNew(() => {
 WebClient wc = new WebClient();
 Stopwatch sw = Stopwatch.StartNew();

 List<long> results = new List<long>();

 for (int i = 0; i < 10; i++) {
 if (!cToken.IsCancellationRequested) {
 Debug.WriteLine("Making Request: {0}", i);
 results.Add(wc.DownloadData(TargetUrl).LongLength);
 } else {
 Debug.WriteLine("Cancelled");
 return 0;
 }
 }

 Debug.WriteLine("Elapsed ms: {0}", sw.ElapsedMilliseconds);
 return (long)results.Average();
 });
 }
 }
}

I have returned to calling the synchronous WebClient.DownloadData method in this example, which lets me
demonstrate using a set of synchronous statements. I call the static Task<long>.Factory.StartNew method to create
and start the Task and pass the statements I want executed through a lambda expression. You must create and start
the Task in the action method; if you just create and return the Task without starting it, then the work will never be
performed, and eventually the client times out waiting for a response.

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

48

Tip ■ notice that the method definition does not include the async keyword. this is required only when using the
await keyword.

Returning a Task from a Synchronous Method Body
There is nothing about the method definition I created in Listing 3-5 that forces you to create an asynchronous
method—just an opportunity to create one if it would be advantageous to your application. For simple methods,
the overhead of creating a Task is greater than simply executing the method statements synchronously. As a
demonstration, I have added a new method to the ICustomController interface, as shown in Listing 3-9.

Listing 3-9. Adding a New Method in the ICustomController.cs File

using System.Threading;
using System.Threading.Tasks;

namespace Primer.Infrastructure {
 public interface ICustomController {

 Task<long> GetPageSize(CancellationToken cToken);

 Task PostUrl(string newUrl, CancellationToken cToken);
 }
}

The new method is written so that it can be implemented asynchronously, but my implementation in the
controller, as shown by Listing 3-10, can do its work in a single statement.

Listing 3-10. Implementing a Simple Method in the PageSizeController.cs File

using System.Net;
using System.Web.Http;
using System.Diagnostics;
using System.Threading.Tasks;
using Primer.Infrastructure;
using System.Threading;
using System.Collections.Generic;
using System.Linq;

namespace Primer.Controllers {

 public class PageSizeController : ApiController, ICustomController {
 private static string TargetUrl = "http://apress.com";

 public Task<long> GetPageSize(CancellationToken cToken) {

 return Task<long>.Factory.StartNew(() => {
 WebClient wc = new WebClient();
 Stopwatch sw = Stopwatch.StartNew();

 List<long> results = new List<long>();

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

49

 for (int i = 0; i < 10; i++) {
 if (!cToken.IsCancellationRequested) {
 Debug.WriteLine("Making Request: {0}", i);
 results.Add(wc.DownloadData(TargetUrl).LongLength);
 } else {
 Debug.WriteLine("Cancelled");
 return 0;
 }
 }

 Debug.WriteLine("Elapsed ms: {0}", sw.ElapsedMilliseconds);
 return (long)results.Average();
 });
 }

 public Task PostUrl(string newUrl, CancellationToken cToken) {
 TargetUrl = newUrl;
 return Task.FromResult<object>(null);
 }
 }
}

The static Task.FromResult<T> method is used to create a Task that is a wrapper around a specific value. The
version I used in the listing is helpful when the method doesn’t return a value. If I had a similar method that returned
an int value, for example, then I might use the following statements:

...
int x = 100;
int y = 200;
return Task.FromResult<int>(x + y);
...

Task.FromResult allows you to generate Task wrappers around results that you generated synchronously; in
this case, the evaluation of x+y happens synchronously and is wrapped in the Task that yields this value immediately.
There is no asynchronous work performed when you use the FromResult method.

Making Ajax Requests with jQuery
The jQuery library is one of my favorite pieces of software. It makes manipulating HTML and CSS simple, easy, and
consistent, and it has so many features that it took me more than 1,000 pages to describe them all in my Pro jQuery 2
book.

In this book, I use jQuery only to make Ajax requests. This is a small fraction of what jQuery is capable of, but Ajax
is a theme that runs throughout this book, and jQuery Ajax is robust, is reliable, and has some helpful convenience
features. In the sections that follow, I show you the pattern I used to make jQuery Ajax requests in this book.

Note ■ You don’t need to be able to send ajax requests to use Web api. in fact, for projects that involve third-party
developers, you may not have to write a client at all. Most projects, however, will involve some form of client develop-
ment, and this is likely to be a browser-based client if you are also using the MVC framework. so, while ajax isn’t part of
Web api, it is the way that most clients will access your web services.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

50

Making an Ajax Request
jQuery provides a range of different ways to make Ajax requests, but the one that I have used in this book is the
$.ajax method (that is a dollar sign, followed by a period, followed by ajax). There are some higher-level alternatives
available, but the $.ajax method lets me make a complete range of HTTP request types and take control over the way
that the request is formatted, sent, and processed.

Before I start using jQuery, I am going to change the implementation of the GetPageSize action method in the
PageSize controller. The implementation I defined in Listing 3-8 makes ten requests to Apress.com and averages the
responses, which was useful for demonstrating how to deal with asynchronous methods but is not helpful when you
are waiting for a response to test a client feature. Listing 3-11 shows how I have simplified the action method so that it
makes only a single request.

Listing 3-11. Simplifying an Action Method in the PageSizeController.cs File

using System.Net;
using System.Web.Http;
using System.Diagnostics;
using System.Threading.Tasks;
using Primer.Infrastructure;
using System.Threading;
using System.Collections.Generic;
using System.Linq;

namespace Primer.Controllers {

 public class PageSizeController : ApiController, ICustomController {
 private static string TargetUrl = "http://apress.com";

 public async Task<long> GetPageSize(CancellationToken cToken) {
 WebClient wc = new WebClient();
 Stopwatch sw = Stopwatch.StartNew();
 byte[] apressData = await wc.DownloadDataTaskAsync(TargetUrl);
 Debug.WriteLine("Elapsed ms: {0}", sw.ElapsedMilliseconds);
 return apressData.LongLength;
 }

 public Task PostUrl(string newUrl, CancellationToken cToken) {
 TargetUrl = newUrl;
 return Task.FromResult<object>(null);
 }
 }
}

To get started with jQuery, I have updated the Index.cshtml file so that I can send a basic request to the web
service. Listing 3-12 shows the changes I made.

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

51

Listing 3-12. Making a Simple Ajax Request in the Index.cshtml File

@{ Layout = null;}
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Primer</title>
 <script src="~/Scripts/jquery-2.1.0.min.js"></script>
 <script src="~/Scripts/knockout-3.1.0.js"></script>
 <script src="~/Scripts/primer.js"></script>
 <link href="~/Content/bootstrap.css" rel="stylesheet" />
 <link href="~/Content/bootstrap-theme.css" rel="stylesheet" />
</head>
<body>
 <div class="alert alert-success">

 </div>
 <button class="btn btn-primary"data-bind="click: sendRequest">
 Send Request
 </button>
</body>
</html>

Within the body element, I have added HTML elements and applied Knockout bindings. I touched on Knockout
bindings in Chapter 2, and I return to them in the “Using Knockout” section of this chapter. My emphasis in this
section is on how to use jQuery, so I’ll skip over the detail and just summarize: the text data binding displays the
value of a JavaScript variable called modelData in a span element, like this:

...

...

The text content of the span element will change automatically when the modelData value changes. The other
binding I have used is click, which invokes a JavaScript function when the button element it is applied to is clicked.

...
<button class="btn btn-primary" data-bind="click: sendRequest">
...

The function is called sendRequest, and I defined it—and the modelValue variable—in a JavaScript file called
primer.js, for which I added script element in Listing 3-12. I created the primer.js file in the Scripts folder, and
Listing 3-13 shows its contents.

Listing 3-13. The Contents of the primer.js File

var modelData = ko.observable("(Ready)");

var sendRequest = function () {
 $.ajax("/api/pagesize", {
 type: "GET",
 success: function (data) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

52

 modelData("Response: " + data + " bytes");
 }
 });
}

$(document).ready(function () {
 ko.applyBindings();
});

The interesting part of the primer.js file—at least for this section of the chapter—is the call to the $.ajax
method. To test the example, start the application and click the Send Request button. After a brief pause, the response
from the server will be displayed in the browser window, as shown by Figure 3-10.

Figure 3-10. Sending a Simple Ajax Request

Understanding the $.ajax Method
The $.ajax method accepts two arguments: the URL that the request will be sent to and a JavaScript object that
contains the settings for the request. The URL is expressed relative to the URL of the document that has loaded the
JavaScript code, which is why I am able to specify the URL like this:

...
$.ajax("/api/pagesize", {
...

The URL of the web page is http://localhost:38000/Home/Index, and by specifying a relative URL that starts
with a / character, I am specifying that the request be directed to http://localhost:38000/api/pagesize, which is
the URL for my web service.

The second argument provides control over how the request is made. The properties of the object correspond to
request settings. I have specified the HTTP verb for the request with the type property and a callback function that will
be invoked for successful requests with the success property. The argument to the function assigned to the success
property is an object that jQuery automatically decodes from the serialized data that the web service sends in the
request. The success function that I specified in Listing 3-13 uses the data argument to set the value of the modelData
property, which Knockout uses to update the content of the span HTML element.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

53

UNDerStaNDING JSON Data

Javascript Object notation (JsOn) has become the de facto data format for web apps. JsOn is simple and easy
to work with in Javascript code, which is why it has become so popular and has displaced XMl. (the x in ajax
stands for XMl, but it is a format that is used less and less.)

JsOn supports some basic data types, which neatly align with those of Javascript: Number, String, Boolean,
Array, Object, and the special type null. You don’t have to work directly with JsOn when writing Web api web
services or when using jquery to handle ajax requests; Web api will automatically encode your data as JsOn, and
jquery will automatically decode it. i explain how Web api deals with JsOn in part 2 of this book and demonstrate
how to take control of the serialization and deserialization processes.

A lot of configuration properties are available for jQuery, all of which are detailed at
 http://api.jquery.com/jQuery.ajax. Table 3-1 describes the properties that I use most often in this book to
configure the Ajax requests I sent to my web services.

Table 3-1. The jQuery Ajax Properties Used in This Book

Name Description

accepts This property sets the content types that the client will tell the server it is willing to accept. This is
part of a process called content negotiation, which I describe in Part 2.

complete This property registers a callback function that is invoked when the Ajax request is complete,
regardless of whether the request was successful or failed.

contentType This property sets the value of the Content-Type header, which tells the server how the data in
the request has been formatted.

data This property specifies the data that will be sent to the server. jQuery will automatically serialize
a JavaScript object to produce a JSON string.

dataType This property specifies the type of data that the client should expect the web service to return.

error This property specifies a callback function that is invoked when the Ajax request fails.

headers This property is set to a JavaScript object used to define headers for the request. The object
properties specify the headers to be set.

success This property registers a callback function that is invoked when the Ajax request succeeds.
jQuery deserializes the data sent by the web service and presents the callback function with a
JavaScript object.

type This property specifies the HTTP verb for the Ajax request.

Tip ■ jquery also provides the $.ajaxSetup method that configures all subsequent ajax requests. i use this method in
Chapter 7 to configure client-side authentication for the sportsstore example application. the $.ajaxSetup method uses
the same configuration properties as the $.ajax method.

www.it-ebooks.info

http://api.jquery.com/jQuery.ajax
http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

54

Using Knockout
I use Knockout in this book to create example clients that respond automatically to the data that is returned by
web services. There are other libraries and frameworks that perform the same task, including AngularJS, which
I use for my most complex projects. Knockout, however, is perfect for simpler projects and has the benefit of being
one of the libraries that Microsoft has started including in the ASP.NET example application and templates, giving
it a semi-blessed status. In the sections that follow, I show you how I use Knockout in this book.

Tip ■ Knockout has more functionality than i describe here. see http://knockoutjs.com or my Pro JavaScript for
Web Apps book for more details.

There are two major Knockout components: the model and the bindings. The model consists of one or more
observable data items. An observable data item is monitored by Knockout, and when it changes, the new value is
used to update the content of HTML elements that have been annotated with the bindings. Bindings are also used to
respond to user input and update the model values. You saw a simple example of a model in Listing 3-13, where
I defined an observable called modelData, like this:

...
var modelData = ko.observable("(Ready)");
...

I called the ko.observable method to set up a new observable and passed the initial value as the method
argument. I assigned the result to a JavaScript variable called modelData, and in doing so, I created a simple Knockout
data model.

Knockout can also create observable arrays, through the use of the ko.observableArray method. Here is an
example of a model from Chapter 7 that mixes standard observables with observable arrays:

...
var customerModel = {
 productCategories: ko.observableArray([]),
 filteredProducts: ko.observableArray([]),
 selectedCategory: ko.observable(null),
 cart: ko.observableArray([]),
 cartTotal: ko.observable(0),
 cartCount: ko.observable(0),
 currentView: ko.observable("list")
}
...

Applying the Bindings
Knockout defines a range of bindings. The simplest bindings insert model values into HTML elements, but there are
also bindings for generating HTML elements for each item in an array and even responding to user input. Here is
an example of a binding from Listing 3-12 that applies a binding to a span element:

...

...

www.it-ebooks.info

http://knockoutjs.com/
http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

55

Bindings are applied to HTML elements using the data-bind attribute, the value of which is set to the binding
name, followed by a comma, followed by an expression that the binding uses to do its work. In this case, the value of
the attribute is text: modelData, meaning that I have applied a binding called text with the expression modelData.
Bindings interpret their expressions in different ways, but the effect of this binding is to set the text content of the span
element to the value of the modelData variable. Table 3-2 describes the bindings that I have used in this chapter.

Table 3-2. The Knockout Bindings Used in This Book

Name Description

click This binding is used to invoke functions when an element, typically a button, is clicked. If you just
want to invoke the function without arguments, then specify the function name: data-bind="click:
myFunction". If you want to provide arguments to the function, then you have to use a different
approach, like this: data-bind="click: myFunction.bind($data, "hello"). This will have the effect
of invoking the function with a single hello argument because the $data value is not passed to the
function. I use the click binding throughout this book to invoke functions that send Ajax requests.

css This binding is used to assign CSS classes to an element when the expression evaluates as true. The
CSS classes are removed from the element when the expression is false. I use this binding to change
the style of HTML elements when an Ajax request fails.

foreach This binding is used to generate HTML elements for each item in an array. The content of the element
to which the binding is applied is treated like a template with its own data bindings. The current item
is referred to using $data within the template. I use this binding to display data received from web
services, usually as tables.

text This binding sets the text content of an element to the value of the expression. I use this binding
throughout the book to display the results obtained from web services.

value This binding is used with input and select elements and synchronizes an observable value with the
contents of the element. I use this binding to obtain user input so that I can send it to web services.

visible This binding changes the visibility of the element it is applied to. The element is visible if the
expression evaluates to true and hidden otherwise. I use this binding to treat sections of the HTML
document as views and show only one to the user at a time.

Tip ■ You can also define Javascript functions that are invoked when an observable or observable array is changed.
i use this feature in Chapter 7 to derive data values from the model so that i have to perform complex calculations only
once but display the results several times.

there isn’t always a convenient htMl element to which you can apply a Knockout binding. in Chapter 7, i encounter
such a problem when creating a complex table layout with the foreach binding and solve it by applying the binding to a
specially formatted comment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ essential teChniques

56

Activating the Bindings
Knockout has to process the HTML elements in a document to locate and activate its data bindings. Here are the
statements that perform this initialization from Listing 3-13:

...
$(document).ready(function () {
 ko.applyBindings();
});
...

The initialization is performed by the ko.applyBindings method. I don’t want to call the method until the
browser has finished loading all of the HTML elements; otherwise, there may be bindings that are not activated.
To ensure that all of my bindings are activated, I call the ko.applyBindings method from within a function passed to
the jQuery ready function, which I introduced in Chapter 2.

Summary
In this chapter, I described the essential techniques you will need to get the most from this book. I showed you
different ways of dealing with asynchronous methods and described how I use jQuery to make Ajax requests and
Knockout to create dynamically updating applications. In Chapter 4, I put HTTP web services in context and explain
the role of Web API in the ASP.NET world.

www.it-ebooks.info

http://www.it-ebooks.info/

57

Chapter 4

Understanding HTTP Web Services

In this chapter, I explain the different ways in which ASP.NET Web API can be used to deliver an HTTP web service
and the kinds of clients that each arrangement best suits. I build on this foundation to describe the two broad
categories of web service that you can create: simple web services (like the one I created in Chapter 2) and RESTful
web services, which are more complex but are easier to maintain.

The choice between simple and RESTful web services echoes themes that run through MVC framework
development: an initial investment of design and development time that is paid back through a loosely coupled
system that is easier to change over time.

To explain RESTful web services, I describe the process for designing and evolving an API that allows a client to
consume the service in a loosely coupled way. The result is a description of a RESTful API that may strike you as rather
abstract, but don’t worry because I back this up with implementation examples in Chapter 5–8, as well as detailed
explanations of the ASP.NET Web API features throughout this book.

Understanding ASP.NET Web API
ASP.NET Web API solves a simple problem: it creates services that deliver data from ASP.NET applications to clients
over HTTP requests, known as HTTP web services. This may sound similar to the MVC framework, but the difference
is that MVC usually delivers content that mixes the data with presentation instructions to the client. Figure 4-1 shows
the standard arrangement of components in an MVC framework application.

Figure 4-1. The components in an MVC application

The MVC framework view combines Razor markup with model data to generate content that can be presented to
the user, typically as a combination of HTML, CSS, and JavaScript.

ASP.NET Web API also uses a controller and a model, but it doesn’t have views. Instead, it sends just the data,
as illustrated in Figure 4-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Understanding http Web serviCes

58

Sending just the data means that presenting the data to the user becomes the responsibility of the client that
made the HTTP request. There are four different types of Web API client, each of which benefits from a data-only
service in a different way: single-page applications, native applications, shared-model applications, and service
applications. I describe each of the client types in the sections that follow.

The decision about which model to use is driven largely by where raw data is processed and combined with
presentation elements to show to the user. The presentation need not be HTML; native clients use their own UI
toolkits, and service applications may not present the data to a user at all.

Understanding Single-Page Applications
Browser-based web applications can be broken into two broad categories. The first is round-trip applications, which
is where every request to the server returns a complete page of HTML content. The other category, single-page
applications, starts with an HTML document and uses JavaScript to make Ajax requests to the server for additional
data or fragments of HTML in order to response to user interaction. In Chapter 2, I created a simple single-page
application to introduce you to ASP.NET Web API.

These round-trip and single-page categories are the ends of a spectrum, and most modern web applications fall
somewhere in the middle such that some requests return complete HTML documents, while others are just for data.

For most MVC framework developers, single-page applications are the reason that ASP.NET Web API is
interesting, allowing an HTTP web service to be used alongside the MVC framework components of an application,
and it is this model that I focus on for most of the book. The MVC framework is used to deliver the initial content,
which is then supplemented or updated using Ajax requests to an ASP.NET Web API web service, as shown in
Figure 4-3.

Figure 4-2. The components in a Web API application

Figure 4-3. Using MVC and Web API in a single-page application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Understanding http Web serviCes

59

The model data is processed in two places: in the view when the initial content for the application is requested
from the MVC controller and in the browser when the data is received from the Web API controller. ASP.NET makes
it easy to create a data model that is exposed to clients through MVC and Web API controllers, as I demonstrated in
Chapter 2.

Understanding Native Applications
The rise of smartphones and tablets means that many applications are delivered as native clients, rather than as
HTML content in a browser window. Native applications still require data and perform operations on that data, which
is readily supported through Web API. Web API delivers the data, and the native applications are responsible for
processing the data they receive and displaying it to the user. Figure 4-4 shows a mix of client types being supported
by an ASP.NET application.

Figure 4-4. Supporting mixed client types in an ASP.NET application

Smartphones and tablets are not the only kinds of native application, and just about any application that can
send HTTP requests and process common data formats can consume a web service. Smartphones are the most
numerous native clients, especially if you are creating an Internet-facing application, but you can also use Web API to
support desktop clients, embedded devices, and smart TVs. I don’t describe native applications in this book, but the
web services that I create with Web API can easily be consumed by any kind of client.

Understanding Shared-Model Applications
The implicit assumption in Figure 4-4 is that the model state is stored persistently and that all of the applications that
need to access the model will do so through the data store, which is typically a database of some kind.

The problem with this approach is that databases are good at managing data but do not have means to
consistently enforce features such as authorization or logging in a way that makes sense for the application. For
example, it may be possible to log a particular SQL query but not what application function the user was performing
that led to the query.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Understanding http Web serviCes

60

In addition, if there are multiple applications that need to share the model data, it can be difficult to manage
schema and data changes without upgrading the database and all of the applications in lock-step, which requires
careful planning and testing.

An alternative approach is to use a web service to mediate access to the data store from multiple applications,
providing an abstraction from the storage implementation and isolating the applications from changes in the way that
data is stored. Figure 4-5 shows this approach.

Figure 4-5. Using a web service to mediate access to the data store

Using a web service as a model mediator can impact performance, but the benefits can be worth it if the way that
the data is stored is particularly difficult to work with or is expected to change often. In this configuration, the MVC
applications are treated just like any other client of the web service and combine the data and markup in the view.

Understanding Service Applications
Service applications don’t interact directly with users. Instead, they obtain data from a web service and package or
process it for a different kind of client. Service applications add some kind of value to the web service, perhaps by
combining data and operations from multiple web services into a single API or performing complex calculations.
Supporting service clients can be a good way to make data available to a wider audience, which may go far beyond
your existing user base.

From the perspective of the application, there is little difference between supporting a native application and a
service application; the same HTTP requests are received and processed to retrieve data or update the model, and the
way in which the data is processed or presented is not known to the web service.

Tip ■ You can see a good example at http://fitbit.com of an api that reaches a wider audience through service
applications. Fitbit sells hardware devices that monitor activity levels and provides a web application that collects the
activity data. the data and user information are exposed through an api, which has allowed a substantial ecosystem of
other sites and services to thrive. supporting service clients can be useful if your business model isn’t tied to drawing
users into your application.

www.it-ebooks.info

http://fitbit.com/
http://www.it-ebooks.info/

Chapter 4 ■ Understanding http Web serviCes

61

Understanding Simple Web Services
The HTTP web service that I created with ASP.NET Web API in Chapter 2 is what is referred to as a simple web service
or, to use a term that has more resonance for an MVC framework developer, a tightly coupled web service. The tight
coupling refers to the fact that the client has to have prior knowledge of how the web service has been designed in
order to consume the web service.

As an example of prior knowledge, the client in the PartyInvites application needs to know that new RSVP
responses are submitted as POST requests to the /api/rsvp/add URL. There is nothing in the responses sent by the
Web API controller to indicate that the /api/rsvp/add URL exists; the client needs to have this information ahead of
time. This isn’t hard to arrange when the client code is delivered from an MVC framework application because you
can embed the information in a view, it becomes more of a problem for native clients of a web service, such as iPhone
and Android applications.

As you may expect if you are familiar with the MVC pattern, the problem with tight coupling is that it makes it
hard to maintain the application because changes have to be made to the Web API controller and the client JavaScript
code at the same time.

It also makes it difficult to use the Web API controller beyond its original purpose because controllers for simple
web services tend to offer only action methods for the specific functions that the original client requires. As an
example, if I needed to add an administration-type client that allows me to list, edit, and delete guest responses, then
I need to extend the functionality of the controller—something that prevents clients from being created without the
coordination of the web service developer.

The alternative is to create a web service that doesn’t require the client to have any prior knowledge of the web
service, which is the essence of what REST is all about. I describe REST and RESTful web services in the next section
and demonstrate how ASP.NET Web API can be used to create them, but before I move on, I want to emphasize that
you should not dismiss simple web services out of hand.

Despite the problems that arise from tight coupling, simple web services can transform a round-trip MVC
framework application to the single-page model with just a few lines of C# and JavaScript code. You saw this in
Chapter 2, where I created the following Web API controller.

using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using PartyInvites.Models;

namespace PartyInvites.Controllers {

 public class RsvpController : ApiController {

 [HttpGet]
 public IEnumerable<GuestResponse> Attendees() {
 return Repository.Responses.Where(x => x.WillAttend == true);
 }

 [HttpPost]
 public void Add(GuestResponse response) {
 if (ModelState.IsValid) {
 Repository.Add(response);
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Understanding http Web serviCes

62

It is hard to beat the level of return for such little investment of effort. Simple web services are perfectly
acceptable for situations where you are confident that the only client will be delivered by the MVC framework and you
know that the rate of change will be low and not driven by third parties (in other words, you are not trying to create
an API that can be consumed by a wider audience outside the scope of the MVC framework application). Table 4-1
summarizes simple web services and the situations in which they can be usefully applied.

Table 4-1. Putting Simple Web Services in Context

Question Answer

What is it? Simple web services support just the features required for the client of a single
application.

When should I use it? Simple web services are quick to set up and are useful when you don’t expect to add
additional types of clients or need to significantly enhance the functionality that the
existing client delivers.

What do I need to know? Simple web services are tightly coupled to their clients, which makes it more difficult
to add additional types of client or to change existing clients without also modifying
the web service and the supporting MVC framework application.

Understanding RESTful Web Services
The most commonly used pattern to create loosely coupled web services is Representational State Transfer (REST).
REST is a general-purpose pattern that, when applied to a web service, creates what is known as a RESTful web service.

the DaNGer OF DeSIGN patterNS

Like just about all useful design patterns, rest is the subject of endless arguments about what is really restful
and what is not. these arguments are a waste of time, and you should ignore them. patterns are templates that
you can customize for your own needs. the goal behind restful web services is to ensure that the client and asp.
net Web api controller are loosely coupled, and only you know which aspects of the rest pattern will help you
achieve that goal. i stopped arguing with pattern zealots when i realized that the least-skilled programmers are
the ones who shout the loudest. My advice is to focus on delivering good software and borrow from and adapt
patterns any way you need to get the job done.

In the sections that follow, I describe how to design a RESTful web service API using the GuestResponse model
class that I defined for the PartyInvites application in Chapter 2. As a reminder, Listing 4-1 shows the definition of the
model class.

Listing 4-1. The Definition of the GuestResponse Model Class

using System.ComponentModel.DataAnnotations;

namespace PartyInvites.Models {
 public class GuestResponse {
 [Required]
 public string Name { get; set; }
 [Required]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Understanding http Web serviCes

63

 public string Email { get; set; }
 [Required]
 public bool? WillAttend { get; set; }
 }
}

As a reminder, here is how instances of the GuestResponse class are rendered as JSON:

[{"Name":"Bob","Email":"bob@example.com","WillAttend":true},
 {"Name":"Alice","Email":"alice@example.com","WillAttend":true},
 {"Name":"Paul","Email":"paul@example.com","WillAttend":true}]

I am not going to implement the web service in this chapter; I will just define the API that I need. You can see how

I implement a RESTful web service in Chapter 6, where I build the more realistic SportsStore application to show the
end-to-end implementation process for working with ASP.NET Web API.

Tip ■ although i use JsOn throughout this chapter, asp.net Web api is capable of generating different data formats to
suit different client requirements. see Chapters 11–13 for details.

The reason I don’t write the code in this chapter is that I want to focus on the design of an effective and useful
web service API free of the details of its implementation. Understanding why RESTful web services are useful is
important, not least because they are more complex and complicated to design. As you will learn, decoupling the
client from a web service requires more of an investment of time and effort, which is then paid back through increased
flexibility and maintainability, much like the initial investment required to lay the foundation for an MVC framework
application. Table 4-2 summarizes RESTful web services and the situations in which they can be usefully applied.

Table 4-2. Putting RESTful Web Services in Context

Question Answer

What are they? RESTful web services are useful for decoupling clients and the web services they
consume. They require more design and development effort, but they make it easier to
maintain the web service.

When should I use them? You should use RESTful web services when clients are being developed by third parties
or when you expect a high rate of change in the API delivered by the web service.

What do I need to know? You have several choices about how RESTful you make your web service and, as a
consequence, how loosely coupled the client and web service are. The less prior
knowledge a client requires to consume a web service, the more RESTful that service is.

Embracing HTTP
The core foundation of RESTful web services is to define operations on the model using a combination of HTTP verbs
and unique URLs to refer to individual data objects and collections of those objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Understanding http Web serviCes

64

Tip ■ the terms verbs and methods are equivalent when referring to http and can be used interchangeably. i tend to
refer to methods when i am writing MvC framework views (because the form element defines a method attribute) and
verbs when writing web services.

Here is an example of a URL that uniquely represents the RSVP response from a user called Bob (I have left out
the part of the URL that specifies the protocol, hostname, and port because all of these are going to be constant for my
example):

/api/rsvp/bob

In a RESTful web service, I use this URL whenever I want to perform an operation on the GuestResponse object

that describes Bob’s attendance at the party. To tell the web service what kind of operation I want to perform, I make
an HTTP request that targets the URL and specify one of the HTTP verbs in the request.

Note ■ rest is a general-purpose pattern that has found a home in the world of web services, but since this is a book
about web services, i am going to treat rest and restful web services as being the same thing so that i don’t get tied up
in making fine-grained distinctions that don’t have any real impact on Web api development.

You are already familiar with at least two of the HTTP verbs from their use in the MVC framework: GET and
POST. What you might not know is that the HTTP specification contains additional verbs and that, in a RESTful web
service, these are used to indicate what kind of operation is being requested on the data object identities by the URL
in the request. Table 4-3 shows how combining an HTTP verb with a URL can be used to request that a web service
perform an operation. Some operations require the client to send data to the server or the server to send data to the
client, and I have included this information in the table.

Table 4-3. Combining HTTP Verbs with URLs to Specify a Web Service API

Verb URL Description Client Sends Server Sends

GET /api/rsvp/bob Gets the data object that
represents Bob’s RSVP

Nothing The GuestResponse
for Bob

POST /api/rvsp/bob Creates a new RSVP object
for Bob

The GuestResponse to
be saved

The saved
GuestResponse object

PUT /api/rsvp/bob Updates the existing RSVP
for Bob

The modified
GuestResponse to be saved

The saved
GuestResponse object

DELETE /api/rsvp/bob Deletes the RSVP for Bob Nothing Nothing

Tip ■ a web service doesn’t have to support all the verbs listed in table 4-3. it wouldn’t make sense for a read-only
web service to support the deLete, pOst, and pUt verbs, for example, and you need to implement support only for the
verbs you require.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Understanding http Web serviCes

65

The contents of the table define the web service API, and a client-side developer can use this information to
consume the web service. This kind of API embraces HTTP by combining URLs and HTTP verbs, which feels exciting
and dynamic and like a definite improvement over URLs derived from arbitrary methods names in a controller class,
but the truth is somewhat different because the client and server are still too tightly coupled for comfort. I explain why
in the following sections.

USING SaFe aND IDeMpOteNt http VerBS

there is no standard mapping of http verbs to web service operations, although the one i describe in table 4-3 is
common. You can use any http verb that you like for your web services, as long as you understand the importance
of the safe and idempotent http verbs.

safe verbs have no side effects. the most commonly used safe verb is get, and when you receive a get request,
you may not perform any action that alters the state of the data model. all you may do is return the data that has
been requested and, optionally, perform cross-cutting activities such as logging and caching.

idempotent verbs, such as pUt and deLete, are allowed to modify the data model, but multiple requests with the
same verb to the same UrL should have the same effect as a single request. the practical effect of this is that
you should use UrLs to uniquely identify resources, rather than relying on the relationship between data items.
For example, if you support a UrL such as /api/rsvp/first that refers to the first data object in the repository,
accepting a deLete request for that UrL should not cause the data items to shuffle so that there is a new “first”
object. You must also write your web service so that it doesn’t generate an error when receiving multiple requests
such as a deLete request for a data object that has already been removed from the repository.

be careful with the pOst verb; it is not necessarily safe or idempotent, and you have some flexibility about how
you respond to multiple requests that target the same UrL. Most web services will treat a pOst request as a pUt
request if there is already a matching data item, but you can choose to create a new object or report an error
depending on the needs of your data model.

Adding Data Discovery
Uniquely identifying each data object—more properly known as a resource in REST—with a URL is an excellent idea,
but it presents a problem: how does the client discover the set of data objects and the URLs that refer to them?

The solution is to create a collection URL, which returns all of the data objects in the model. The convention is
that the collection of data objects is retrieved using the root URL that identifies individual objects. In my API, this
means that the URL /api/rsvp would return all of the data objects in the model. Table 4-4 shows the addition of the
collection URL to the web service API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Understanding http Web serviCes

66

Filtering the Collection
Most clients don’t need to retrieve all of the data in the model, so the convention is to allow clients to narrow the
data returned by the collection URL by using query string parameters. For example, to obtain the set of attendees, for
which I added a specific action method in Chapter 2, the client would send a GET request to the following URL:

/api/rsvp?WillAttend=true

The web service can ignore the query string and return all of the data objects in the model, but it is generally

a good idea to support this convention so that you are not transferring endless amounts of data that clients don’t
require and that will be discarded. Table 4-5 shows my revised API.

Table 4-5. Adding Collections Filtering to the Web Service API

Verb URL Description Client Sends Server Sends

GET /api/rsvp/bob Gets the data object that
represents Bob’s RSVP

Nothing The GuestResponse for
Bob

POST /api/rvsp/bob Creates a new RSVP
object for Bob

The GuestResponse
to be saved

The saved
GuestResponse object

PUT /api/rsvp/bob Updates the existing
RSVP for Bob

The modified
GuestResponse to
be saved

The saved
GuestResponse object

DELETE /api/rsvp/bob Deletes the RSVP for Bob Nothing Nothing

GET /api/rsvp Gets the collection of
data objects

Nothing The collection of all
GuestResponse objects
in the repository

GET /api/rsvp?prop=val Gets a filtered collection
of data objects

Nothing The collection of all
GuestResponse objects
in the repository for
which the property prop
is set to val

Table 4-4. Adding a Collections URL to the Web Service API

Verb URL Description Client Sends Server Sends

GET /api/rsvp/bob Gets the data object that
represents Bob’s RSVP

Nothing The GuestResponse
for Bob

POST /api/rvsp/bob Creates a new RSVP object
for Bob

The GuestResponse to
be saved

The saved
GuestResponse object

PUT /api/rsvp/bob Updates the existing RSVP
for Bob

The modified
GuestResponse to be saved

The saved
GuestResponse object

DELETE /api/rsvp/bob Deletes the RSVP for Bob Nothing Nothing

GET /api/rsvp Gets the collection of data
objects

Nothing The collection of all
GuestResponse objects
in the repository

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Understanding http Web serviCes

67

Tip ■ a common variation on this pattern is to build the filter into the UrL, rather than relying on the query string.
For example, in Chapter 6, i define a web service that returns all of its model objects when the UrL /api/products is
requested. the object that has the unique identifier 100, for example, would be accessed via the UrL /api/products/100.
Web api makes it easy to support both UrL formats.

This is an example of what I mean about pragmatism in design patterns—even as I am trying to minimize the
amount of prior knowledge that the client requires, I am extending my web service API using a convention that both
the client and the server need to understand. There is a balance to be found between client-server coupling and
applying sensible optimizations, which differs for each project. There is no universal right approach, and you should
use your judgment to decide when following a design pattern doesn’t make sense.

Summary
In this chapter, I described the ways in which ASP.NET Web API can be used to deliver web services to a set of different
and disparate clients. I also described the two main categories of web services: simple web services, like the one
I created in Chapter 2, and RESTful web services, which I demonstrate in the next chapter. I explained that RESTful
web services require more design and development effort but produce loosely coupled software systems that are
easier to manage and maintain.

This chapter has been a little abstract in nature because I wanted to separate the design of a RESTful web service
API from the implementation detail. But don’t worry if you have found it hard going because in the next chapter
I revert to showing you code examples to implement the concepts that I have described in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

69

Chapter 5

SportsStore: Preparation

In this chapter, I set the foundations for a more realistic project that incorporates all of the key aspects of Web API
development and shows them working together. Later chapters zoom into specific features, which is a good way of
getting into the detail, but it doesn’t provide any end-to-end context.

My application, called SportsStore, will follow the classic approach taken by online stores everywhere. I will
create an online product catalog that customers can browse by category and page, a shopping cart where users can
add and remove products, and a checkout where customers can enter their shipping details. I will also create an
administration area that includes create, read, update, and delete (CRUD) facilities for managing the catalog, and
I will protect it so that only logged-in administrators can make changes.

In this chapter, I create the database that contains the product information and configure the ASP.NET identity
system so that I can restrict access to administrators in Chapter 6.

If you have read my other books—including Pro ASP.NET MVC 5 and Pro AngularJS—then you will have seen
different versions of the SportsStore application. I use it in many of my books to show how key features and functions
fit together and to demonstrate different technologies and to show how different development frameworks and
toolkits can be used to solve common problems, such as database access and user security.

Note ■ The goal of the SportsStore project is to show a more realistic use of Web API, rather than accurately
re-creating all of the aspects of an online store—many of which have nothing to do with HTTP web services at all.
To that end, I use a simple product database and don’t address details such as card payments or order tracking.

This chapter is all preparation, and I don’t describe any Web API features. If you are already familiar with how
Entity Framework Code First and ASP.NET Identity are set up and configured, you can skip to Chapter 6.

Tip ■ You don’t have to re-create the code yourself; you can download Visual Studio projects organized for every
chapter in this book without charge from Apress.com.

Preparing the Example Project
To begin the process of creating the SportsStore application, I need to create the Visual Studio project and use NuGet
to add the packages that I will rely on.

Select New Project from the File menu to open the New Project dialog window. Navigate through the Templates
section to select the Visual C# ➤ Web ➤ ASP.NET Web Application template and set the name of the project to
SportsStore, as shown in Figure 5-1.

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

70

Click the OK button to move to the New ASP.NET Project dialog window. Ensure that the Empty option is selected
and check the MVC and Web API options, as shown in Figure 5-2. Click the OK button, and Visual Studio will create a
new project called SportsStore.

Figure 5-1. Creating the new project

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

71

At this point, the Solution Explorer will have the basic folder structure for a web application, as illustrated by
Figure 5-3, and it will soon become populated as I build out the foundations for the application.

Figure 5-2. Selecting the ASP.NET project type

Figure 5-3. The Solution Explorer

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

72

Adding and Updating NuGet Packages
I am going to be working with specific versions of NuGet packages in this book to make sure you are able to re-create
the examples and get the same results. This means the versions of the MVC and Web API that are added to projects
by Visual Studio may not be the latest versions available, but it does mean that you will be able to follow all of the
examples in the book without getting caught up in problems caused by minor version changes.

Select Package Manager Console from the Visual Studio Tools ➤ NuGet Package Manager menu and enter the
following commands:

Update-Package Microsoft.Aspnet.Mvc -version 5.1.1
Update-Package Microsoft.Aspnet.Webapi -version 5.1.1
Update-Package Newtonsoft.Json -version 6.0.1
Install-Package Microsoft.AspNet.Identity.EntityFramework –Version 2.0.0
Install-Package Microsoft.AspNet.Identity.OWIN -Version 2.0.0
Install-Package Microsoft.Owin.Host.SystemWeb -Version 2.1.0
Install-Package Microsoft.AspNet.WebApi.Owin -Version 5.1.1
Install-Package jquery -version 2.1.0
Install-Package bootstrap -version 3.1.1
Install-Package knockoutjs –version 3.1.0

There are a lot of packages to add, and I describe what each of them does in Table 5-1.

Table 5-1. The Packages Required to Prepare for SportsStore

Name Description

Microsoft.Aspnet.Mvc This package contains the MVC framework classes, which I will use for the
HTML parts of the SportsStore application.

Microsoft.Aspnet.Webapi This package contains the Web API classes, which I will use to create HTTP
web services.

Newtonsoft.Json This package contains classes used to serialize and deserialize JSON data.
I describe the JSON serialization process in detail in Chapter 13.

Microsoft.AspNet.Identity.
EntityFramework

This package contains the Entity Framework support required for ASP.NET
Identity, which I use for user management.

Microsoft.AspNet.Identity.OWIN This package contains the OWIN support required for ASP.NET Identity,
which I use for user management. I describe OWIN and the hosting options
it supports in Chapter 26.

Microsoft.Owin.Host.SystemWeb This package contains the OWIN support required for ASP.NET Identity,
which I use for user management. I describe OWIN and the hosting options
it supports in Chapter 26.

Microsoft.AspNet.WebApi.Owin This package contains the OWIN support required for Web API. I describe
OWIN and the hosting options it supports in Chapter 26.

jquery This package contains the jQuery library, which I use to send Ajax requests
from the browser. I described the jQuery support for Ajax in Chapter 3.

bootstrap This package contains the Bootstrap library, which I use to style HTML content.

knockoutjs This package contains the Knockout package, which I use to create a dynamic
client-side application. I described the basic Knockout functionality in Chapter 3.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

73

You can create applications that consist of just web services created with Web API, in which case you would
not need many of the packages that I have listed in the table. But Web API is rarely used in isolation, and most
applications need to create a client, deliver HTML and JavaScript content, and apply some sort of security. As you
will see, creating web services with Web API is relatively simple; it is the integration of those web services into a wider
application that takes time, skill, and effort.

Creating a Prep Controller
I need to test the preparations that I made for the SportsStore application. I don’t want to get into Web API itself
prematurely, so I am going to use a simple MVC framework controller to generate some basic diagnostic web pages.
I right-clicked the Controllers folder, selected Add ➤ Controller, picked the MVC 5 Controller – Empty template, and
clicked the Add button. I set the controller name to PrepController in the Add Controller dialog box and clicked the
Add button, which caused Visual Studio to create the Controllers/PrepController.cs class file, the contents of
which are shown in Listing 5-1.

Listing 5-1. The Contents of the PrepController.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace SportsStore.Controllers {

 public class PrepController : Controller {

 public ActionResult Index() {
 return View();
 }
 }
}

This is the default content, as created by Visual Studio, but I will add action methods (and views for them to
render) as I build out the foundation for the SportsStore application.

Creating a Razor Layout
Although this book is about Web API, I use the MVC framework to generate the HTML content that creates the
browser-based client. To make sure I generate consistent HTML that contains all the JavaScript files I need, I created
the Views/Shared folder and added a file called _Layout.cshtml to it, which I then used to create the layout shown in
Listing 5-2. I will use this layout for the views I create throughout the SportsStore application.

Listing 5-2. The Content of the _Layout.cshtml File

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <script src="~/Scripts/jquery-2.1.0.min.js"></script>
 <script src="~/Scripts/knockout-3.1.0.js"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

74

 <link href="~/Content/bootstrap.css" rel="stylesheet" />
 <link href="~/Content/bootstrap-theme.css" rel="stylesheet" />
 <title>SportsStore</title>
 <style>
 body { padding-top: 10px; }
 </style>
 @RenderSection("Scripts", false)
</head>
<body class="container">
 @RenderBody()
</body>
</html>

Tip ■ The easiest way to create the view is to add the Views/Shared folder, right-click it, and select Add ➤ MVC 5
Layout Page (razor). enter _Layout.cshtml as the file name and click the oK button, and Visual Studio will create and
open the layout file.

Creating the OWIN Startup Class
The ASP.NET Identity packages look for a configuration class when the application starts. I will explain the role of this
class in the “Configuring ASP.NET Identity” section, but I am going to define it here so that the SportsStore application
will start without errors even though I won’t be setting up user accounts immediately. Listing 5-3 shows the content of
the IdentityConfig.cs file, which I added to the App_Start folder.

Listing 5-3. The Contents of the IdentityConfig.cs File

using Microsoft.Owin;
using Owin;

[assembly: OwinStartup(typeof(SportsStore.IdentityConfig))]

namespace SportsStore {
 public class IdentityConfig {
 public void Configuration(IAppBuilder app) {}
 }
}

The important part of this file is the OwinStartup attribute, which specifies that the SportsStore.IdentityConfig
class should be used for configuration. I’ll return to this class when I configure ASP.NET Identity later in the chapter.

Tip ■ When Visual Studio adds the outline for the class to the new file, it sets the namespace to
SportsStore.App_Start, reflecting the location of the file. The convention is to define configuration classes in the
top-level namespace of the project, which is why I changed the namespace to SportsStore.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

75

Setting the TCP Port
I will be building the web services part of the SportsStore application before I create an HTML/JavaScript client, and
that means I will have to test URLs directly using the browser and the Postman tool. To make life easier, I am going
to change the TCP port that the IIS Express server uses to listen to requests to a value that is easy to remember. IIS
Express is a cut-down version of the Internet Information Services (IIS) product that is traditionally used to host ASP.
NET applications and is included with Visual Studio so you can run and test applications during development.

Tip ■ IIS is no longer the only choice for deploying ASP.neT applications. In Chapter 8, I demonstrate how to deploy the
SportsStore application to the Microsoft Azure cloud service, and in Chapter 26, I describe one additional hosting option
for Web API applications.

Select SportsStore Properties from the Visual Studio Project menu and click the Web button on the left side of the
screen. In the Servers section, change the Project Url value as follows:

http://localhost:6100

Click the Create Virtual Directory button and close the settings document. IIS Express will listen for HTTP
requests on port 6100 when the application is running.

Creating the Product and Order Models
At the heart of the SportsStore application is the database that stores details of the products that are available for sale
and the orders that have been placed. Web API relies on model classes in just the same way as the MVC framework,
and the model classes I create in this chapter will be used by both frameworks.

The glue that will connect the model classes to the database is the Entity Framework (EF), and I will create the
database by using the Code First feature, which uses model objects to create the database schema. In the sections that
follow, I’ll create the model classes and use EF Code First to set up the database.

Defining the Model Classes
My starting point is to define the model class that I will use to represent each product. I added a class file called
Product.cs to the Models folder and used it to define the class shown in Listing 5-4.

Listing 5-4. The Contents of the Product.cs File

namespace SportsStore.Models {

 public class Product {
 public int Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { get; set; }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

76

This is a simple class that describes a basic description of a product. A real online store would have a more

complex product model, of course, but the Product class shown in Listing 5-4 is sufficient for this book because I
don’t need to get into the details of suppliers, inventory levels, returns, and all of the other issues that would have to
be addressed for a real business.

I am also going to store orders that customers place. Listing 5-5 shows the contents of the Order.cs file, which I
added to the Models folder.

Listing 5-5. The Contents of the Order.cs File

using System.Collections.Generic;

namespace SportsStore.Models {
 public class Order {

 public int Id { get; set; }
 public string Customer { get; set; }
 public decimal TotalCost { get; set; }
 public ICollection<OrderLine> Lines { get; set; }
 }

 public class OrderLine {
 public int Id { get; set; }
 public int Count { get; set; }

 public int ProductId { get; set; }
 public int OrderId { get; set; }

 public Product Product { get; set; }
 public Order Order { get; set; }
 }
}

The Order class defines Id, Customer, and TotalCost properties, which are simple types. The Lines property is
an ICollection<OrderLine> object, which is a signal to the Entity Framework that there is a relationship between the
Order and OrderLine classes. I will use the OrderLine class to represent an individual product selection, and the way I
have defined the OrderLine class allows me to take advantage of some clever EF Code First features.

EF Code First will recognize that these two properties are to be used as foreign keys to reference Product and
Order objects:

...
public int ProductId { get; set; }
public int OrderId { get; set; }
...

EF will recognize these as navigation properties:

...
public Product Product { get; set; }
public Order Order { get; set; }
...

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

77

Navigation properties allow for navigation around the data model without having to request separate objects

from the database. I’ll configure their use when I create the classes that will manage the database in the next section.

Creating the Repository Classes
The repository pattern allows the complexity of how model objects are stored and retrieved to be isolated from the
rest of the application. In the sections that follow, I will define the interface that describes the repository, create the
database implementation classes, and then use them to define a repository class that implements the interface.

Caution ■ These classes are interdependent, and you won’t be able to compile and run the project until you have
created all of them.

Defining the Repository Interface
Listing 5-6 shows the contents of the IRepository.cs file, which I added to the Models folder and used to define a
repository interface. This is the interface that I will implement shortly to provide access to data through the Entity
Framework.

Listing 5-6. The Contents of the IRepository.cs File

using System.Collections.Generic;
using System.Threading.Tasks;

namespace SportsStore.Models {

 public interface IRepository {

 IEnumerable<Product> Products { get; }
 Task<int> SaveProductAsync(Product product);
 Task<Product> DeleteProductAsync(int productID);

 IEnumerable<Order> Orders { get; }
 Task<int> SaveOrderAsync(Order order);
 Task<Order> DeleteOrderAsync(int orderID);
 }
}

The Products and Orders properties provide access to all of the Product and Order objects in the repository,
and the methods that I have defined—SaveProductAsync, DeleteProductAsync, SaveOrderAsync, and
DeleteOrderAsync—will allow me to store and remove objects from the model.

Creating the Database Context and Initializer Classes
The database context class provides the link between the application and the database, and the initializer specifies
when the schema will be created and provides the initial data added to the database when it is created. Listing 5-7
shows the contents of the ProductDbContext.cs file, which I added to the Models folder.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

78

Listing 5-7. The Contents of the ProductDbContext.cs File

using System;
using System.Collections.Generic;
using System.Data.Entity;
using System.Linq;
using System.Web;

namespace SportsStore.Models {

 public class ProductDbContext : DbContext {

 public ProductDbContext() : base("SportsStoreDb") {
 Database.SetInitializer<ProductDbContext>(new ProductDbInitializer());
 }

 public DbSet<Product> Products { get; set; }
 public DbSet<Order> Orders { get; set; }
 public DbSet<OrderLine> OrderLines { get; set; }
 }
}

The ProductDbContext class is derived from DbContext, which is the Entity Framework class that does all the
heavy lifting in accessing the database and translating C# model objects to and from SQL rows. The Products, Orders,
and OrderLines properties return strongly typed DbSet objects, which provide access to the data in the database,
expressed as a collection of model objects.

The constructor for the ProductDbContext class calls the base constructor, like this:

...
public ProductDbContext() : base("SportsStoreDb") {
...

The argument passed to the base constructor is the name of the connection string that is used to create the
database. As you will see, when using EF Code First, I don’t have to create a connection string in the Web.config file,
but the name I have specified—SportsStoreDb—will be important when I deploy the application in Chapter 8.

Within the constructor, I register the initializer class, as follows:

...
public ProductDbContext() : base("SportsStoreDb") {
 Database.SetInitializer<ProductDbContext>(new ProductDbInitializer());
}
...

This statement specifies that the ProductDbInitializer class will be used to initialize the database. To create the
initializer, I added a ProductDbInitializer.cs file to the Models folder and defined the class shown in Listing 5-8.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

79

Listing 5-8. The Contents of the ProductDbInitializer.cs File

using System.Collections.Generic;
using System.Data.Entity;

namespace SportsStore.Models {

 public class ProductDbInitializer : DropCreateDatabaseAlways<ProductDbContext> {

 protected override void Seed(ProductDbContext context) {

 new List<Product> {
 new Product() { Name = "Kayak", Description = "A boat for one person",
 Category = "Watersports", Price = 275m },
 new Product() { Name = "Lifejacket",
 Description = "Protective and fashionable",
 Category = "Watersports", Price = 48.95m },
 new Product() { Name = "Soccer Ball",
 Description = "FIFA-approved size and weight",
 Category = "Soccer", Price = 19.50m },
 new Product() {
 Name = "Corner Flags",
 Description = "Give your playing field a professional touch",
 Category = "Soccer", Price = 34.95m },
 new Product() { Name = "Stadium",
 Description = "Flat-packed 35,000-seat stadium",
 Category = "Soccer", Price = 79500m },
 new Product() { Name = "Thinking Cap",
 Description = "Improve your brain efficiency by 75%",
 Category = "Chess", Price = 16m },
 new Product() { Name = "Unsteady Chair",
 Description = "Secretly give your opponent a disadvantage",
 Category = "Chess", Price = 29.95m },
 new Product() { Name = "Human Chess Board",
 Description = "A fun game for the family",
 Category = "Chess", Price = 75m },
 new Product() { Name = "Bling-Bling King",
 Description = "Gold-plated, diamond-studded King",
 Category = "Chess", Price = 1200m },
 }.ForEach(product => context.Products.Add(product));

 context.SaveChanges();

 new List<Order> {
 new Order() { Customer = "Alice Smith", TotalCost = 68.45m,
 Lines = new List<OrderLine> {
 new OrderLine() { ProductId = 2, Count = 2},
 new OrderLine() { ProductId = 3, Count = 1},
 }},
 new Order() { Customer = "Peter Jones", TotalCost = 79791m,
 Lines = new List<OrderLine> {
 new OrderLine() { ProductId = 5, Count = 1},

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

80

 new OrderLine() { ProductId = 6, Count = 3},
 new OrderLine() { ProductId = 1, Count = 3},
 }}
 }.ForEach(order => context.Orders.Add(order));

 context.SaveChanges();
 }
 }
}

Database initializers are derived from one of three base classes, which determine when the database contents are
dropped and the schema is re-created. Table 5-2 describes the classes available, where T is the type of the database
context class, which is ProductDbContext for the SportsStore application.

Table 5-2. The Database Initializer Base Classes

Name Description

DropCreateDatabaseAlways<T> The database is dropped and re-created every time the database
context is initialized.

DropCreateDatabaseIfModelChanges<T> The database is dropped and re-created when any of the model classes
are changed.

CreateDatabaseIfNotExists<T> The database is created only if it does not already exist.

I have used the DropCreateDatabaseAlways<T> base class, which means that the SportsStore database will
be dropped and re-created every time the application starts. This is useful during the early stages of development
because it allows me to make changes to the contents of the database and then reset them by simply restarting the
application. I will change the base class for the initializer before I deploy the application in Chapter 8.

Caution ■ Do not deploy an application using the DropCreateDatabaseAlways class because all of your data will be
lost each time the application is restarted.

I want to populate the database when it is created with some useful data, which I do by overriding the
Seed method. I create a set of Product, Order, and OrderList objects and store them in the database using the
ProductDbContext argument. Since my database will be reset each time, having some default data helps in the early
stages of development, where I like to write small amounts of code and test their effect.

Defining the Repository Class
The final step in creating the repository is to create the repository class, which will implement the IRepository
interface and use the Entity Framework context classes to provide the application with data. Listing 5-9 shows the
contents of the ProductRepository.cs file, which I added to the Models folder.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

81

Listing 5-9. The Contents of the ProductRepository.cs File

using System.Collections.Generic;
using System.Threading.Tasks;

namespace SportsStore.Models {

 public class ProductRepository : IRepository {
 private ProductDbContext context = new ProductDbContext();

 public IEnumerable<Product> Products {
 get { return context.Products; }
 }

 public async Task<int> SaveProductAsync(Product product) {
 if (product.Id == 0) {
 context.Products.Add(product);
 } else {
 Product dbEntry = context.Products.Find(product.Id);
 if (dbEntry != null) {
 dbEntry.Name = product.Name;
 dbEntry.Description = product.Description;
 dbEntry.Price = product.Price;
 dbEntry.Category = product.Category;
 }
 }
 return await context.SaveChangesAsync();
 }

 public async Task<Product> DeleteProductAsync(int productID) {
 Product dbEntry = context.Products.Find(productID);
 if (dbEntry != null) {
 context.Products.Remove(dbEntry);
 }
 await context.SaveChangesAsync();
 return dbEntry;
 }

 public IEnumerable<Order> Orders {
 get { return context.Orders.Include("Lines").Include("Lines.Product"); }
 }

 public async Task<int> SaveOrderAsync(Order order) {
 if (order.Id == 0) {
 context.Orders.Add(order);
 }
 return await context.SaveChangesAsync();
 }

 public async Task<Order> DeleteOrderAsync(int orderID) {
 Order dbEntry = context.Orders.Find(orderID);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

82

 if (dbEntry != null) {
 context.Orders.Remove(dbEntry);
 }
 await context.SaveChangesAsync();
 return dbEntry;
 }
 }
}

This is the class that controllers will call to retrieve model data and store new objects in the database.
The Products and Orders properties return a collection of model objects from the database context and the
implementations of the SaveProductAsync, DeleteProductAsync, SaveOrderAsync, and DeleteOrderAsync methods
use the database context to modify the data store.

Note ■ I have added support for modifying and saving Product objects, but only for saving Order objects; I am not
going to allow SportsStore orders to be modified once they are saved.

Testing the Repository
To test the repository, I am going to add some simple action methods to the Prep controller I created at the start of the
chapter so that I can read, save, and delete model objects, as shown in Listing 5-10.

Listing 5-10. Adding Action Methods in the PrepController.cs File

using System.Threading.Tasks;
using System.Web.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class PrepController : Controller {
 IRepository repo;

 public PrepController() {
 repo = new ProductRepository();
 }

 public ActionResult Index() {
 return View(repo.Products);
 }

 public async Task<ActionResult> DeleteProduct(int id) {
 await repo.DeleteProductAsync(id);

 return RedirectToAction("Index");
 }

 public async Task<ActionResult> SaveProduct(Product product) {
 await repo.SaveProductAsync(product);
 return RedirectToAction("Index");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

83

 public ActionResult Orders() {
 return View(repo.Orders);
 }

 public async Task<ActionResult> DeleteOrder(int id) {
 await repo.DeleteOrderAsync(id);
 return RedirectToAction("Orders");
 }

 public async Task<ActionResult> SaveOrder(Order order) {
 await repo.SaveOrderAsync(order);
 return RedirectToAction("Orders");
 }
 }
}

These are standard MVC framework actions that operate on the repository and pass data objects to Razor
views so they can be rendered as HTML and sent to a browser. I need two views to test the repository: one for testing
products and one for testing orders. Listing 5-11 shows the contents of the Index.cshtml file, which I added to the
/Views/Prep folder.

Tip ■ notice that I instantiate the ProductRepository class directly. This is poor practice in real projects, and
dependency injection (DI) should be used instead. I explain how Web API handled DI in Chapter 10, but I don’t want
to get distracted by the MVC framework, which works in a different way. See my Pro ASP.NET MVC 5 book for details if
you are unfamiliar with DI within an MVC framework application.

Listing 5-11. The Contents of the Index.cshtml File

@model IEnumerable<SportsStore.Models.Product>

<div class="panel panel-primary">
 <div class="panel-heading">Products</div>
 <table class="table table-striped">
 <tr><th>ID</th><th>Name</th><th>Category</th><th>Price</th></tr>
 @foreach (var p in Model) {
 <tr>
 <td>@p.Id</td><td>@p.Name</td><td>@p.Category</td><td>@p.Price</td>
 </tr>
 }
 </table>
</div>

@using(Html.BeginForm("SaveProduct", "Prep")) {
 <input type="hidden" name="Name" value="Zippy Running Shoes" />
 <input type="hidden" name="Category" value="Running" />
 <input type="hidden" name="Description" value="Set a new Record Time" />
 <input type="hidden" name="Price" value="159.99" />

 <button class="btn btn-primary" type="submit">Create</button>
 Delete
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

84

The view generates a Bootstrap-formatted table element that contains details of the Product objects contained
in the repository. I have also added a Create button that invokes the SaveProduct action to save a new Product to the
repository and a Delete button that invokes the DeleteProduct action to remove the Product whose Id is 2. (The Create
and Delete buttons use hardwired values, so once you have clicked them, you will need to restart the application to reset
the database; otherwise, the Delete operation will fail, and the Create operation will create a duplicate product.)

To test the repository support for products, start the application by selecting Start Debugging from the Visual
Studio Debug menu and use the browser to navigate to the /Prep/Index URL. You will see a list of the products
available, as shown in Figure 5-4, and can click the buttons to check that changes can be made to the database.

Figure 5-4. Testing the repository for products

Tip ■ The data that is displayed is created in the Seed method of the database initializer class, which I defined in
Listing 5-8. Don’t forget that, at the moment, the data in the database is reset every time the application is started.

Caution ■ The database isn’t initialized and populated until the database context class is instantiated. This means you
won’t see any database, schema, or data if you are using a tool like SQL Server Management Studio or the Visual Studio
SQL Server object explorer until after the /Prep/Index or /Prep/Orders UrL has been requested.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

85

The second view I need to create will allow me to perform a similar test on the repository support for Order
objects. Listing 5-12 shows the contents of the Orders.cshtml file, which I added to the Views/Prep folder.

Listing 5-12. The Contents of the Orders.cshtml File

@model IEnumerable<SportsStore.Models.Order>

<div class="panel panel-primary">
 <div class="panel-heading">
 Orders
 </div>
 <table class="table table-striped">
 <tr>
 <th>ID</th>
 <th>Customer</th>
 <th colspan="3"></th>
 <th>Total Cost</th>
 </tr>
 @foreach (var o in Model) {
 <tr>
 <td>@o.Id</td>
 <td>@o.Customer</td>
 <td colspan="3"></td>
 <td>@string.Format("{0:c}", o.TotalCost)</td>
 </tr>
 <tr>
 <th colspan="2"></th>
 <th>Product</th>
 <th>Quantity</th>
 <th>Price</th>
 <th></th>
 </tr>
 foreach (var ol in o.Lines) {
 <tr>
 <td colspan="2"></td>
 <td>@ol.Product.Name</td>
 <td>@ol.Count</td>
 <td>@string.Format("{0:c}", ol.Product.Price)</td>
 <td></td>
 </tr>
 }
 }
 </table>
</div>

@using (Html.BeginForm("SaveOrder", "Prep")) {
 <input type="hidden" name="Customer" value="John Poet" />
 <input type="hidden" name="TotalCost" value="91" />
 <input type="hidden" name="lines[0].productid" value="6" />
 <input type="hidden" name="lines[0].count" value="1" />

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

86

 <input type="hidden" name="lines[1].productid" value="8" />
 <input type="hidden" name="lines[1].count" value="1" />

 <button class="btn btn-primary" type="submit">Create</button>
 Delete
}

This view is more complex because I need to deal with the OrderLine objects that are associated with each Order.
To test the repository, start the application and navigate to the /Prep/Orders URL.

Checking the Database Schema
It is worth taking a moment to reflect how I created the SportsStore database. I defined my model classes and then
defined the Entity Framework context and initializer classes that operate on them. Finally, I implemented my
repository interface to act as the bridge between the application and the Entity Framework.

I didn’t have to create the database or define its schema. These tasks were performed automatically based
on the structure of the model classes, following a set of well-defined conventions, which you can learn about here:
http://msdn.microsoft.com/data/ef.aspx. Figure 5-5 shows a diagram of the schema that Entity Framework created
for me, which I created using the SQL Server Management Studio tool (which is a free download from Microsoft).

Figure 5-5. The structure of the SportsStore Products and Orders databases

This is, admittedly, a simple schema, and using Entity Framework Code First is no substitute for a professional
data architect on complex projects, but it is an excellent tool for getting started and is entirely sufficient for simple
databases.

www.it-ebooks.info

http://msdn.microsoft.com/data/ef.aspx
http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

87

Configuring ASP.NET Identity
ASP.NET Identity is the user management system for ASP.NET applications and has replaced the Membership system
that Microsoft provided for the last few years. Identity is more flexible, is easier to extend, and relies on the same Entity
Framework Code First features that I used in the previous section to set up the product database. In the sections that
follow, I’ll create a simple ASP.NET Identity system that will allow me to authenticate users, check the membership of
roles, and restrict some SportsStore features to administration users.

Note ■ I need only a simple ASP.neT Identity configuration to authenticate users and authorize access to the
SportsStore web services. The Identity system has many features that go well beyond what I need for this book, including
the ability to authenticate users through third parties (including Facebook, Twitter, and Google) and the ability to authorize
users based on claims, which allows external data to be taken into consideration. I describe both features in my Pro ASP.
NET 5 Platform book, which is published by Apress.

Defining the User and Role Classes
The starting point when working with Identity is to create the class that will represent a user, known as the user class.
This is a key part of how Identity works because it allows you to define custom properties that can be used to store
application-specific data. I created the Infrastructure/Identity folder in the Solution Explorer and added the
StoreUser.cs file, the contents of which are shown in Listing 5-13.

Listing 5-13. The Contents of the StoreUser.cs File

using Microsoft.AspNet.Identity.EntityFramework;

namespace SportsStore.Infrastructure.Identity {

 public class StoreUser : IdentityUser {
 // application-specific properties go here
 }
}

User classes are derived from the IdentityUser class, which is defined in the Microsoft.AspNet.Identity.
EntityFramework namespace. The user class can be defined with application-specific properties that correspond to
the user profile features of the old ASP.NET Membership system and which are added automatically to the database
schema when it is created. I am going to create a basic Identity configuration and don’t need any custom properties,
so I just have to create a class that is derived from IdentityUser but adds no new properties of methods. My
StoreUser class inherits a number of useful properties, however, which I have described in Table 5-3. There are other
properties, but these are the ones I need for the SportsStore application.

Table 5-3. Useful Properties Inherited from the IdentityUser Class

Name Description

Email Returns the e-mail address of the user

Id Returns the unique ID of the user

Roles Returns a collection containing the roles to which the user has been assigned

UserName Returns the name of the user

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

88

I also need to define a class that will represent a role. Once again, Identity provides a base class—called
IdentityRole—from which an application-specific role class is derived. Listing 5-14 shows the contents of the
StoreRole.cs file, which I added to the Infrastructure/Identity folder.

Listing 5-14. The Contents of the StoreRole.cs File

using Microsoft.AspNet.Identity.EntityFramework;

namespace SportsStore.Infrastructure.Identity {
 public class StoreRole : IdentityRole {

 public StoreRole() : base() { }
 public StoreRole(string name) : base(name) { }
 }
}

I don’t have any customizations to make for the SportsStore application, so the SportsStore class is derived from
IdentityRole but doesn’t add any additional properties.

Creating the Database Context Classes
The next step is to create Entity Framework context classes that will be used to manage the storage of user and role
records in the database. Listing 5-15 shows the contents of the StoreIdentityDbContext.cs file, which I added to the
Infrastructure/Identity folder.

Listing 5-15. The Contents of the StoreIdentityDbContext.cs File

using Microsoft.AspNet.Identity.EntityFramework;
using System.Data.Entity;

namespace SportsStore.Infrastructure.Identity {

 public class StoreIdentityDbContext : IdentityDbContext<StoreUser> {

 public StoreIdentityDbContext() : base("SportsStoreIdentityDb") {
 Database.SetInitializer<StoreIdentityDbContext>(new
 StoreIdentityDbInitializer());
 }

 public static StoreIdentityDbContext Create() {
 return new StoreIdentityDbContext();
 }
 }
}

This is similar to the context class I created for the products database, but there are a couple of important
differences. First, the class is derived from IdentityDbContext and not DbContext, which is why I don’t need to define
any properties to expose the data in the database—everything is provided by the base class.

The second difference is that I have defined a Create method. Identity uses a convention of instantiating the
classes it needs through static methods that are specified in the configuration file, and the Create method performs
that task.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

89

Tip ■ The StoreIdentityDbContext constructor calls the base class constructor with a string argument whose value
is SportsStoreIdentityDb. This string specifies the connection string used for the database. I will need this name
when I deploy the SportsStore application in Chapter 8, but I don’t need to create the database explicitly at the moment
because the default setting is to create the database using LocalDb, which is a zero-configuration edition of SQL Server
included with Visual Studio specifically intended to make it easy for developers to work with databases.

The constructor for the StoreIdentityDbContext class registers an initializer class that I use to specify the
initial data for the database and to control when the database will be dropped and re-created. Listing 5-16 shows the
contents of the StoreIdentityDbInitializer.cs file, which I added to the Infrastructure/Identity folder.

Listing 5-16. The Contents of the StoreIdentityDbInitializer.cs File

using System;
using System.Collections.Generic;
using System.Data.Entity;
using System.Linq;
using System.Web;
using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.AspNet.Identity;

namespace SportsStore.Infrastructure.Identity {
 public class StoreIdentityDbInitializer :
 CreateDatabaseIfNotExists<StoreIdentityDbContext> {

 protected override void Seed(StoreIdentityDbContext context) {

 StoreUserManager userMgr =
 new StoreUserManager(new UserStore<StoreUser>(context));
 StoreRoleManager roleMgr =
 new StoreRoleManager(new RoleStore<StoreRole>(context));

 string roleName = "Administrators";
 string userName = "Admin";
 string password = "secret";
 string email = "admin@example.com";

 if (!roleMgr.RoleExists(roleName)) {
 roleMgr.Create(new StoreRole(roleName));
 }

 StoreUser user = userMgr.FindByName(userName);
 if (user == null) {
 userMgr.Create(new StoreUser {
 UserName = userName, Email = email
 }, password);
 user = userMgr.FindByName(userName);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

90

 if (!userMgr.IsInRole(user.Id, roleName)) {
 userMgr.AddToRole(user.Id, roleName);
 }

 base.Seed(context);
 }
 }
}

I have set the base class for the initializer to CreateDatabaseIfNotExists, which means that, as I described in
Table 5-2, the schema will be created only if it doesn’t already exist in the database. It is especially important not to
drop and re-create the database for user data because it will usually contain accounts, preferences, passwords, and
other profile data that cannot be reseeded. For the SportsStore application, it doesn’t really matter because the Seed
method creates the only user account that will be used and for which the password is fixed.

Creating the Manager Classes
In the database initializer class shown in Listing 5-16, I used the StoreUserManager and StoreRoleManager classes
to check whether the database contained the administration user and role and created them if needed. The
StoreUserManager class is used to perform operations on StoreUser objects. I added a StoreUserManager.cs file to
the Infrastructure/Identity folder and used it to define the class shown in Listing 5-17.

Listing 5-17. The Contents of the StoreUserManager.cs File

using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin;

namespace SportsStore.Infrastructure.Identity {
 public class StoreUserManager : UserManager<StoreUser> {

 public StoreUserManager(IUserStore<StoreUser> store)
 : base(store) {}

 public static StoreUserManager Create(
 IdentityFactoryOptions<StoreUserManager> options,
 IOwinContext context) {

 StoreIdentityDbContext dbContext = context.Get<StoreIdentityDbContext>();
 StoreUserManager manager =
 new StoreUserManager(new UserStore<StoreUser>(dbContext));
 return manager;
 }
 }
}

The base class is UserManager, which provides the methods and properties required for common user
management tasks, as described in Table 5-4. I don’t need any application-specific functionality for the SportsStore
application, but I do have to follow two important patterns. The first is that the constructor to the StoreUserManager
class is passed an IUserStore<StoreUser> parameter, which is used to access user data, and it is important to pass
this on to the base constructor so that the class is initialized.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

91

The second pattern is to define a static Create class, which will be called by ASP.NET Identity when it requires
an instance of the StoreUserManager class. One of the parameters that is passed to the Create method is an
IOwinContext object, through which I can obtain instances of the other classes I have defined. I use the strongly typed
Get method to get an instance of the StoreIdentityDbContext class, like this:

...
StoreIdentityDbContext dbContext = context.Get<StoreIdentityDbContext>();
...

This has the effect of instantiating the context class and initializing the database and gives me the instance
I require to call the StoreUserManager constructor.

Tip ■ All of the ASP.neT Identity methods are asynchronous, but there are some synchronous extension methods
available that you can use instead. When it comes to working with Web API, which follows a similar pattern, then I prefer
using the asynchronous methods, but for initializing databases I find the synchronous methods easier to work with.

I also need to create a class for managing roles. Listing 5-18 shows the contents of the StoreRoleManager.cs file,
which I added to the /Infrastructure/Identity folder.

Listing 5-18. The Contents of the StoreRoleManager.cs File

using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin;

namespace SportsStore.Infrastructure.Identity {
 public class StoreRoleManager : RoleManager<StoreRole> {

 public StoreRoleManager(RoleStore<StoreRole> store) : base(store) { }

Table 5-4. Some of the Members Defined by the UserManager<T> Class

Name Description

Create(user, pass) Creates a new user with the specified password. I use this method to create the
administration user when seeding the database, as shown in Listing 5-16.

Find(user, pass) Locates the user account with the specific password. This method will return a result
only if there is a user account and the provided password matches the one stored in the
database. This method is used to perform authentication, and I use it in the “Testing ASP.
NET Identity” section.

FindByName(name) Locates the user with the specified name and returns null if there is no such user.

IsInRole(user, role) Returns true if the specified user has been assigned to the specified role.

Users Returns an enumeration of the user objects stored by the Identity system.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

92

 public static StoreRoleManager Create(
 IdentityFactoryOptions<StoreRoleManager> options,
 IOwinContext context) {
 return new StoreRoleManager(new
 RoleStore<StoreRole>(context.Get<StoreIdentityDbContext>()));
 }
 }
}

I call the base constructor and define a Create method to make sure that the class is instantiated and
configured correctly, just as I did for the StoreUserManager class. The base class is RoleManager, which provides
methods and properties for operating on the roles defined by the application only, and Table 5-5 shows the ones
that I use in this chapter.

Table 5-5. Some of the Members Defined by the RoleManager<T> Class

Name Description

RoleExists(name) Returns true if the specified role exists

Create(name) Creates the specified role

I do not require a great deal from the StoreRoleManager class in this chapter because I will be testing that
roles are working by applying the MVC framework Authorize attribute, which takes care of checking that users are
authenticated and in specific roles. The only use for the StoreRoleManager in this chapter is to see whether the
Administrators role exists during database seeding and to create it if it doesn’t.

Adding the Configuration Statements
At the start of the chapter, I added the IdentityConfig.cs file to the App_Start folder so that I could start building
the application without getting errors from ASP.NET Identity when the application starts. Now that I have created the
classes that I need to create and manage user identities, the last step is to register them in the IdentityConfig.cs file
and complete the configuration process. Listing 5-19 shows the additions I made to the IdentityConfig.cs file.

Listing 5-19. Adding Configuration Statements to the IdentityConfig.cs File

using Owin;
using Microsoft.Owin;
using Microsoft.AspNet.Identity;
using Microsoft.Owin.Security.Cookies;
using SportsStore.Infrastructure.Identity;

[assembly: OwinStartup(typeof(SportsStore.IdentityConfig))]

namespace SportsStore {
 public class IdentityConfig {

 public void Configuration(IAppBuilder app) {
 app.CreatePerOwinContext<StoreIdentityDbContext>(
 StoreIdentityDbContext.Create);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

93

 app.CreatePerOwinContext<StoreUserManager>(StoreUserManager.Create);
 app.CreatePerOwinContext<StoreRoleManager>(StoreRoleManager.Create);

 app.UseCookieAuthentication(new CookieAuthenticationOptions {
 AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie
 });
 }
 }
}

The first three statements register the StoreIdentityDbContext, StoreUserManager, and StoreRoleManager
classes so that instances of them can be created as required by ASP.NET Identity. The final statement tells ASP.NET to
set a cookie in authentication responses, which the browser will send to identify subsequent requests.

Note ■ There is some awkwardness in the way that ASP.neT Identity is set up because Microsoft is in transition
between the legacy features in the System.Web assembly and the new world of oWIn and flexible hosting options. I return
to oWIn and show you how it relates to Web API in Chapter 26, but until Microsoft completes the transition of ASP.neT,
odd-looking configurations will remain.

Testing ASP.NET Identity
I only need to test that ASP.NET Identity is configured and working for this chapter, which means I can take some
shortcuts. Listing 5-20 shows the action methods and filters I added to the Prep controller.

Listing 5-20. Adding Action Methods and Filters in the PrepController.cs File

using System.Threading.Tasks;
using System.Web.Mvc;
using SportsStore.Models;
using SportsStore.Infrastructure.Identity;
using Microsoft.Owin.Security;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.Owin;
using System.Web;
using System.Security.Claims;

namespace SportsStore.Controllers {

 public class PrepController : Controller {
 IRepository repo;

 public PrepController() {
 repo = new ProductRepository();
 }

 public ActionResult Index() {
 return View(repo.Products);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

94

 [Authorize(Roles = "Administrators")]
 public async Task<ActionResult> DeleteProduct(int id) {
 await repo.DeleteProductAsync(id);
 return RedirectToAction("Index");
 }

 [Authorize(Roles = "Administrators")]
 public async Task<ActionResult> SaveProduct(Product product) {
 await repo.SaveProductAsync(product);
 return RedirectToAction("Index");
 }

 public ActionResult Orders() {
 return View(repo.Orders);
 }

 public async Task<ActionResult> DeleteOrder(int id) {
 await repo.DeleteOrderAsync(id);
 return RedirectToAction("Orders");
 }

 public async Task<ActionResult> SaveOrder(Order order) {
 await repo.SaveOrderAsync(order);
 return RedirectToAction("Orders");
 }

 public async Task<ActionResult> SignIn() {
 IAuthenticationManager authMgr = HttpContext.GetOwinContext().Authentication;
 StoreUserManager userMrg = HttpContext.GetOwinContext().GetUserManager<StoreUserManager>();

 StoreUser user = await userMrg.FindAsync("Admin", "secret");
 authMgr.SignIn(await userMrg.CreateIdentityAsync(user,
 DefaultAuthenticationTypes.ApplicationCookie));
 return RedirectToAction("Index");
 }

 public ActionResult SignOut() {
 HttpContext.GetOwinContext().Authentication.SignOut();
 return RedirectToAction("Index");
 }
 }
}

I have added a SignIn action that has hard-coded credentials for the administrative user and uses them to
authenticate the request with the application and send the client a cookie that can be used to authenticate subsequent
requests. I have also defined a SignOut method, which de-activates the cookie and signs the user out.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

95

Tip ■ I am not going to describe the code in the SignIn action in this chapter. I get into a little more detail about
authenticating users in Web API in Chapter 23 and again in Chapter 24, but ASP.neT Identity is a topic in its own right
and is not the focus of this book. I get into more detail about ASP.neT Identity, including how to authenticate with Google,
Facebook, and other providers, in my Pro ASP.NET MVC 5 Platform book, which is published by Apress.

I have applied the Authorize filter to the DeleteProduct and SaveProduct actions in order to restrict access to
authenticated users who have been assigned to the Administrators role.

Passing the authorization test means that the client has to be able to invoke the SignIn action, and Listing 5-21
shows the additions I made to the Views/Prep/Index.cshtml file to add buttons that allow sign-in and sign-out.

Listing 5-21. Adding Authentication Controls to the Index.cshtml File

@model IEnumerable<SportsStore.Models.Product>

<div class="panel panel-primary ">
 Sign In
 Sign Out
 User: @(HttpContext.Current.User.Identity.Name)
</div>

<div class="panel panel-primary">
 <div class="panel-heading">Products</div>
 <table class="table table-striped">
 <tr><th>ID</th><th>Name</th><th>Category</th><th>Price</th></tr>
 @foreach (var p in Model) {
 <tr>
 <td>@p.Id</td>
 <td>@p.Name</td>
 <td>@p.Category</td>
 <td>@p.Price</td>
 </tr>
 }
 </table>
</div>

@using (Html.BeginForm("SaveProduct", "Prep")) {
 <input type="hidden" name="Name" value="Zippy Running Shoes" />
 <input type="hidden" name="Category" value="Running" />
 <input type="hidden" name="Description" value="Set a new Record Time" />
 <input type="hidden" name="Price" value="159.99" />

 <button class="btn btn-primary" type="submit">Create</button>
 Delete
}

I have added some styled a elements that will invoke the SignIn and SignOut action methods along with the
name of the authenticated user, which will be blank when the browser isn’t authenticated. (I have hard-coded the
URLs that the a elements make, which is poor practice in a real project, but I think this is fine for performing initial
configuration testing like this.)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

96

To test Identity, start the application and use the browser to navigate to the /Prep/Index URL. You will see the list
of products in the database, along with the additional buttons from Listing 5-21, as illustrated by Figure 5-6.

Figure 5-7. Invoking a restricted action without authentication

Figure 5-6. The authentication buttons and username

Tip ■ If you receive an error that states that Microsoft.Owin.Security or one its dependencies cannot be loaded,
then rebuild the application using the Visual Studio rebuild ➤ rebuild Solution menu item and try again.

To make sure that the Authorize attributes are working, click the Create or Delete button. The browser hasn’t
invoked the SignIn action method yet, so the request will be sent without an authentication cookie and should be
rejected with a 401 (Unauthorized) response, as shown in Figure 5-7.

Return to the /Prep/Index URL and click the Sign In button. The browser will send a request that invokes the
SignIn action method, which adds the authentication cookie to the response and redirects the browser to the
/Prep/Index URL. The difference is that now the username will be displayed at the top of the page, indicating
that the browser has been authenticated, as shown in Figure 5-8.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

97

Now click the Create or Delete button again. This time, the HTTP request that the browser sends will contain an
authentication cookie, which will allow the targeted action method to be successful invoked, either adding a product
or removing one from the database. If you click the Sign Out button, you will return to making authenticated requests
and receiving 401 (Unauthorized) responses.

Removing the Application Cookie
I configured ASP.NET Identity so that it will set a cookie when a request is successfully authenticated, which allows
subsequent requests from the same client to be authorized without needing credentials. The cookie is required for
round-trip applications, and the authentication test I have used in this chapter will not work without it. I will be using
a different approach for the SportsStore application, which is to explicitly set an HTTP header to provide proof that
the client has been authenticated. I explain this process in Chapter 6, but my final step in this chapter is to disable the
cookie, as shown in Listing 5-22.

Listing 5-22. Disabling the Identity Cookie in the IdentityConfig.cs File

using Owin;
using Microsoft.Owin;
using Microsoft.AspNet.Identity;
using Microsoft.Owin.Security.Cookies;
using SportsStore.Infrastructure.Identity;

[assembly: OwinStartup(typeof(SportsStore.IdentityConfig))]

namespace SportsStore {
 public class IdentityConfig {

 public void Configuration(IAppBuilder app) {
 app.CreatePerOwinContext<StoreIdentityDbContext>(
 StoreIdentityDbContext.Create);
 app.CreatePerOwinContext<StoreUserManager>(StoreUserManager.Create);
 app.CreatePerOwinContext<StoreRoleManager>(StoreRoleManager.Create);

 //app.UseCookieAuthentication(new CookieAuthenticationOptions {
 //AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie
 //});
 }
 }
}

Figure 5-8. The effect of authenticating the browser

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTer 5 ■ SPorTSSTore: PrePArATIon

98

Caution ■ This change means that the Prep controller will no longer be able to authenticate itself.

Summary
In this chapter, I created the foundation for the SportsStore application by creating the data model and using the
Entity Framework Code First feature to store it persistently in a database. I also installed and configured the ASP.NET
Identity system so that I can authenticate users and restrict access to the application’s administrative features, which
I create in Chapter 6. In the next chapter, I define the Web API controllers that will provide the web services for the
SportsStore application.

www.it-ebooks.info

http://www.it-ebooks.info/

99

Chapter 6

SportsStore: A RESTful Application

In the previous chapter, I laid the foundation for the SportsStore application by creating the Product and Order
repository and setting up ASP.NET Identity for user management. In this chapter, I build on that foundation to define
the web services that will drive the SportsStore application.

Creating a RESTful Web Service
In Chapter 5, I created the data model and repository and populated the repository with data. I also set up ASP.NET
Identity so that I can authenticate and authorize users. These two building blocks create the foundation on which
I can build a Web API web service.

When using Web API, it is a simple task to create a RESTful web service. Web API uses controllers, just like the
MVC framework, but the action methods return C# data objects rather than Razor views. In fact, getting started with
Web API is so simple that you will be forgiven for wondering why I have written such a large book about the topic.
The reason is simple: getting started is easy, but creating a truly useful web service requires more effort and a greater
understanding of how Web API really works.

To demonstrate how easy it is to get up and running, I right-clicked the Controllers folder, selected Add ➤
Controller from the pop-up menu, selected the Web API 2 Controller – Empty template, and clicked the Add button.
I then set the name of the controller to ProductsController and clicked the Add button. Visual Studio has the same
approach to templates for Web API controllers as it does for its MVC framework counterparts, and the Empty template
contains just the basic controller definition, as shown in Listing 6-1.

Tip ■ The convention for naming Web API controllers is to prefix the word Controller with the plural form of the
model class that the web service will expose. My web service will operate on Product objects, so I have created the
ProductsController class.

Listing 6-1. The Contents of the ProductsController.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

100

namespace SportsStore.Controllers {

 public class ProductsController : ApiController {

 }
}

There are two important namespaces in Web API development: System.Net.Http and System.Web.Http.
Web API relies on an abstract model of HTTP requests and responses that is defined in System.Net.Http. The classes
from this namespace that you will work with most often are HttpRequestMessage and HttpResponseMessage, which are
used to represent an HTTP request from the client and the response that will be sent in return. I describe these classes
in Chapter 9, and you will see them used throughout this book as I dig into the details of how requests are dispatched.

The most important namespace, however, is System.Web.Http, which is where the Web API classes are defined.
One of the most important classes in this namespace is ApiController, which is the standard base class for creating
Web API controllers and provides support for features such as action methods, model binding, and validation and
error handling. I describe all of these features (and the classes contained in the System.Web.Http namespace and its
children) in later chapters, but for now I am going to use another ApiController feature: the RESTful action method
naming convention. Listing 6-2 shows the changes I made to the Products controller to create a RESTful web service
that provides access to the Product model objects in the repository.

Listing 6-2. Adding RESTful Action Methods in the ProductsController.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;
using SportsStore.Models;
using System.Threading.Tasks;

namespace SportsStore.Controllers {

 public class ProductsController : ApiController {

 public ProductsController() {
 Repository = new ProductRepository();
 }

 public IEnumerable<Product> GetProducts() {
 return Repository.Products;
 }

 public Product GetProduct(int id) {
 return Repository.Products.Where(p => p.Id == id).FirstOrDefault();
 }

 public async Task PostProduct(Product product) {
 await Repository.SaveProductAsync(product);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

101

 public async Task DeleteProduct(int id) {
 await Repository.DeleteProductAsync(id);
 }

 private IRepository Repository { get; set; }
 }
}

With just a few lines of code, I am able to define a working RESTful web service that exposes the product
repository and its contents over HTTP requests. This is just a starting point, but Web API development is a rewarding
experience because you get a solid foundation so quickly.

Testing the Products Web Service
To make sure that the controller is working, start the application by selecting Start Debugging from the Visual Studio
Debug menu, and use the browser to request the following URL:

http://localhost:6100/api/products/2

Enter the URL as though you were requesting a regular web page. I explain the full API that the Products web

service supports in the next section, but this simple test will ensure that Web API is receiving requests and dispatching
them correctly.

Tip ■ There will be a short pause between making the first request using Postman after you start the application.
This is because I configured the product database so that its contents and schema are regenerated when the application
is initialized in Chapter 5. I change this setting to make the data persistent in Chapter 8, but for the moment it is helpful
to be able to reset the database so that the results that I show will match the ones that you receive.

If everything is working correctly, then you will see the following response displayed in the browser window:

<Product xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://schemas.datacontract.org/2004/07/SportsStore.Models">
 <Category>Watersports</Category>
 <Description>Protective and fashionable</Description>
 <Id>2</Id>
 <Name>Lifejacket</Name>
 <Price>48.95</Price>
</Product>

The response is an XML document that describes the Lifejacket product from the database, whose Id property

corresponds to the one I specified in the URL. XML isn’t widely used in modern web applications, and I’ll show you
how to change the format Chapter 13.

www.it-ebooks.info

http://www.w3.org/2001/XMLSchema-instance
http://schemas.datacontract.org/2004/07/SportsStore.Models
http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

102

Tip ■ The simplest way to test basic GeT requests is with the browser, but I will be using the Postman client to create
more complex requests as I add features to the SportsStore application. See Chapter 1 for details of getting Postman
installed and working.

Putting the Web Service in Context
Table 6-1 describes the web service API that my Product controller creates. Knowing the effect of the additions in
Listing 6-2 will make it easier to understand how key features work in the sections that follow.

Table 6-1. The Web Service API Presented by the Products Controller

Verb URL Action Method Description

GET /api/products GetProducts Returns all the Product objects in the repository

GET /api/products/1 or
/api/products?id=1

GetProduct Returns a specific Product object

POST /api/products PostProduct Updates or creates a Product object

DELETE /api/products/1 or
/api/products?id=1

DeleteProduct Removes a Product from the repository

Two things should occur to you when so much functionality appears with so little effort. The first is that there
must be a lot of work going on behind the scenes. The second thing is to consider what the catch is.

There is a lot going on just out of sight, and the size of this book gives you an indication of just how many features,
conventions, and techniques that my simple Product controller relies on to deliver the API shown in the table.

You can get a hint of some of the best Web API features by looking at the action methods I added in Listing 6-2.
For example, here is the action method that I tested in the previous section:

...
public Product GetProduct(int id) {
 return Repository.Products.Where(p => p.Id == id).FirstOrDefault();
}
...

Working with Regular C# Objects
The first thing to notice is that I have used regular C# classes throughout the action method. Web API uses a data
binding and URL routing processes similar to the MVC framework to extract data values from the request to present
as action method parameters. For this action method, URL routing and the binding process are used to extract an int
value that is used for the id parameter.

Tip ■ I describe the binding process in Chapters 14 to 17 and Web API routing in Chapters 20 and 21.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

103

The result from the action method is also a regular C# class: the Product class in this case. Within the action
method, I use LINQ to query the repository and locate a Product that has the desired Id property value and then
return the matching object as the method result. Web API takes care of creating an HTTP response that contains a
serialized representation of the result object. You saw this serialization process at work when the browser displayed
the XML description of the Lifejacket object.

Tip ■ Serialization is handled by a feature called media type formatters, which I describe in Chapters 12 and 13.
Media type formatters are also used to bind data values for action method parameters, as I describe in Chapters 14–17.
I change the serialization settings for the SportsStore application in the “Configuring Serialization” section.

The effect of working with regular C# classes is that writing action methods is a simple and natural process,
especially when you are exposing the data in a repository and you can map action methods to data operations
directly, as I have been able to do in the Products controller.

Using the RESTful Action Method Convention
Web API makes it easy to create RESTful web services by applying a helpful convention when selecting action
methods to handle requests: it looks for action methods whose name starts with the request HTTP verb.

I didn’t have to specify the name of the action method in the URL when I made a test request. As a reminder, here
is the URL I requested:

http://localhost:6100/api/products/2

The URL does specify the name of the controller (/api/products/2) but not the action method. Web API selects

the action method by looking at the action methods defined by the controllers and filtering out any whose name
doesn’t begin with the request HTTP verb. In the Products controller, there are two candidate action methods for a
GET request.

...
public IEnumerable<Product> GetProducts() {
...

and

...
public Product GetProduct(int id) {
...

Web API then looks at the data that has been extracted from the request by the URL routing system and selects
the method whose parameters match the data.

Tip ■ only the start of the action methods names are used to match requests. The convention is to append the model
name to the action method, but that is not required.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

104

The overall effect is that writing action methods is a natural process that doesn’t require the developer to think
about HTTP verbs, serialization, data binding, or any of the other details that are required to process an HTTP request
in order to create a response.

The catch—and, of course, there is one—is that I have created a web service that lacks some important features
and is far from useful in a real application.

Web API gives you a big rush of initial functionality right at the start of the project, which I love because it helps
compensate for the preparation I had to perform in Chapter 5. But going from the basic web service I created in
Listing 6-2 to one that is ready for deployment requires more work—and compromises some aspects of the nice
features I described in the previous section. As it stands, the web service that I created in Listing 6-2 doesn’t have any
security, doesn’t validate data, and doesn’t handle errors, all of which are serious omissions.

Web API provides features to fill in the gaps, but they are not applied by default. I’ll work through the process of
completing the web service as I build out the SportsStore application, but it is important to understand that writing
the action methods is only the start of the process.

Configuring Serialization
The first thing I am going to change is the way that data model objects are serialized when they are sent to the client.
In the previous section, I made a simple GET request with the browser and received a response that contained XML data.

Clients can specify the data formats they are willing to work with in the Accept request header, and Web API will
use the formats that are specified to select a serialization format. Web API comes with built-in support for serializing
objects to the XML and JSON formats. The reason that I got an XML response is because the Accept header that
Google Chrome sends specifies that it will accept any data format, but it would rather receive XML.

There are two ways to change the data format: I can alter the Accept header sent by the client, or I can alter the
way that Web API responds to it. Since I don’t have control over the header that Chrome uses, my only option is to
reconfigure Web API.

The serialization of data objects so they can be sent to the client is handled by media type formatter classes. Web
API comes with some built-in media type formatters and can serialize objects to the XML and JSON data formats by
default (although you can add your own data formats, as I explain in Chapter 12).

To disable XML output, I am going to remove the XML media type formatter so that it is no longer used to
serialize objects, leaving only the JSON formatter to handle requests.

Listing 6-3 shows the changes that I made to the WebApiConfig.cs file in the App_Start folder to disable
XML serialization.

Tip ■ The WebApiConfig.cs file is used to configure Web API rather than the Global.asax.cs file, and the statements
that Visual Studio adds by default configure the url routes that are used to process requests. (I describe the routing
configuration for the SportsStore application in the “Preparing the routing Configuration” section, and I describe Web API
url routing in detail in Chapters 20 and 21.)

Listing 6-3. Disabling XML Serialization in the WebApiConfig.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;

namespace SportsStore {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

105

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Formatters.Remove(config.Formatters.XmlFormatter);
 }
 }
}

I have added a statement to the Register method, which is called to configure Web API when the application is
started. The Register method accepts an instance of the HttpConfiguration class, which provides properties and
methods to configure different aspects of the way that Web API works.

The statement I added uses the Formatters property, which returns the collection of media type formatters in
the application. This collection also defines convenience properties that allow me to refer to the important built-in
properties directly. The XmlFormatter property returns the object that is used to serialize data objects to XML. I read
the XmlFormatter property to get a reference to the XML media type formatter and pass it to the Remove property to
remove it from the Formatters collection.

Tip ■ Although the WebApiConfig.cs file is used to configure Web API, it is the Global.asax.cs file that initiates
that process when the application is hosted by IIS, which is required when MVC 5 and Web API 2 are used in the same
application. If you look at the Global.asax.cs file, you will see a call to the GlobalConfiguration.Configure method,
which is a static method used to configure Web API. The argument passed to the Configure method is an Action that
specifies the configuration will be performed by the WebApiConfig.Register method. In Chapter 10, I explain the role of
the GlobalConfiguration class and how Web API is configured in detail.

You can see the effect of the statement I added in Listing 6-3 by restarting the application and using the browser to
request the http://localhost:6100/api/products/2 URL again. The Accept header that Chrome sends is unchanged,
but Web API can no longer use the browser’s preferred data format and will produce JSON data instead, as follows:

{"Id":2,"Name":"Lifejacket",
 "Description":"Protective and fashionable","Price":48.95,"Category":"Watersports"}

This is a representation of the same Product object, but expressed using the JSON format, which has become

dominant in the world of HTTP web services.

Tip ■ There are two reasons to remove a media type formatter. The first is that you are not going to support the format
and don’t want to have to test the output from your application in, say, JSon and XMl. The second reason is that Web API
usually selects the right format for each client, but the process by which this is done, known as content negotiation, has
some wrinkles that can trap the unwary, resulting in a client receiving data that it doesn’t know how to process.
I describe how media type formatters work in Chapter 12 and describe the content negotiation process in Chapter 13.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

106

Adding Basic Data Validation
As it stands at the moment, my web service just assumes that the data it is receiving from the client is valid and can be
used to manipulate the repository. To see an example of this, request the following URL using the browser:

http://localhost:6100/api/products/200

This request will invoke the GetProduct method and be interpreted as a request for the Product object in the

repository whose Id property is set to 200. There is, unfortunately, no such object, and you can see the result displayed
by the browser in Figure 6-1.

Figure 6-1. The effect of requesting a nonexistent product

The problem is that Web API has no insight into the purpose and implementation of my action method and so
has no way to validate that the value for the int parameter refers to a valid Product object. I need to perform the basic
validation myself and report an error to the client when there is no match. Listing 6-4 shows the changes that I made
to the GetProduct action method.

Tip ■ This is only the most basic kind of validation. I describe the support available for binding more complex values,
known as model validation, in the “Adding Model Validation” section.

Listing 6-4. Handling an Error in the ProductsController.cs File

...
public Product GetProduct(int id) {
 Product result = Repository.Products.Where(p => p.Id == id).FirstOrDefault();
 if (result == null) {
 throw new HttpResponseException(HttpStatusCode.BadRequest);
 } else {
 return result;
 }
}
...

I have added a simple check to see whether I am able to retrieve a Product object from the repository.
If I am, then I return the Product object as the action method result so that it can be serialized and sent to the
client as part of the HTTP response. If there is no matching Product, then I create and throw an instance of
the HttpResponseException, which is used to specify that an error occurred and to set the HTTP status code that will
be used for the response.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

107

In Web API, HTTP status codes are represented using values from the System.Net.HttpStatusCode enumeration.
In this example, I have specified the HttpStatusCode.BadRequest value, which means that the status code for the
response will be 400 (Bad Request).

Tip ■ The HttpResponseException class is only one of the ways in which Web API deals with errors. See Chapter 25
for details.

You can see the effect of the exception by restarting the application and using the browser to request the
http://localhost:6100/api/products/200 URL. The browser window will be empty, but if you use the browser’s
F12 tools to examine the network request, you will see that the web service returned the error response, as shown
in Figure 6-2.

Figure 6-2. The effect of some basic validation

 Using Action Results
An alternative approach to using regular C# objects and the HttpResponseException is to use action results, which
perform the same function as in the MVC framework and give you greater flexibility in how you structure your action
method code. The ApiController class provides a number of convenience methods for creating action results, and
I have used two of them in Listing 6-5 to modify the GetProduct action method.

Tip ■ Web API uses a completely different set of namespaces and classes than the MVC framework. Web API action
methods implement the IHttpActionResult interface in the System.Web.Http namespace.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

108

Listing 6-5. Using Action Results in the ProductsController.cs File

...
public IHttpActionResult GetProduct(int id) {
 Product result = Repository.Products.Where(p => p.Id == id).FirstOrDefault();
 return result == null
 ? (IHttpActionResult) BadRequest("No Product Found") : Ok(result);
}
...

I have used two of the action result methods that the ApiController class provides. The BadRequest method
generates a response with the 400 (Bad Request) status code, and the Ok method generates a 200 (OK) result and
serializes its argument.

You can see the effect of the change by starting the application and using the browser to request the
http://localhost:6100/api/products/200 URL again. This time, the browser will display some content in the
main window, as shown by Figure 6-3.

Figure 6-3. A description of an error displayed by the browser

The response contains a JSON-formatted object that has a Message property set to the string I passed to the
ApiController.BadRequest method. The Web API error handling process creates an HttpError object to convey
information to the client when something goes wrong, and the Message property is intended to be displayed to users.
I explain how to use the HttpError class in Chapter 25.

ChOOSING BetWeeN OBJeCtS/eXCeptIONS aND aCtION reSULtS

There is no practical difference in the results generated from action methods that use action methods instead
of regular C# objects and the HttpResponseException, and the decision between them is a matter of personal
style.

I like the more natural objects and exceptions approach because I like the way it hides the details of the web
service and allows me to focus on writing the controller logic, but I generally switch to action results once the
web service gets to a certain level of complexity because getting all of the features implemented required
embracing, not hiding, the details of hTTP and the requests and responses that a web service details with.

That is just my preference, however, and you are free to develop your own preferences. You can get a long way
without needing to even think about action results, so don’t feel you have to adopt them if you prefer working with
objects and exceptions.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

109

Securing the Product Web Service
By default, there are no restrictions on who can the access action methods defined by a Web API controller, which
means that anyone can use the Products controller to create, modify, and delete objects in the repository.

To demonstrate the problem, I need to use Postman to generate an HTTP request. Using a browser works for GET
requests, but Postman can be used for all types of request.

Enter the http://localhost:6100/api/products/2 URL into the main part of the Postman window and select
the DELETE option from the drop-down list, as shown in Figure 6-4. (Postman has a rather cluttered interface, so
I have highlighted the URL and method list.)

Figure 6-4. Creating an HTTP DELETE request using Postman

Figure 6-5. Displaying the results of the DELETE request

Click the blue Send button, and Postman will send an HTTP DELETE request to the URL, which will invoke the
DeleteProduct action method. The Product object whose Id property is 2, which is Lifejacket, will be removed from
the repository. Postman displays the response from the web service in the area beneath the Send button, as shown in
Figure 6-5.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

110

I have highlighted the part of the interface that displays the response status code, which is 204 (No Content) for
this request. This response tells the client that the request was successfully processed but that no data was generated,
which is a common way for a web service to handle a request to delete a data object. This is the status code used
by Web API for asynchronous action methods that return Task or void synchronous methods. (Another common
approach is to return the data object that has been deleted, in which case a 200 [OK] status code would be used.)

Tip ■ notice that Postman reports that the request in figure 6-5 took more than five seconds. This is a combination of
the amount of time taken for ASP.neT to initialize the application and for the database to be dropped and re-created.
Subsequent requests on my system take 127 milliseconds, but the initial request is slower because of the work
required to get the application up and running, which is a process that doesn’t start until the first request is received
from the client.

You can see the effect of the DELETE request sending a GET request by using Postman to send a GET request to the
http://localhost:6100/api/products URL or by using the browser to request the http://localhost:6100/Prep/Index
URL, as shown in Figure 6-6. As expected, the Lifejacket product, which has the Id of 2, is no longer in the list.

Figure 6-6. The effect of sending a DELETE request

Restricting Access to Action Method
Having shown that the DeleteProduct action method works and can be invoked by any request, it is time to restrict
access so that only authenticated users who have been assigned to the Administrators role that I created using ASP.
NET Identity in Chapter 5 can invoke the method. The first step is to apply the Authorize filter to the action method
that I want to protect, as shown in Listing 6-6.

Listing 6-6. Applying Authorization in the ProductsController.cs File

...
[Authorize(Roles = "Administrators")]
public async Task DeleteProduct(int id) {
 await Repository.DeleteProductAsync(id);
}
...

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

111

Web API filters have the same effect as their counterparts in the MVC framework, which is to add logic into the
request handling process that doesn’t belong elsewhere in the components of the MVC pattern, such as logging or
security, known as cross-cutting concerns. The Authorize filter prevents action methods from being invoked unless the
request has been authenticated and the user associated with the request belongs to one or more specified roles.
This is the same way that the MVC framework Authorize filter works, but Web API has its own set of interfaces and
classes, and the Authorize attribute shown in the listing does not apply the same class as the filter with the same
name applied to an MVC framework action method. I describe the Web API filters and explain how they work in
Chapters 23 and 24.

Tip ■ You can also use the Authorize filter to restrict access to individual users, but this is usually a poor strategy
because it means you cannot change which users have access without deploying a new version of the application. using
roles means you can assign users in the ASP.neT Identity database and have the changes take effect without needing to
write, test, and deploy code.

To see the effect of the Authorize filter, start the application and resend the DELETE request using Postman.
(Postman keeps a history of the requests you have made in a list on the left side of the window, which makes it easy to
resend requests.) Rather than the 204 (No Content) success method that was returned in the previous section, the web
service now returns a 401 (Unauthorized) response, as illustrated in Figure 6-7. If you request the /Prep/Index URL,
you will see that the Lifejacket product remains in the repository and has not been deleted.

Figure 6-7. The effect of applying authorization to an action method

Authenticating Requests
Restricting access to authorized users is helpful only if there is also a mechanism for those users to authenticate
themselves.

Web API lets you choose your own approach to authenticating requests, and in Chapters 23 and 24, I show you
how to create a custom implementation of HTTP basic authentication. Basic authentication is a rudimentary system
that is safe only over SSL connections and that requires the client to provide the name and password of the user for
every request, but it provides a nice demonstration of how you can integrate authentication into a Web API application.

More broadly, authentication for web services is something of a Wild West, with no unified approach for sending
credentials to authenticate a user or subsequently identifying authenticated requests. Some web service platforms rely
on cookies, others use headers, and some rely on both, but even when two platforms use the same basic approach,
there is substantial variation in the implementation detail.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

112

The most common approach to authentication requests in Web API is to use ASP.NET Identity, which I
configured in Chapter 5. Authenticating users with ASP.NET Identity requires a specifically formatted request, but
once the initial authentication has been performed, subsequent requests are identified as being authenticated by
setting the standard HTTP Authorization header or an authentication cookie, using a value that is provided in the
initial request. I’ll demonstrate the requests that are required—and the responses they produce—as I define the
authentication functionality in the sections that follow.

Caution ■ The integration of ASP.neT Identity into ASP.neT Web API is something of a mess because Microsoft is trying
to make Identity operate in both the old world of the traditional ASP.neT platform and the new world of oWIn and wider
hosting options (which I describe in Chapter 26). Getting authentication to work through a web service requires some ugly
code, which I show you in the listings that follow but don’t explain in depth. My advice is to use the code in the listings—
which you can download from Apress.com—verbatim in your own projects and avoid digging to the detail of Identity until
it has been more smoothly integrated with Web API.

Defining the Authentication Provider
ASP.NET Identity is an extensible user-management framework that can be used to implement any authentication
mechanism. Oddly, however, there is no built-in support for authenticating users against the credentials stored in the
database that I created in Chapter 5. This means the first step in setting up authentication is to implement a provider
class that will authenticate the user based on the username and password and generate the cookie used to identity
subsequent requests from the client. Listing 6-7 shows the contents of the StoreAuthProvider.cs file, which I added
to the Infrastructure/Identity folder.

Listing 6-7. The Contents of the StoreAuthProvider.cs File

using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNet.Identity;
using Microsoft.Owin.Security;
using Microsoft.Owin.Security.OAuth;

namespace SportsStore.Infrastructure.Identity {
 public class StoreAuthProvider : OAuthAuthorizationServerProvider {

 public override async Task GrantResourceOwnerCredentials(
 OAuthGrantResourceOwnerCredentialsContext context) {

 StoreUserManager storeUserMgr =
 context.OwinContext.Get<StoreUserManager>("AspNet.Identity.Owin:"
 + typeof(StoreUserManager).AssemblyQualifiedName);

 StoreUser user = await storeUserMgr.FindAsync(context.UserName,
 context.Password);
 if (user == null) {
 context.SetError("invalid_grant",
 "The username or password is incorrect");
 } else {

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

113

 ClaimsIdentity ident = await storeUserMgr.CreateIdentityAsync(user,
 "Custom");
 AuthenticationTicket ticket
 = new AuthenticationTicket(ident, new AuthenticationProperties());
 context.Validated(ticket);
 context.Request.Context.Authentication.SignIn(ident);
 }
 }

 public override Task ValidateClientAuthentication(
 OAuthValidateClientAuthenticationContext context) {
 context.Validated();
 return Task.FromResult<object>(null);
 }
 }
}

The authentication provider is derived from the OAuthAuthorizationServerProvider class and overrides the
ValidateClientAuthentication and GrantResourceOwnerCredentials methods.

The ValidateClientAuthentication method is called to check whether the client is allowed to perform
authentication, which I accept by calling the Validated method on the context object passed as the method
parameter. (I allow any client to perform validation because I care only about usernames and passwords in the
SportsStore application.)

The GrantResourceOwnerCredentials method is called to authenticate the user, and the context parameter
provides access to the username and password provided by the user. I follow the same basic approach that I used for
the SignIn method in the Prep controller in Chapter 5 and use the user manager class to check the username and
password that I have received and to add a cookie to the response if they are valid.

Configuring Authentication
Using ASP.NET Identity in a web service requires some configuration statements in the IdentityConfig.cs file, in
addition to the ones that I needed to perform authentication through an MVC framework controller in Chapter 5.
Listing 6-8 shows the statements that I added to configure Identity to use the provider class I created in the previous
section and to set up authentication as part of the Web API request handling process.

Listing 6-8. Configuring ASP.NET Identity to Work with Web API in the IdentityConfig.cs File

using Owin;
using Microsoft.Owin;
using Microsoft.AspNet.Identity;
using Microsoft.Owin.Security.Cookies;
using SportsStore.Infrastructure.Identity;
using System;
using Microsoft.Owin.Security.OAuth;

[assembly: OwinStartup(typeof(SportsStore.IdentityConfig))]

namespace SportsStore {
 public class IdentityConfig {

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

114

 public void Configuration(IAppBuilder app) {

 app.CreatePerOwinContext<StoreIdentityDbContext>(
 StoreIdentityDbContext.Create);
 app.CreatePerOwinContext<StoreUserManager>(StoreUserManager.Create);
 app.CreatePerOwinContext<StoreRoleManager>(StoreRoleManager.Create);

 //app.UseCookieAuthentication(new CookieAuthenticationOptions {
 // AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie
 //});

 app.UseOAuthBearerTokens(new OAuthAuthorizationServerOptions {
 Provider = new StoreAuthProvider(),
 AllowInsecureHttp = true,
 TokenEndpointPath = new PathString("/Authenticate")
 });
 }
 }
}

I have set three configuration properties that control the way that requests are authenticated. The Provider
property specifies the object that will authenticate the user, which is in this case an instance of the StoreAuthProvider
class that I defined in Listing 6-7.

Tip ■ There are many configuration options for authentication—too many for me to describe in this book. See
http://msdn.microsoft.com/en-us/library/microsoft.owin.security.oauth.oauthauthorizationserveroption

s(v=vs.113).aspx for the full list.

Setting the AllowInsecureHttp property to true allows authentication to be performed for any HTTP request
rather than the default behavior, which is to support only SSL requests.

The final property—TokenEndpointPath—specifies a URL that will be used to receive and process authentication
requests. I have specified /Authenticate, which means that clients will send their authentication requests to
http://localhost:6100/authenticate, as I demonstrate in the next section.

Testing Authentication
The process for testing authentication is cumbersome because I am going to create the requests that I need using
Postman. I’ll write the JavaScript code that will handle authentication in Chapter 7, but I want to focus on just the
web service in this chapter. First I am going to show you what happens when authentication is attempted with invalid
credentials and then with valid ones.

Set the Postman request URL to http://localhost:6100/authenticate and select the POST verb from the
drop-down list. When you select POST, a set of buttons will appear that allow the encoding style for the data in the
request to be selected; click the x-www-form-urlencoded button.

Beneath the buttons are spaces for Key and Value. As you start typing in one of the spaces, a new line will appear
beneath so that you can enter multiple values. Enter the key/value data shown in Table 6-2.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/microsoft.owin.security.oauth.oauthauthorizationserveroptions(v=vs.113).aspx
http://msdn.microsoft.com/en-us/library/microsoft.owin.security.oauth.oauthauthorizationserveroptions(v=vs.113).aspx
http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

115

The grant_type entry specifies what type of authentication is being requested, and the username and password
entries specify the credentials to be validated. I have specified the username Bob, which is invalid because I
only created an Admin user in Chapter 5. Figure 6-8 shows how Postman should look before performing the
authentication request.

Table 6-2. The Key Value Data Required for an Authentication Request

Key Value

grant_type password

username Bob

password secret

Figure 6-8. Creating an authentication request using Postman

Click the Send button when you have configured the request. Postman will show that the response had the
400 (Bad Request) status code and contained the following JSON data:

{"error":"invalid_grant","error_description":"The username or password is incorrect"}

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

116

Tip ■ A common cause of confusion is the response code for a failed authentication code. Many developers expect
to receive a 401 (unauthorized), but that is sent only when accessing a restricted url without being authenticated or
authorized.

To make a successful authentication request, change the username value to Admin while leaving all of the other
values as they are and click the Send button. This time the credentials are valid, and you will receive a 200 (OK)
response. The data returned by the web service will look like this:

{"access_token":"vJwc8Aj2r2nt0NxtO1uhL7YOc66vMS1fsUfYvvQuZ76X-SQxxRLdaECj1Dnu0BpbVi
 ExwX9TEdQQ-4A3d4BSlz8HCOp5nhPaveLifLaflAmj1NGv8KDef0azJBWCgFs2E3IiAGs-qLrXzR
 _9iZyW1W3cdbo6vP6Wdzc5KVoB4y2ihA6qdVbOkREkCjgxtBbH7rz26kbE4xTddPAeIqsJPtgSTM
 XeT4X-WlgW_QAwul3AER_52nmA8UEu7uBBz1YWAEtfl-MYEEkMa2hwN-aPz91mypaYSb4-SlWAqr
 -OY73iv1GTxcEn11h0GE4YDCZZ4DJ5i1YiYeGF5GYQPPnLghWMOBH5nEGlsZTb7ee9M3SSAgYQZw
 k1y8f8k8tDR9DuEniJTSessK2V_8AqTjleDhOkGStzzD5Je_pz30CP9UZMwsH3yyBpOS-XoXzgO-
 jcyMsYguIf0D_dT9Qp2gBrkuoSaAvlu8_bVAERL1rwZERtoKVkoMCxKxdFgnnKLOaU",
 "token_type":"bearer",
 "expires_in":1199}

This is a JSON-formatted object that contains the result of the successful authentication request. You will see

a different access_token value because this is the string that will uniquely identify subsequent requests as being
authenticated without having to send the username and password each time.

To make an authenticated request, follow these steps in Postman:

 1. Copy the value of the access_token property from the results. It is important to get just the
value without the opening and closing quotes or any other part of the response.

 2. Click the Reset button to reset the Postman request settings.

 3. Set the request URL to http://localhost:6100/api/products/2.

 4. Select the DELETE verb from the drop-down list.

 5. Click the Headers button (which is to the right of the verb list).

 6. Enter Authorization into the header area.

 7. Set the value to bearer followed by a space and then the value of the access_token from
the authentication request. (The value bearer is taken from the token_type property in
the response.)

Postman should look like Figure 6-9 when you have finished configuring the request, and I have highlighted the
important changes that have to be made.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

117

Click the Send button, and you should receive a 204 (No Content) response. You can check the contents of the
repository by using the browser to request the /Prep/Index URL, and if everything has worked correctly, then there
should be no Lifejacket product in the list.

Tip ■ If you don’t get the expected result, then the most likely cause is a problem with the access_token value, which
is long and difficult to manipulate. Make sure you have not missed any characters or added any extra when copying the
value. The access_token value is valid for only 20 minutes by default, so if you are having problems, take care to repeat
the authentication request to get a new access_token value every now and again.

This is an undeniably awkward process, but it demonstrates the two-stage approach required for web service
authentication. The process is somewhat easier to handle when using jQuery to make Ajax requests, as I demonstrate
in Chapter 7.

Tip ■ ASP.neT Identity can also be configured to use cookies for authentication, which means you don’t need to set the
Authorization header. I am using the header approach because it lets me have more control over the authentication
process for the SportsStore application, as you will see in Chapter 6, which makes demonstrating the functionality
simpler. I disabled the cookie support in Chapter 5, but you can leave it enabled it in your own applications. I also
demonstrate the cookie-based approach in Pro ASP.NET MVC 5 Platform, which is published by Apress.

Figure 6-9. Configuring an authenticated DELETE request

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

118

Adding Model Validation
Web API works on a best-efforts approach when it comes to creating the objects that are passed as arguments to
action methods, and it won’t complain if there more or less data than is required to create the objects that the action
methods require. Web API also doesn’t have any insight into the meaning of the properties that model classes define,
which means it is easy to send requests that create objects that don’t make sense. As a simple example, Web API won’t
prevent a negative value from being assigned to the Price property of a Product object in the SportsStore application
because it doesn’t have any knowledge of what that property means in the context of the application.

To demonstrate the problem, I am going to use Postman to modify one of the products in the database. Here are
the steps that I followed to create the request:

 1. Click the Reset button.

 2. Set the request URL to http://localhost:6100/api/products/1.

 3. Select the POST verb from the drop-down list.

 4. Ensure the x-www-form-urlencoded button is selected.

 5. Enter the key/value pairs shown in Table 6-3.

Figure 6-10. Configuring a POST request in Postman

Table 6-3. The Key Value Pairs for a POST Request

Key Value

Id 1

Price -100

When you have configured the request, Postman should resemble Figure 6-10.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

119

Click the Send button to send the request to the web service. The response will be a 204 (No Content) response
that indicates success (but does not require the web service to send the client any data), and you can see the changes
to the data in the repository by using the browser to display the /Prep/Index URL, as shown in Figure 6-11.

Figure 6-11. The effect of an unvalidated request

Applying Validation Attributes
I added some simple validation to the GetProduct method earlier in the chapter, but Web API supports a
sophisticated validation feature that shares a lot of common features with the one you will have used in the MVC
framework, based on the application of validation attributes to model objects. Listing 6-9 shows the additions I have
made to the Product class to prevent poor-quality data from being added to the database.

Listing 6-9. Applying Validation to the Product.cs File

using System.ComponentModel.DataAnnotations;

namespace SportsStore.Models {

 public class Product {
 public int Id { get; set; }
 [Required]
 public string Name { get; set; }
 [Required]
 public string Description { get; set; }
 [Required]
 [Range(1, 100000)]
 public decimal Price { get; set; }
 [Required]
 public string Category { get; set; }
 }
}

I describe the attributes in detail in Chapter 18, but the ones I have applied to the Product class require the client
to provide values for the Name, Description, Price, and Category properties and limit the value of the Price attribute
so that it is between 1 and 100,000. This is a pretty simple set of validation attributes, but it is enough to demonstrate
the model validation mechanism and to prevent the kind of problem that I demonstrated in the previous section.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

120

Validating the Model
The final step is to check that the model object passed to the action method is valid, which is done through the
ModelState property defined by the ApiController class. I describe the model validation process and classes in detail
in Chapter 18, but in Listing 6-10 you can see how I assess the validity of the object through the IsValid property.

Listing 6-10. Validating a Model in the ProductsController.cs File

...
public async Task<IHttpActionResult> PostProduct(Product product) {
 if (ModelState.IsValid) {
 await Repository.SaveProductAsync(product);
 return Ok();
 } else {
 return BadRequest(ModelState);
 }
}
...

I have changed the action method so that it returns an IHttpActionResult (although since this is an async method,
the result type is Task<IHttpActionResult>, as I explained in Chapter 3). If the value of the ModelState.IsValid
 property is true, then I know that the data sent by the client has passed the validation tests defined by the attributes I
applied in Listing 6-9 and that I can safely store the object in the repository.

If the IsValue property is false, then I know that there is a problem with the data that the client has sent and that
one or more properties have failed to pass its validation test. I call the BadRequest convenience method to generate a
400 (Bad Request) response. I pass the value returned by the ModelState property to the BadRequest method, which
has the effect of sending the client details of which properties are problematic and why.

Tip ■ I describe the model state in Chapter 18 and the different ways in which errors can be handled in Chapter 25.
I list all of the convenience methods defined by the ApiController for creating action method results in Chapter 11.

To see the effect of the validation, start the application and use Postman to resend the POST request I defined at
the start of this section. Postman will display the 400 (Bad Request) status code and show the following data, which
the web service includes in the response:

{"Message":"The request is invalid.",
 "ModelState":{ "product.Name":["The Name field is required."],
 "product.Description":["The Description field is required."],
 "product.Price":["The field Price must be between 1 and 100000."],
 "product.Category":["The Category field is required."]
 }
}

The data sent to the client provides information about each property, but, as I explain in Chapter 25, this data

doesn’t follow any widely accepted standard, and the client has to have prior knowledge that the web service will send
this kind of data when there is a validation problem.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

121

Adding Simple Dependency Injection
Dependency injection (DI) is a contentious topic, and either you love the idea and apply it relentlessly to your
applications or you hate it entirely and resent the imposition of a pattern that you neither like nor value. (And I really
do mean hate. You should see some of the e-mails I get on this topic).

If you are reading this book, then you have already made up your mind because you have built applications using
the MVC framework. If you are a DI hater, then you can avert your eyes and move on to the next section in which I
create another Web API controller (although be warned that I return to the topic of DI again in Chapter 10). If you are
interested in DI, then I am going use this section to create a simple custom resolver that will allow me to decouple the
ProductController class from the ProductRepository implementation of the IRepository interface.

Recapping the Problem
The problem I am trying to solve is that the constructor of the Product controller directly instantiates the
ProductRepository class so that the action methods in the controller have access to an implementation of the
IRepository interface.

...
public ProductsController() {
 Repository = new ProductRepository();
}
...

Tightly coupled components are hard to test because I can’t readily separate the behavior of the
ProductController class from the ProductRepository class. A loosely coupled approach would allow the
ProductController class to obtain an implementation of the IRepository interface without needing to specify which
implementation is used. This allows me to change the IRepository implementation without having to also change
the ProductController class, and that makes testing and maintenance simpler.

Creating the Dependency Resolver
I show you how to use the Ninject package to perform DI in Web API in Chapter 10, but in this chapter I am going
to create a custom resolver that will create instances of the ProductResolver class to service requests for the
IRepository interface. This is a small fraction of the functionality that a real DI package like Ninject offers, but it is
enough to get the SportsStore application up and running and to demonstrate some useful Web API functionality.
I started by adding a class file called CustomResolver.cs to the Infrastructure folder and using it to define the class
shown in Listing 6-11.

Listing 6-11. The Contents of the CustomResolver.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http.Dependencies;
using SportsStore.Models;

namespace SportsStore.Infrastructure {
 public class CustomResolver : IDependencyResolver, IDependencyScope {

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

122

 public object GetService(Type serviceType) {
 return serviceType == typeof(IRepository)
 ? new ProductRepository()
 : null;
 }

 public IEnumerable<object> GetServices(Type serviceType) {
 return Enumerable.Empty<object>();
 }

 public IDependencyScope BeginScope() {
 return this;
 }

 public void Dispose() {
 // do nothing - not required
 }
 }
}

Web API uses two interfaces to resolve dependencies: IDependencyResolver and IDependencyScope. I explain
the role and purpose of these interfaces in Chapter 10, but for this chapter it is enough to know that the GetService
method will be called when Web API needs to get instances of most types, including implementation of the
IRepository interface. If this is the type that is required, then I return a new instance of the ProductRepository class.
For all other types, I return null, which tells Web API to use its default behavior to create instances of the types it
requires. The default behavior is to invoke a public parameterless constructor.

Registering the Dependency Resolver
I have to tell Web API that I want it to use the resolver, which I do in the WebApiConfig.cs file, as shown in
Listing 6-12. (I explain more about the Web API configuration options in Chapter 10.)

Listing 6-12. Registering a Dependency Resolver in the WebApiConfig.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using SportsStore.Infrastructure;

namespace SportsStore {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

123

 config.Formatters.Remove(config.Formatters.XmlFormatter);
 config.DependencyResolver = new CustomResolver();
 }
 }
}

Using the Dependency Resolver in the Controller Class
My dependency resolver is simple and requires the constructor of the Product controller to explicitly request
an implementation of the IRepository interface. Real dependency injection packages, such as Ninject (which I
demonstrate in Chapter 10), will use reflection to inspect classes and resolve dependencies automatically, which
is a more elegant approach. Even so, my simple resolver provides enough functionality for me to decouple the
ProductController and ProductRepository classes, as shown in Listing 6-13.

Listing 6-13. Using a Dependency Resolver in the ProductController.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;
using SportsStore.Models;
using System.Threading.Tasks;

namespace SportsStore.Controllers {

 public class ProductsController : ApiController {

 public ProductsController() {
 Repository = (IRepository)GlobalConfiguration.Configuration.
 DependencyResolver.GetService(typeof(IRepository));
 }

 public IEnumerable<Product> GetProducts() {
 return Repository.Products;
 }

 public IHttpActionResult GetProduct(int id) {
 Product result = Repository.Products.Where(p => p.Id == id).FirstOrDefault();
 return result == null
 ? (IHttpActionResult) BadRequest("No Product Found") : Ok(result);
 }

 public async Task<IHttpActionResult> PostProduct(Product product) {
 if (ModelState.IsValid) {
 await Repository.SaveProductAsync(product);
 return Ok();
 } else {
 return BadRequest(ModelState);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

124

 [Authorize(Roles = "Administrators")]
 public async Task DeleteProduct(int id) {
 await Repository.DeleteProductAsync(id);
 }

 private IRepository Repository { get; set; }
 }
}

This slightly awkward statement accesses the runtime configuration objects to get an implementation of the
IDependencyResolver interface and uses it to get an implementation of the IRepository interface. The result is that
the ProductController class is not tightly coupled to the ProductRepository interface and can be more readily tested
and maintained.

Creating a Non-RESTful Web Service
To finish this chapter, I am going to create a Web API controller that will provide access to the Order and OrderLine
objects in the repository. The controller that I created to serve requests for Product objects followed the Web API
naming convention for a RESTful web service, but that is an optional pattern, and it is perfectly possible—and
reasonable—to create non-RESTful web services, and this is what I will do in this section.

Preparing the Routing Configuration
The URL routing system is responsible for matching requests in order to extract data and select the controller that
will generate the response for the client. The default Web API configuration doesn’t deal with action method names
because the assumption is that you will follow the RESTful naming convention, so the first task is to add a new route
that will match requests for my non-RESTful controller and extract both the controller and action method names from
the URL, as illustrated in Listing 6-14.

Tip ■ I describe the Web API url routing features in detail in Chapters 20 and 21.

Listing 6-14. Defining a New Route in the WebApiConfig.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using SportsStore.Infrastructure;

namespace SportsStore {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

125

 config.Routes.MapHttpRoute(
 name: "OrdersRoute",
 routeTemplate: "nonrest/{controller}/{action}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Formatters.Remove(config.Formatters.XmlFormatter);

 config.DependencyResolver = new CustomResolver();
 }
 }
}

To avoid routes being matched to the wrong kind of controller (RESTful and non-RESTful), I have defined a route
with a separate prefix: nonrest. This allows me to continue to send requests to target RESTful controllers using URLs
prefixed with api without the route for non-RESTful controllers getting in the way (I explain this problem in detail in
Chapter 22).

Preparing the Model Objects
To prepare the Order and OrderLine classes, I have applied attributes for validation, as shown in Listing 6-15.

Listing 6-15. Applying Attributes in the Order.cs File

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Web.Http;

namespace SportsStore.Models {
 public class Order {
 [HttpBindNever]
 public int Id { get; set; }
 [Required]
 public string Customer { get; set; }
 [Required]
 [HttpBindNever]
 public decimal TotalCost { get; set; }
 public ICollection<OrderLine> Lines { get; set; }
 }

 public class OrderLine {
 [HttpBindNever]
 public int Id { get; set; }
 [Required]
 [Range(0, 100)]
 public int Count { get; set; }

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

126

 [Required]
 public int ProductId { get; set; }
 [HttpBindNever]
 public int OrderId { get; set; }

 [HttpBindNever]
 public Product Product { get; set; }
 [HttpBindNever]
 public Order Order { get; set; }
 }
}

The Required and Range attributes have the same effect as when I applied them to the Product class, ensuring
that the request contains a value for a property and limiting the acceptable set of values for that property.

I have also used the HttpBindNever attribute, which prevents Web API from assigning a value to a property from
the request. This ensures I don’t get unexpected or undesired behavior by accepting request values for properties that
I need to set in the application. The best example is the Order.TotalPrice property: I don’t want the client to be able
to set the total price of the order because it won’t take long for an ambitious customer to create an order for all of the
SportsStore products in stock and pay only a dollar for them.

Preventing Formatting Loops
There is a circular reference in the relationship between the Order and OrderLine classes: an Order has a collection
of OrderLine objects, each of which contains a reference back to the Order. This is a problem for the standard
serialization process, which will report an error when it finds such a loop. To prevent this from being a problem,
I need to change the behavior of the class responsible for serializing objects into JSON so that it simply ignores
circular references, rather than throws an error. Listing 6-16 shows the configuration statement that I added to the
WebApiConfig.cs file.

Listing 6-16. Disabling Errors for Circular References in the WebApiConfig.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using SportsStore.Infrastructure;

namespace SportsStore {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "OrdersRoute",
 routeTemplate: "nonrest/{controller}/{action}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

127

 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Formatters.Remove(config.Formatters.XmlFormatter);
 config.DependencyResolver = new CustomResolver();

 GlobalConfiguration.Configuration.Formatters.JsonFormatter
 .SerializerSettings.ReferenceLoopHandling =
 Newtonsoft.Json.ReferenceLoopHandling.Ignore;
 }
 }
}

JSON serialization is handled by the Json.NET package, and this statement that I added to the WebApiConfig.cs
file sets a configuration property defined by that code. I explain some of the other configuration options that Json.Net
provides for serialization in Chapter 13.

Defining the Web API Controller
The final step is to define the controller itself. I added a class file called OrdersController.cs to the Controllers
folder and used it to define the class shown in Listing 6-17.

Listing 6-17. The Contents of the OrdersController.cs File

using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using System.Web.Http;
using SportsStore.Models;

namespace SportsStore.Controllers {
 public class OrdersController : ApiController {

 public OrdersController() {
 Repository = (IRepository)GlobalConfiguration.Configuration
 .DependencyResolver.GetService(typeof(IRepository));
 }

 [HttpGet]
 [Authorize(Roles="Administrators")]
 public IEnumerable<Order> List() {
 return Repository.Orders;
 }

 [HttpPost]
 public async Task<IHttpActionResult> CreateOrder(Order order) {
 if (ModelState.IsValid) {

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

128

 IDictionary<int, Product> products = Repository.Products
 .Where(p => order.Lines.Select(ol => ol.ProductId)
 .Any(id => id == p.Id)).ToDictionary(p => p.Id);

 order.TotalCost = order.Lines.Sum(ol =>
 ol.Count * products[ol.ProductId].Price);

 await Repository.SaveOrderAsync(order);
 return Ok();
 } else {
 return BadRequest(ModelState);
 }
 }

 [HttpDelete]
 [Authorize(Roles = "Administrators")]
 public async Task DeleteOrder(int id) {
 await Repository.DeleteOrderAsync(id);
 }

 private IRepository Repository { get; set; }
 }
}

The Orders controller defines three action methods: List, CreateOrder, and DeleteOrder. These names don’t
provide Web API with information about which HTTP verbs each will accept, so I have to apply attributes to specify
them. In the listing, I have used the HttpGet, HttpPost, and HttpDelete attributes, but Web API provides a wider
range of verb attributes, as I describe in Chapter 22.

The only other point of note for this controller is the LINQ that I use to set the Order.TotalPrice property in the
CreateOrder action method. I applied the HttpBindNever attribute to this property in Listing 6-15, which means that
no value will be taken from the request when the Order parameter for the action method is created. That means I am
responsible for determining the value of the order, which I have done using two LINQ statements.

Completing the Product Controller
Before moving on, I need to make a final change to the Product controller, which is to apply the Authorize attribute
to the PostProduct action method. I didn’t do this earlier because I wanted to demonstrate how to apply model
validation without needing to deal with the authentication process. Now that all of the web service features are in
place, I can apply the Authorize attribute so that only users assigned to the Administrators role are able to create or
modify products, as shown in Listing 6-18.

Listing 6-18. Applying Authorization to the PostProduct Action in the ProductsController.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;
using SportsStore.Models;
using System.Threading.Tasks;

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTer 6 ■ SPorTSSTore: A reSTful APPlICATIon

129

namespace SportsStore.Controllers {

 public class ProductsController : ApiController {

 public ProductsController() {
 Repository = (IRepository)GlobalConfiguration.Configuration.
 DependencyResolver.GetService(typeof(IRepository));
 }

 public IEnumerable<Product> GetProducts() {
 return Repository.Products;
 }

 public IHttpActionResult GetProduct(int id) {
 Product result = Repository.Products.Where(p => p.Id == id).FirstOrDefault();
 return result == null
 ? (IHttpActionResult)BadRequest("No Product Found") : Ok(result);
 }

 [Authorize(Roles = "Administrators")]
 public async Task<IHttpActionResult> PostProduct(Product product) {
 if (ModelState.IsValid) {
 await Repository.SaveProductAsync(product);
 return Ok();
 } else {
 return BadRequest(ModelState);
 }
 }

 [Authorize(Roles = "Administrators")]
 public async Task DeleteProduct(int id) {
 await Repository.DeleteProductAsync(id);
 }

 private IRepository Repository { get; set; }
 }
}

Summary
In this chapter, I created the two Web API controllers that define the HTTP web services for the SportsStore
application. I started with a simple RESTful controller that services requests for Product objects and gradually added
layers of functionality, such as authentication, data validation, and dependency injection. I finished the chapter by
showing you how to create a non-RESTful controller, which I will use to service requests for Order objects. In the next
chapter, I create the single-page applications that deliver the SportsStore application to customers and administrators.

www.it-ebooks.info

http://www.it-ebooks.info/

131

Chapter 7

SportsStore: Creating the Clients

In this chapter, I will create a pair of single-page applications that deliver the functionality of the web services I created
in Chapter 6 to clients and to administrators. I will build a common foundation of JavaScript code and then layer on
the functionality that is specific to each client.

Client-side development isn’t part of the Web API world, but I wanted to show you the end-to-end development
process for the SportsStore application. As a consequence, I cover a lot of ground in this chapter and don’t explain
the implementation of all of the JavaScript functions I define, but I do include enough information for you to see the
overall structure and layering I use to target the Web API action methods from Chapter 6.

Tip ■ There are a lot of files in this chapter. If you don’t want to type in all of the code and HTML, you can download the
project for this chapter—and all chapters of this book—from Apress.com.

Preparing the Example Project
Before I get into the process of creating the clients, I need to make some general preparations. The first is the addition
of an MVC controller that I can use to deliver HTML and JavaScript content to the browser. Listing 7-1 shows the
contents of the HomeController.cs class file, which I added to the Controllers folder.

Listing 7-1. The Contents of the HomeController.cs File

using System.Web.Mvc;

namespace SportsStore.Controllers {
 public class HomeController : Controller {

 public ActionResult Index() {
 return View();
 }
 }
}

For my initial development, I created a placeholder view by creating the Views/Home folder, adding a view file
called Index.cshtml, and using it to define the markup shown in Listing 7-2.

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

132

Listing 7-2. The Contents of the Index.cshtml File

<h2>Client Content Will Go Here</h2>

I will use the controller and view to test the lower-level functionality that I begin development with in this chapter
and then use them deliver the customer client as the application becomes fully formed.

Setting Up JavaScript IntelliSense
I am going to be writing JavaScript code in this chapter, and I find it easier to do so using Visual Studio IntelliSense,
which is the feature responsible for providing autocompletion of class, method, and property names in C# files.
IntelliSense will also work with JavaScript, but it needs a little help through the creation of a filed called _references.js
in the Scripts folder. I created the _references.js file by right-clicking the Scripts folder and selecting Add ➤
JavaScript File from the pop-up menu. Once Visual Studio created the file, I dragged the JavaScript files I will be
depending on from the Solution Explorer and dropped them on the editor window for the _references.js file,
producing the result shown in Listing 7-3.

Listing 7-3. The Contents of the _references.js File

/// <reference path="jquery-2.1.0.js" />
/// <reference path="bootstrap.js" />
/// <reference path="knockout-3.1.0.js" />
/// <reference path="storeAjax.js" />
/// <reference path="storeCommonController.js" />
/// <reference path="storeOrdersController.js" />
/// <reference path="storeProductsController.js" />
/// <reference path="storeCustomerController.js" />
/// <reference path="storeCustomerModel.js" />
/// <reference path="storeAdminModel.js" />
/// <reference path="storeAdminController.js" />

The first three entries are for the JavaScript files from the packages I installed in Chapter 5: jQuery, Bootstrap, and
Knockout. The remaining entries—all of which begin with store—are the names of the JavaScript files I will create in
this chapter for the SportsStore application.

Updating the Layout
I also need to update the Views/Shared/_Layout.cshtml file so that it contains script elements that reference the
JavaScript files that I create in this chapter. Listing 7-4 shows the additions that I made to the layout.

Listing 7-4. Adding script Elements to the _Layout.cshtml File

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <script src="~/Scripts/jquery-2.1.0.min.js"></script>
 <script src="~/Scripts/knockout-3.1.0.js"></script>
 <link href="~/Content/bootstrap.css" rel="stylesheet" />
 <link href="~/Content/bootstrap-theme.css" rel="stylesheet" />
 <script src="~/Scripts/storeAjax.js"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

133

 <script src="~/Scripts/storeModel.js"></script>
 <script src="~/Scripts/storeCommonController.js"></script>
 <script src="~/Scripts/storeProductsController.js"></script>
 <script src="~/Scripts/storeOrdersController.js"></script>
 <title>SportsStore</title>
 <style>
 body { padding-top: 10px; }
 </style>
 @RenderSection("Scripts", false)
</head>
<body class="container">
 @RenderBody()
</body>
</html>

The order of these script elements is important and reflects the order in which they depend upon one another.

Tip ■ In a real project, I would generally use fewer files or concatenate the files using the MVC bundles feature, but for
this chapter I want to make the structure and nature of the JavaScript code as clear as possible.

Implementing the Common Code
Even though I am creating clients for two different types of user, they will be accessing the same pair of web services
that I created in Chapter 6. That means there is a core of common code that I can write once and use for both clients,
which will make the SportsStore code base smaller and easier to maintain.

I will loosely follow the same structure in the client as I have done for the Web API part of the application; there
will be a model that contains the application data and controllers that update that model based on user interactions.
These updates will be performed using Ajax requests sent to the Web API web services. JavaScript doesn’t provide the
same programming experience as C#, so there will be some differences, but understanding the general shape of what
I am writing will help you preserve a sense of context.

Defining the Ajax Layer
I like to start by creating a JavaScript file that contains the code that will make Ajax calls on behalf of other parts of the
application so that I don’t have to duplicate the code that deals with the web service. I created a JavaScript file called
storeAjax.js in the Scripts folder and used it to define the code shown in Listing 7-5.

Listing 7-5. The Contents of the storeAjax.js File

var sendRequest = function (url, verb, data, successCallback, errorCallback, options) {

 var requestOptions = options || {};
 requestOptions.type = verb;
 requestOptions.success = successCallback;
 requestOptions.error = errorCallback;

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

134

 if (!url || !verb) {
 errorCallback(401, "URL and HTTP verb required");
 }

 if (data) {
 requestOptions.data = data;
 }
 $.ajax(url, requestOptions);
}

var setDefaultCallbacks = function (successCallback, errorCallback) {
 $.ajaxSetup({
 complete: function (jqXHR, status) {
 if (jqXHR.status >= 200 && jqXHR.status < 300) {
 successCallback(jqXHR.responseJSON);
 } else {
 errorCallback(jqXHR.status, jqXHR.statusText);
 }
 }
 });
}

var setAjaxHeaders = function (requestHeaders) {
 $.ajaxSetup({ headers: requestHeaders });
}

The most important function is sendRequest, which the other parts of the client-side application will call to send
Ajax requests to the web services I defined in Chapter 6. Table 7-1 lists the parameters defined by the sendRequest
function and explains their use.

Table 7-1. The Parameters for the sendRequest Function

Name Description

url This property specifies the URL that the request will be sent to.

verb This property specifies the HTTP verb for the request.

data This property specifies the data for the request, which will be sent to the web service as a
query string for GET requests and in the request body for other verbs.

successCallback This property specifies a callback function that will be invoked if the Ajax request is successful
and passed the data from the response.

errorCallback This property specifies a callback function that will be invoked if the Ajax request is
unsuccessful and passed the status code and explanatory text.

options This property is used to set jQuery options for a single Ajax request.

The only parameters that must be set are url and verb. If either is missing, then the error callback function is
invoked to report a problem.

The setAjaxHeaders function sets headers for all subsequent Ajax requests by calling the jQuery $.ajaxSetup
method. I’ll use this feature to set the header required for authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

135

The setDefaultCallbacks function allows success and error callbacks to be registered so they will be
invoked for all requests, which I’ll use to control when errors are displayed to the user. This approach allows me to
define controller-like functionality that has request-specific callbacks and still update the model, which I define in
the next section.

Defining the Model
The next step is to define the client-side model, which I will use to store the product and order data and keep track of
the client application state. I created a file called storeModel.js in the Scripts folder and added to it the JavaScript
shown in Listing 7-6.

Listing 7-6. The Contents of the storeModel.js File

var model = {
 products: ko.observableArray([]),
 orders: ko.observableArray([]),
 authenticated: ko.observable(false),
 username: ko.observable(null),
 password: ko.observable(null),
 error: ko.observable(""),
 gotError: ko.observable(false)
};

$(document).ready(function () {
 ko.applyBindings();
 setDefaultCallbacks(function (data) {
 if (data) {
 console.log("---Begin Success---");
 console.log(JSON.stringify(data));
 console.log("---End Success---");
 } else {
 console.log("Success (no data)");
 }
 model.gotError(false);
 },
 function (statusCode, statusText) {
 console.log("Error: " + statusCode + " (" + statusText + ")");
 model.error(statusCode + " (" + statusText + ")");
 model.gotError(true);
 });
});

The model object defines a set of properties, each of which I have described in Table 7-2. I have also defined a
handleError function that my client-side controllers will be able to call to handle failed Ajax calls, and I have used the
jQuery ready function—which I described in Chapter 2—to set up the Knockout data bindings, which I will start to
define in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

136

Defining the Authentication Controller
The first client-side controller that I am going to create will handle authentication. I added a file called
storeCommonController.js to the Scripts folder and added the code statements shown in Listing 7-7.

Listing 7-7. The Contents of the storeCommonController.js File

var authenticateUrl = "/authenticate"

var authenticate = function (successCallback) {
 sendRequest(authenticateUrl, "POST", {
 "grant_type": "password", username: model.username(), password: model.password()
 }, function (data) {
 model.authenticated(true);
 setAjaxHeaders({
 Authorization: "bearer " + data.access_token
 });
 if (successCallback) {
 successCallback();
 }
 });
};

Tip ■ This isn’t really a controller in the Web apI or MVC framework sense of that word, but it helps to add structure to
the client-side part of the application and ensure that functionality is concentrated in a single place, rather than repeated
in different files.

This file defines a function called authenticate, which sends an Ajax request to the /authenticate URL that
is maintained by ASP.NET Identity. The function includes the username and password values from the data model,
and if the request is successful, it sets the Authorization header for subsequent requests to the access_token value
generated by the web service.

Table 7-2. The Client-Side Model Properties

Name Description

products This property is an observable array that will be used to store the product objects obtained from
the server.

orders This property is an observable array that will be used to store the order objects obtained from the server.

authenticated This property will be set to true when a successful authentication request has been performed
and will be false otherwise.

username This property will be set to the username entered by the user.

password This property will be set to the password entered by the user.

error This property is set to the error string that will be displayed to the user when an Ajax request fails.

gotError This property is set to true when a request fails and false when a request succeeds. I will use this
property to decide when to display error messages to the user.

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

137

Testing Authentication
To test the client-side authentication, I added some JavaScript code and HTML markup to the Index view to display
the current authentication status and to send an authentication request, as shown in Listing 7-8.

Listing 7-8. Adding Support for Testing Authentication to the Index.cshtml File

<script>
 var testAuth = function () {
 model.username('Admin');
 model.password('secret');
 authenticate();
 }
</script>

<div class="panel panel-primary">
 <div class="panel-heading">Authentication</div>
 <table class="table table-striped">
 <tr><td>Authenticated:</td><td data-bind="text: model.authenticated()"></td></tr>
 <tr><td>User:</td><td data-bind="text: model.username()"></td></tr>
 <tr><td colspan="2"><button
 data-bind="click: testAuth">Authenticate</button></td></tr>
 </table>
</div>

The HTML markup is based around a Bootstrap-styled table with rows that contain Knockout data bindings
to the authenticated and username model properties. I added an Authenticate button with a binding that calls the
testAuth function defined in the script element when it is clicked. The testAuth function sets the model username
and password properties to Admin and secret (which are the database seed values that I defined in Chapter 5) and
calls the authenticate function that I defined in Listing 7-7.

To test the support for authentication, start the application and use the browser to navigate to the /Home/Index
URL. The initial content will show no username and report that the client has not been authenticated. Click the
Authenticate button; an Ajax request will be sent to the web service, and the client will be authenticated, causing the
layout to be updated through the data bindings, as shown in Figure 7-1.

Figure 7-1. Testing client authentication

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

138

The first authentication request after you start the application will take a couple of seconds because the database
will be initialized. This means the username will be displayed immediately because it is set locally in the client but
that the Authenticated status will not change to true for a moment. To get a more realistic result, reload the web page
in the browser and click the Authenticate button again.

Note ■ reloading the web page in the browser means that the client loses the authentication token required to
authorize requests. This is a side effect of using the Authorization header, which makes it easier to build and test
client-side code but requires authentication each time the page is loaded.

Defining the Products Controller
The next step is to create the client-side code that will send Ajax requests to get and manipulate products. Listing 7-9
shows the content of the storeProductsController.js file, which I added to the Scripts folder.

Listing 7-9. The Contents of the storeProductsController.js File

var productUrl = "/api/products/";

var getProducts = function () {
 sendRequest(productUrl, "GET", null, function (data) {
 model.products.removeAll();
 model.products.push.apply(model.products, data);
 })
};

var deleteProduct = function (id) {
 sendRequest(productUrl + id, "DELETE", null, function () {
 model.products.remove(function (item) {
 return item.Id == id;
 })
 });
}

var saveProduct = function (product, successCallback) {
 sendRequest(productUrl, "POST", product, function () {
 getProducts();
 if (successCallback) {
 successCallback();
 }
 });
}

The code consists of three functions, getProducts, deleteProduct, and saveProduct, each of which sends an
Ajax call to the corresponding call to the server-side Products controller. Note that these functions exist solely to map
server-side data to and from the client-side model.

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

139

Testing the Products Controllers
To test the client-side product code, I added some additional HTML and JavaScript to the Index.cshtml file. In
addition to adding code that calls the functions defined in Listing 7-9, I have added support for displaying details of
the HTTP error message when Ajax requests fail, as shown in Listing 7-10.

Listing 7-10. Adding Markup and JavaScript to the Index.cshtml File

<script>

 var testAuth = function () {
 model.username('Admin');
 model.password('secret');
 authenticate();
 }

 var testDeleteProduct = function () {
 deleteProduct(2);
 }

 var testChangeProduct = function () {
 var product = model.products()[2];
 product.Price = product.Price + 10;
 saveProduct(product);
 }

</script>

<div class="alert alert-danger" data-bind="visible: model.gotError(), text: model.error()">
</div>

<div class="panel panel-primary">
 <div class="panel-heading">Authentication</div>
 <table class="table table-striped">
 <tr><td>Authenticated:</td><td data-bind="text: model.authenticated()"></td></tr>
 <tr><td>User:</td><td data-bind="text: model.username()"></td></tr>
 <tr><td colspan="2"><button
 data-bind="click: testAuth">Authenticate</button></td></tr>
 </table>
</div>

<div class="panel panel-primary">
 <div class="panel-heading">Product Controller Functions</div>
 <table class="table table-striped">
 <tr>
 <td><button data-bind="click: getProducts">Get Products</button></td>
 <td><button data-bind="click: testDeleteProduct">Delete Product</button></td>
 <td><button data-bind="click: testChangeProduct">Change Product</button></td>
 </tr>
 </table>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

140

Tip ■ You should not show HTTp messages to real users, but since this is a book about web services, I am going to
display the low-level messages.

I have added three buttons with Knockout data bindings to the view. The Get Products button invokes the
getProducts controller function when it is clicked, but the Delete Product and Change Product buttons call functions
defined in the script element so that I can control the arguments passed to the corresponding controller functions.

To test the new functionality, start the application and use the browser to navigate to the /Home/Index URL. The
debug output from the JavaScript code will be writing to the JavaScript console, so you will need to open the browser
F12 tools to see the messages.

Click the Get Products button, and you will see a JavaScript console message that lists the Product objects
contained in the database, formatted as JSON, like this:

---Begin Success--- storeModel.js:16
[{"Id":1,"Name":"Kayak","Description":"A boat for one person","Price":275,
 "Category":"Watersports"},
 {"Id":2,"Name":"Lifejacket","Description":"Protective and fashionable",
 "Price":48.95,"Category":"Watersports"},
 {"Id":3,"Name":"Soccer Ball","Description":"FIFA-approved size and weight",
 "Price":19.5,"Category":"Soccer"},
 {"Id":4,"Name":"Corner Flags",
 "Description":"Give your playing field a professional touch",
 "Price":34.95,"Category":"Soccer"},
 {"Id":5,"Name":"Stadium",
 "Description":"Flat-packed 35,000-seat stadium",
 "Price":79500,"Category":"Soccer"},
 {"Id":6,"Name":"Thinking Cap",
 "Description":"Improve your brain efficiency by 75%",
 "Price":16,"Category":"Chess"},
 {"Id":7,"Name":"Unsteady Chair",
 "Description":"Secretly give your opponent a disadvantage",
 "Price":29.95,"Category":"Chess"},
 {"Id":8,"Name":"Human Chess Board",
 "Description":"A fun game for the family",
 "Price":75,"Category":"Chess"},
 {"Id":9,"Name":"Bling-Bling King",
 "Description":"Gold-plated, diamond-studded King",
 "Price":1200,"Category":"Chess"}]
---End Success---

This is the same product list you have been seeing since Chapter 5, and the key point to note is that all of the

products that I defined in the database seed class are present.
Next, click the Delete Product button. This button sends a request that targets an action method to which the

Authorize attribute was applied in Chapter 6. As a consequence, a 401 (Unauthorized) response is returned. This
triggers my error handling code and reveals the error element I added to the Index.cshtml file, as shown in Figure 7-2.

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

141

Click the Authenticate button and then, once the Authenticated status is shown as true, click the Delete Product
button again. The JavaScript console will show the following message:

Success (no data)

To see the effect of the operation, click the Get Products button and look at the Id numbers of the objects that are

described, as follows:

---Begin Success---
[{"Id":1,"Name":"Kayak","Description":"A boat..."},
 {"Id":3,"Name":"Soccer Ball","Description":"FIFA-approved..."},
 {"Id":4,"Name":"Corner Flags","Description":"Give your ..."},
 {"Id":5,"Name":"Stadium","Description":"Flat-packed..."},
 {"Id":6,"Name":"Thinking Cap","Description":"Improve ..."},
 {"Id":7,"Name":"Unsteady Chair","Description":"Secretly..."},
 {"Id":8,"Name":"Human Chess Board","Description":"A fun..."},
 {"Id":9,"Name":"Bling-Bling King","Description":"Gold-plated…"}]
---End Success---

As the highlighted statements show, the Product with the Id value of 2 has been removed.
The final test is to click the Change Product button. The client-side controller function reloads the product data

when it completes, and you will see that the Price property of the product as index 2 (which will be the Corner Flags if
you have followed along and deleted a product) will be incremented by $10.

Figure 7-2. Displaying an HTTP error

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

142

Defining the Orders Controller
The final controller is to provide access to the orders. I added a file called storeOrdersController.js to the Scripts
folder and used it to define the functions shown in Listing 7-11.

Listing 7-11. The Contents of the storeOrdersController.js File

var ordersUrl = "/nonrest/orders";
var ordersListUrl = ordersUrl + "/list";
var ordersCreateUrl = ordersUrl + "/createorder/";
var ordersDeleteUrl = ordersUrl + "/deleteorder/";

var getOrders = function () {
 sendRequest(ordersListUrl, "GET", null, function (data) {
 model.orders.removeAll();
 model.orders.push.apply(model.orders, data);
 });
}

var saveOrder = function (order, successCallback) {
 sendRequest(ordersCreateUrl, "POST", order, function () {
 if (successCallback) {
 successCallback();
 }
 });
}

var deleteOrder = function (id) {
 sendRequest(ordersDeleteUrl + id, "DELETE", null, function () {
 model.orders.remove(function (item) {
 return item.Id == id;
 })
 });
}

The getOrders, saveOrder, and deleteOrder functions target their server-side counterparts. The server-side
Web API controller for Orders objects is non-RESTful, which is why I have had to define URLs for each of the different
operations.

Testing the Orders Controller
Following the same approach as for the other client-side controllers, I added some new HTML and JavaScript code to
the Index.cshtml file, as shown in Listing 7-12.

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

143

Listing 7-12. Adding Support for Testing Orders in the Index.cshtml File

<script>

 var testAuth = function () {
 model.username('Admin');
 model.password('secret');
 authenticate();
 }

 var testDeleteProduct = function () {
 deleteProduct(2);
 }

 var testChangeProduct = function () {
 var product = model.products()[2];
 product.Price = product.Price + 10;
 saveProduct(product);
 }

 var testDeleteOrder = function () {
 deleteOrder(1);
 }

 var testSaveOrder = function () {
 var order = model.orders()[0];
 order.TotalPrice = order.TotalPrice + 10;
 saveOrder(order);
 }

</script>

<div class="alert alert-danger"
 data-bind="visible: model.gotError(), text: model.error()">
</div>

<div class="panel panel-primary">
 <div class="panel-heading">Authentication</div>
 <table class="table table-striped">
 <tr><td>Authenticated:</td><td data-bind="text: model.authenticated()"></td></tr>
 <tr><td>User:</td><td data-bind="text: model.username()"></td></tr>
 <tr><td colspan="2"><button
 data-bind="click: testAuth">Authenticate</button></td></tr>
 </table>
</div>

<div class="panel panel-primary">
 <div class="panel-heading">Product Controller Functions</div>
 <table class="table table-striped">
 <tr>
 <td><button data-bind="click: getProducts">Get Products</button></td>
 <td><button data-bind="click: testDeleteProduct">Delete Product</button></td>
 <td><button data-bind="click: testChangeProduct">Change Product</button></td>
 </tr>
 </table>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

144

<div class="panel panel-primary">
 <div class="panel-heading">Order Controller Functions</div>
 <table class="table table-striped">
 <tr>
 <td><button data-bind="click: getOrders">Get Orders</button></td>
 <td><button data-bind="click: testDeleteOrder">Delete Order</button></td>
 <td><button data-bind="click: testSaveOrder">Save Order</button></td>
 </tr>
 </table>
</div>

There are three order-related buttons. The Get Orders button calls the controller getOrders function directly,
and the Delete Order and Save Order buttons call functions that I added to the local script element. Figure 7-3 shows
the additions.

Figure 7-3. Adding order test support

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

145

The action methods targeted by the Get Orders and Delete Order buttons require authentication, so click the
Authenticate button and wait a moment for the authentication state to change. Click the Get Orders button, and the
JavaScript console will display a list of the orders obtained from the web service. Click the Delete Order to remove
one of the orders and then click Get Orders again to see the effect. Finally, click Save Order to add a new order to the
repository.

Creating the Customer Client
Now that I have a solid foundation of client-side controller and Ajax functions, I can begin to build the client that will
present the SportsStore application to clients. In the sections that follow, I will create the JavaScript code and MVC
framework views required to allow the user to select and order products.

Note ■ I am not going to add all the SportsStore features from the version I create in Pro ASP.NET MVC 5 because
I want to demonstrate how to consume the Web apI web services that I created in Chapter 6 without spending too much
time dealing with the fit-and-finish of the client application. The main features are present, but I have omitted lesser
features that are not directly related to web services, such as paginating the list of products, performing client-side
validation, and displaying useful error messages—none of which requires interactions with the web service.

Creating the Customer Model
I have created a separate model that contains just the data and state required to manage the customer client, which
allows me to keep it separate from the common model that contains the raw product data. Listing 7-13 shows the
contents of the storeCustomerModel.js file, which I added to the Scripts folder.

Listing 7-13. The Contents of the storeCustomerModel.js File

var customerModel = {
 productCategories: ko.observableArray([]),
 filteredProducts: ko.observableArray([]),
 selectedCategory: ko.observable(null),
 cart: ko.observableArray([]),
 cartTotal: ko.observable(0),
 cartCount: ko.observable(0),
 currentView: ko.observable("list")
}

All of the model properties that I define are observable, and you will see that I rely on the automatic updates that
Knockout provides to keep the client interface synchronized with the underlying data. To help you keep track of what
goes on in the custom client, Table 7-3 describes the purpose of each of the model properties.

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

146

Creating the Customer Controller
I added a file called storeCustomerController.js to the Scripts folder and used it to define the functions that will
support the views that present functionality to the customer and operation on the application models—both the
common model and the one that is specific to the customer client. Listing 7-14 shows the functions that I defined.
This is a lengthy file, and much of the code is responsible for sorting and filtering the common model objects that
represent the SportsStore products so they can be presented to the user.

Listing 7-14. The Contents of the storeCustomerController.js File

var setCategory = function (category) {
 customerModel.selectedCategory(category);
 filterProductsByCategory();
}

var setView = function (view) {
 customerModel.currentView(view);
}

var addToCart = function (product) {
 var found = false;
 var cart = customerModel.cart();
 for (var i = 0; i < cart.length; i++) {
 if (cart[i].product.Id == product.Id) {
 found = true;
 count = cart[i].count + 1;
 customerModel.cart.splice(i, 1);
 customerModel.cart.push({
 count: count,
 product: product
 });
 break;
 }
 }

Table 7-3. The Customer Client Model Properties

Name Description

productCategories This property is an array of the product category names, which I use to allow the customer
to filter products so that only those in a given category are shown.

filteredProducts This property contains the set of products that belong to the currently selected category.

selectedCategory This property specifies the currently selected category and is used to filter the products
shown to the customer through the filteredProducts property.

cart This property represents the customer’s shopping cart and contains details of the products
they have selected and the quantity of each.

cartTotal This property specifies the total value of the products in the cart.

cartCount This property specifies the number of products in the cart.

currentView This property specifies which view the custom should be shown.

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

147

 if (!found) {
 customerModel.cart.push({ count: 1, product: product });
 }

 setView("cart");
}

var removeFromCart = function (productSelection) {
 customerModel.cart.remove(productSelection);
}

var placeOrder = function () {
 var order = {
 Customer: model.username(),
 Lines: customerModel.cart().map(function (item) {
 return {
 Count: item.count,
 ProductId: item.product.Id
 }
 })
 };

 saveOrder(order, function () {
 setView("thankyou");
 });
}

model.products.subscribe(function (newProducts) {

 filterProductsByCategory();

 customerModel.productCategories.removeAll();
 customerModel.productCategories.push.apply(customerModel.productCategories,
 model.products().map(function (p) {
 return p.Category;
 })
 .filter(function (value, index, self) {
 return self.indexOf(value) === index;
 }).sort());
});

customerModel.cart.subscribe(function (newCart) {

 customerModel.cartTotal(newCart.reduce(
 function (prev, item) {
 return prev + (item.count * item.product.Price);
 }, 0));

 customerModel.cartCount(newCart.reduce(
 function (prev, item) {
 return prev + item.count;
 }, 0));
});

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

148

var filterProductsByCategory = function () {
 var category = customerModel.selectedCategory();

 customerModel.filteredProducts.removeAll();
 customerModel.filteredProducts.push.apply(customerModel.filteredProducts,
 model.products().filter(function (p) {
 return category == null || p.Category == category;
 }));
}

$(document).ready(function () {
 getProducts();
})

Not all of the code is made up of functions for views to call; I have also used the Knockout subscribe function to
define functions that are called automatically when there are changes to observable data items, like this:

...
model.products.subscribe(function (newProducts) {

 filterProductsByCategory();

 customerModel.productCategories.removeAll();
 customerModel.productCategories.push.apply(customerModel.productCategories,
 model.products().map(function (p) {
 return p.Category;
 })
 .filter(function (value, index, self) {
 return self.indexOf(value) === index;
 }).sort());
});
...

This fragment registers a function to be called when the model.products array changes. The function filters the
products so that only those in the category that the user is viewing are displayed. It also generates the set of product
categories, which is what allows the user to perform the filtering. The effect is that a change in the model.products
array automatically updates the customer model, which will, in turn, cause the Knockout data bindings I will apply in
the views to update as well.

The controller uses the jQuery ready function, which I described in Chapter 2, to load the product data when the
browser has loaded and processed the HTML and JavaScript files, as follows:

...
$(document).ready(function () {
 getProducts();
})
...

This means that there is no data available until the Ajax request that the getProduct function sends has completed.

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

149

Creating the Views
I am at the point where I need to create the views that will consume the data in the models and use the controller
functions to respond to user input. This is a departure from the Web API theme of this book, so I am going to describe
the contents of the files only briefly. In the sections that follow, I will create a series of MVC framework views that use
entirely standard Razor features in order to compose an HTML document that will respond dynamically to user input
and data changes.

Creating the Placeholders
I will use a set of MVC framework partial views to break the content into more manageable chunks. I want to be able
to demonstrate how the different features fit together as I go, so I have started by creating a set of placeholder view
files that I will revise once the structure of the application comes together. Table 7-4 lists the file names, all of which
I created in the Views/Home folder, and describes their purpose in the application.

Table 7-4. The Placeholder View Files for the Customer Client

Name Description

ProductList.cshtml This view is used to present the customer with a list of products that can be filtered by
category.

ProductCart.cshtml This view is used to present the user with a summary of the products they have selected.

Checkout.cshtml This view is used to present the customer with the (simple) checkout process.

CartWidget.cshtml This view is used to insert a small summary of the cart in the SportsStore header.

ThankYou.cshtml This view is displayed to the user when they have completed their order.

Listing 7-15 shows the initial contents of the ProductList.cshtml file.

Listing 7-15. The Contents of the ProductList.cshtml File

ProductList View

Listing 7-16 shows the initial contents of the ProductCart.cshtml file.

Listing 7-16. The Contents of the ProductCart.cshtml File

ProductCart View

Listing 7-17 shows the contents of the Checkout.cshtml file.

Listing 7-17. The Contents of the Checkout.cshtml File

Checkout View

Listing 7-18 shows the contents of the CartWidget.cshtml file. This placeholder requires the application of some
Bootstrap styles because it will be displayed in the banner at the top of the page and would not be visible without them.

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

150

Listing 7-18. The Contents of the CartWidget.cshtml File

<div class="navbar-text navbar-right">
 CartWidget View
</div>

The ThankYou.cshtml file is so simple that it doesn’t require a placeholder, and Listing 7-19 shows the final
content of the file.

Listing 7-19. The Contents of the ThankYou.cshtml File

<h2>Thanks!</h2>
Thanks for placing your order. We'll ship your goods as soon as possible.

With the exception of the ThankYou.cshtml file, I’ll revise the contents and show you the effect as I add
each feature.

Creating the Index View
The Views/Home/Index.cshtml file is the top-level view for the customer client. I used this view earlier in the chapter
to test the common JavaScript code, but in Listing 7-20 you can see how I have changed the contents to provide the
framework in which content will be added so that it can be displayed to the user.

Listing 7-20. The Contents of the Index.cshtml File

@section Scripts {
 <script src="~/Scripts/storeCustomerModel.js"></script>
 <script src="~/Scripts/storeCustomerController.js"></script>
}

<div class="navbar navbar-inverse" role="navigation">
 SPORTS STORE
 @Html.Partial("CartWidget");
</div>

<div id="categories" class="col-xs-3">
 <button class="btn btn-block btn-default btn-lg"
 data-bind="click: setCategory.bind(null)">
 Home
 </button>
 <div data-bind="foreach: customerModel.productCategories()">
 <button class="btn btn-block btn-default btn-lg"
 data-bind="click: setCategory.bind($data), text: $data,
 css: {'btn-primary': $data ==
 customerModel.selectedCategory()}"></button>
 </div>
</div>

<div class="alert alert-danger col-xs-8"
 data-bind="visible: model.gotError(), text: model.error()">
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

151

<div class="col-xs-8">
 <div class="row panel" data-bind="visible: customerModel.currentView() == 'list'">
 @Html.Partial("ProductList")
 </div>
 <div class="row panel"
 data-bind="visible: customerModel.currentView() == 'cart'">
 @Html.Partial("ProductCart")
 </div>
 <div class="row panel"
 data-bind="visible: customerModel.currentView() == 'checkout'">
 @Html.Partial("Checkout")
 </div>
 <div class="row panel"
 data-bind="visible: customerModel.currentView() == 'thankyou'">
 @Html.Partial("ThankYou")
 </div>
</div>

I have added script elements for the customer model and controller files and defined a banner across the page
to identify the application. In addition, I have defined a set of category buttons (which is populated based on the
categories generated by the customer controller), an alert box to display any errors, and the main content area, which
uses Knockout bindings to determine which Razor partial view is displayed to the client.

You can see the initial structure of the layout by starting the application and using the browser to navigate to the
 /Home/Index URL. As Figure 7-4 shows, there are buttons for each of the categories of product in the repository, and
the placeholders for the CartWidget and ProductList views are visible.

Figure 7-4. The initial structure of the customer client

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

152

Creating the Product List View
The most important content to present to the customer is a list of the products they can add to their basket, which is
the job of the ProductList view. Listing 7-21 shows the markup I added to the view to describe each product.

Listing 7-21. Adding Markup to the ProductList.cshtml File

<div data-bind="foreach: customerModel.filteredProducts()">
 <div class="well">
 <h3>
 <strong data-bind="text: $data.Name">
 <span class="pull-right label label-primary"
 data-bind="text: ('$' + $data.Price.toFixed(2))">
 </h3>

 <div class="pull-right">
 <button class="btn btn-success"
 data-bind="click: addToCart">Add to Cart</button>
 </div>
 </div>
</div>

I use a Knockout foreach binding to generate a div element for each of the products in the currently selected
category. Each product is displayed with its name, description, and price, as well as an Add to Cart button that calls
the addToCart function in the customer controller, which adds details of the product to the customer’s cart. Figure 7-5
shows the effect of the changes in the listing.

Figure 7-5. Adding details of the products

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

153

You can filter the products shown in the list by clicking one of the category buttons; you can show all of the
products again by clicking the Home button.

Creating the Cart View
When the customer clicks an Add to Cart button, the ProductCart view is displayed to summarize the set of chosen
products and their cost. Listing 7-22 shows the changes I made to the ProductCart.cshtml file to display this
information.

Listing 7-22. Displaying Product Selections in the ProductCart.cshtml File

<h2>Your Cart</h2>

<div class="panel panel-primary">
 <table class="table">
 <thead>
 <tr>
 <th>Quantity</th><th>Item</th>
 <th>Price</th><th class="text-right">Subtotal</th>
 <td></td>
 </tr>
 </thead>
 <tbody data-bind="foreach: customerModel.cart()">
 <tr>
 <td data-bind="text: $data.count"></td>
 <td data-bind="text: $data.product.Name"></td>
 <td data-bind="text: '$' + $data.product.Price.toFixed(2)"></td>
 <td class="text-right"
 data-bind="text: '$'
 + ($data.count * $data.product.Price).toFixed(2)"></td>
 <td><button class="btn btn-xs btn-danger"
 data-bind="click: removeFromCart.bind($data)">Remove</button></td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <td colspan="2"></td><td>Total:</td>
 <th class="text-right"
 data-bind="text: '$' + customerModel.cartTotal().toFixed(2)"></th>
 </tr>
 </tfoot>
 </table>
</div>

<div class="text-center">
 <button class="btn btn-primary"
 data-bind="click: setView.bind($data, 'list')">Continue Shopping</button>
 <button class="btn btn-primary"
 data-bind="click: setView.bind($data, 'checkout'),
 enable: customerModel.cartCount() > 0">Check Out</button>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

154

Tip ■ I have not included support for varying the quantity of a product in the cart, but you can return to the product list
and select a product repeatedly to increase the quantity.

Creating the Cart Widget
The CartWidget view is responsible for displaying a summary of the customer’s product selections at the top
of the page, along with a button that begins the checkout process. Listing 7-23 shows the changes I made to the
CartWidget.cshtml file to define this functionality.

Listing 7-23. Displaying a Summary of the Cart in the CartWidget.cshtml File

<div class="navbar-right" style="margin: 0 10px">
 <button class="btn btn-default btn-xs navbar-btn"
 data-bind="click: setView.bind($data, 'checkout'),
 enable: customerModel.cartCount() > 0">
 Checkout
 </button>
</div>

The main part of the view is a table that lists the selected products, and there are buttons that use Knockout click
bindings to return the customer to the product list and proceed to the checkout stage. Figure 7-6 shows the cart once
some products have been selected.

Figure 7-6. Displaying a summary of the cart

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

155

Figure 7-7. Summarizing the cart

<div class="navbar-text navbar-right">
 Your cart:
 item(s),

</div>

This view displays data values from the model and provides a button that moves to the checkout view. The button
is disabled if there are no items in the cart. Figure 7-7 shows the cart widget.

Creating the Checkout View
The final view to create is the one that lets the client check out and place their order. Listing 7-24 shows the changes
that I made to the Checkout.cshtml file.

Listing 7-24. Placing an Order in the Checkout.cshtml File

<h2>Your Order</h2>

<div class="form-group">
 <label>Enter your name</label>
 <input class="form-control" data-bind="value: model.username" />
</div>

<div class="panel panel-primary">
 <table class="table">
 <thead>
 <tr>
 <th>Quantity</th>
 <th>Item</th>
 <th>Price</th>
 <th class="text-right">Subtotal</th>
 </tr>
 </thead>
 <tbody data-bind="foreach: customerModel.cart()">

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

156

 <tr>
 <td data-bind="text: $data.count"></td>
 <td data-bind="text: $data.product.Name"></td>
 <td data-bind="text: '$' + $data.product.Price.toFixed(2)"></td>
 <td class="text-right"
 data-bind="text: '$'
 + ($data.count * $data.product.Price).toFixed(2)">
 </td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <td colspan="2"></td>
 <td>Total:</td>
 <th class="text-right"
 data-bind="text: '$' + customerModel.cartTotal().toFixed(2)"></th>
 </tr>
 </tfoot>
 </table>
</div>

<div class="text-center">
 <button class="btn btn-primary"
 data-bind="click: setView.bind($data, 'list')">Cancel</button>
 <button class="btn btn-danger"
 data-bind="click: placeOrder.bind($data)">Place Order</button>
</div>

I need only the customer’s name and a list of their products to be able to send an order to the web service
because I defined a simple Order model class in Chapter 5. In this view, I show an input element to collect the name
and display a summary of the cart, as shown in Figure 7-8.

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

157

If you click the Place Order button without entering a name, you will see the rudimentary error handling at
work, as illustrated by Figure 7-9. This is not a useful message for customers of most applications, but for this book it
demonstrates the way in which the web service has responded to a request.

Figure 7-8. Checking out

Figure 7-9. The result of server-side validation error

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

158

The web service sent the 400 (Bad Request) response because the data I sent to the web service failed the
validation tests for the Order object. If you use the browser F12 tools to examine the response, you will see that it
included the following data:

{"Message":"The request is invalid.",
 "ModelState": {
 "order.Customer":["The Customer field is required."]
 }
}

I explain how the model validation process works in Chapter 18 and how you can take control of the data sent
in error responses in Chapter 25. If you choose, you can use the data in the response to present a more meaningful
message to the user or—better still—apply client-side validation to ensure that the request isn’t sent unless the data
is valid. Client-side validation isn’t a replacement for validation in the web service, but using both together can help
improve the user experience and reduce the number of bad requests that your web services have to process.

Tip ■ There is a client-side validation library for Knockout available at https://github.com/Knockout-Contrib/
Knockout-Validation, and I describe the built-in MVC framework client-side validation in Pro ASP.NET MVC 5, which is
also published by apress.

If you enter a name into the input element and click the Place Order button again, the data sent to the web
service will pass validation, and the ThankYou.cshtml view will be displayed, as illustrated by Figure 7-10.

Figure 7-10. Successfully placing an order

www.it-ebooks.info

https://github.com/Knockout-Contrib/Knockout-Validation
https://github.com/Knockout-Contrib/Knockout-Validation
http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

159

Creating the Administration Client
The administration client is simpler than the one required for the customer. I build on the common code I created at
the start of the chapter to authenticate the user and provide support for viewing, creating, and deleting products and
viewing and deleting orders. In the following sections, I create the model, controller, and views required for the admin
client using the same approach I took for the customer client.

Tip ■ I am not going to create placeholders for the views for this client, which means that the administration client
will not work until you reach the “Testing the administration Client” section.

Creating the Admin Model
The admin client doesn’t need to filter data by category, which means it can work directly with the data in the
common model. The result is that the admin client model is small and simple. Listing 7-25 shows the contents of the
storeAdminModel.js file, which I added to the Scripts folder.

Listing 7-25. The Contents of the storeAdminModel.js File

var adminModel = {
 currentView: ko.observable("signin"),
 listMode: ko.observable("products"),
 newProduct: { name: ""}
}

The currentView property is used to control the top-level content displayed to the user, which will switch
between a sign-in screen and the administration display. The user can see the products or orders in the repository,
and this choice is stored using the listMode property. The newProduct property is where I will gather the details for
new products that the user wants to add to the repository.

Tip ■ I do not have to define properties for the newProduct object because they will be set by the Knockout bindings
that I attach to input elements when I define the views. However, I have added one property—name—so that jQuery will
always send request data to the server as part of its poST request, even if the user submits the product without entering
any data into the input elements.

Creating the Admin Controller
The admin client requires a few functions to manage its views and to act as intermediaries between the data that
will be available to Knockout bindings and the data required by the common controller functions. (For example, the
removeProduct function will be passed a complete product object by Knockout, but the underling deleteProduct
function operates on the Id property value.) Listing 7-26 shows the contents of the storeAdminController.cs file,
which I added to the Scripts folder.

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

160

Listing 7-26. The Contents of the storeAdminController.cs File

var setView = function (view) {
 adminModel.currentView(view);
}

var setListMode = function (mode) {
 console.log("Mode: " + mode);
 adminModel.listMode(mode);
}

var authenticateUser = function() {
 authenticate(function () {
 setView("productList");
 getProducts();
 getOrders();
 });
}

var createProduct = function () {
 saveProduct(adminModel.newProduct, function () {
 setListMode("products");
 })
}

var removeProduct = function (product) {
 deleteProduct(product.Id);
}

var removeOrder = function (order) {
 deleteOrder(order.Id);
}

Creating the Views
The administration client requires only four views: the top-level container, a list of products, a list of orders, and a set
of input elements needed to create new products. In the sections that follow, I’ll show you how I defined each of them.

Defining the MVC Controller and Top-Level View
I have created a separate MVC framework controller to deliver the administration client. Listing 7-27 shows the
contents of the AdminController.cs file, which I added to the Controllers folder.

Listing 7-27. The Contents of the AdminController.cs File

using System.Web.Mvc;

namespace SportsStore.Controllers {

 public class AdminController : Controller {

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

161

 public ActionResult Index() {
 return View();
 }
 }
}

The controller contains an Index action method that will render the Index.cshtml file I created in the
Views/Admin folder. Listing 7-28 shows the content of the view file.

Listing 7-28. The Contents of the Views/Admin/Index.cshtml File

@section Scripts {
 <script src="~/Scripts/storeAdminModel.js"></script>
 <script src="~/Scripts/storeAdminController.js"></script>
}

<div class="navbar navbar-inverse" role="navigation">
 SPORTS STORE
</div>

<div class="alert alert-danger text-center"
 data-bind="visible: model.gotError(), text: model.error()">
</div>

<div>
 <div class="text-center" data-bind="visible: adminModel.currentView() == 'signin'">
 <div class="form-group">
 <label>Username</label>
 <input data-bind="value: model.username" />
 </div>
 <div class="form-group">
 <label>Password</label>
 <input type="password" data-bind="value: model.password" />
 </div>
 <button class="btn btn-primary"
 data-bind="click: authenticateUser">Sign In</button>
 </div>

 <div data-bind="visible: adminModel.currentView() == 'productList'">

 <div id="categories" class="col-xs-3">
 <button class="btn btn-block btn-default btn-lg"
 data-bind="click: setListMode.bind($data, 'products')">
 Products
 </button>
 <button class="btn btn-block btn-default btn-lg"
 data-bind="click: setListMode.bind($data, 'orders')">
 Orders
 </button>
 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

162

 <div class="col-xs-8" data-bind="visible: adminModel.listMode() == 'products'">
 @Html.Partial("AdminProductList")
 </div>

 <div class="col-xs-8" data-bind="visible: adminModel.listMode() == 'addProduct'">
 @Html.Partial("AdminProductAdd")
 </div>

 <div class="col-xs-8" data-bind="visible: adminModel.listMode() == 'orders'">
 @Html.Partial("AdminOrderList")
 </div>
 </div>
</div>

Tip ■ This view relies on the same _Layout.cshtml file that I used for the customer client.

This is similar to the structure that I used for the customer client, with the addition of an embedded sign-in view
that gathers credentials for the user in order to authenticate the client.

Defining the Product List View
For the administration client, I display a simplified version of the product list but have added buttons to delete
individual products and to create new ones. Listing 7-29 shows the contents of the AdminProductList.cshtml file,
which I added to the Views/Admin folder.

Listing 7-29. The Contents of the AdminProductList.cshtml File

<div class="panel panel-primary">
 <table class="table table-striped">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 </thead>
 <tbody data-bind="foreach: model.products()">
 <tr>
 <td data-bind="text: $data.Id"></td>
 <td data-bind="text: $data.Name"></td>
 <td data-bind="text: $data.Category"></td>
 <td data-bind="text: '$' + $data.Price.toFixed(2)"
 class="text-right"></td>
 <td>
 <button class="btn btn-xs btn-danger"
 data-bind="click: removeProduct">Remove</button>
 </td>
 </tr>
 </tbody>
 </table>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

163

<div class="text-center">
 <button class="btn btn-primary"
 data-bind="click: setListMode.bind($data, 'addProduct')">
 Add Product
 </button>
</div>

Defining the Order List View
To display details of the orders, I have used the same table structure that I created in Chapter 5 when I was writing
the web services. The difference is that the elements are generated through Knockout bindings rather than Razor.
Listing 7-30 shows the contents of the AdminOrderList.cshtml file, which I added to the /Views/Admin folder.

Listing 7-30. The Contents of the AdminOrderList.cshtml File

<div class="panel panel-primary">
 <div class="panel-heading">
 Orders
 </div>
 <table class="table table-striped">
 <thead>
 <tr>
 <th>ID</th>
 <th>Customer</th>
 <th colspan="3"></th>
 <th>Total Cost</th>
 <th></th>
 </tr>
 </thead>
 <tbody data-bind="foreach: model.orders()">
 <tr>
 <td data-bind="text: $data.Id"></td>
 <td data-bind="text: $data.Customer"></td>
 <td colspan="3"></td>
 <td data-bind="text: '$' + $data.TotalCost.toFixed(2)"></td>
 <td>
 <button class="btn btn-xs btn-danger"
 data-bind="click: removeOrder">Remove</button>
 </td>
 </tr>
 <tr>
 <th colspan="2"></th>
 <th>Product</th>
 <th>Quantity</th>
 <th>Price</th>
 <th colspan="2"></th>
 </tr>
 <!-- ko foreach: $data.Lines -->
 <tr>
 <td colspan="2"></td>
 <td data-bind="text: $data.Product.Name"></td>

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

164

 <td data-bind="text: $data.Count"></td>
 <td data-bind="text: '$' + $data.Product.Price.toFixed(2)"></td>
 <td colspan="2"></td>
 </tr>
 <!-- /ko -->
 </tbody>
 </table>
</div>

I have used the Knockout comment feature to generate some of the rows in the table, but otherwise this view
contains entirely standard HTML and Knockout data bindings.

Defining the Create Product View
The final view I require allows the user to enter details for a new product. Listing 7-31 shows the contents of the
AdminProductAdd.cshtml file, which I added to the View/Admin folder.

Listing 7-31. The Contents of the AdminProductAdd.cshtml File

<h2>Add Product</h2>

<div class="form-group">
 <label>Name</label>
 <input class="form-control" data-bind="value: adminModel.newProduct.name" />
</div>

<div class="form-group">
 <label>Description</label>
 <input class="form-control" data-bind="value: adminModel.newProduct.description" />
</div>

<div class="form-group">
 <label>Category</label>
 <input class="form-control" data-bind="value: adminModel.newProduct.category" />
</div>

<div class="form-group">
 <label>Price</label>
 <input class="form-control" data-bind="value: adminModel.newProduct.price" />
</div>

<div class="text-center">
 <button class="btn btn-primary"
 data-bind="click: setListMode.bind($data, 'products')">Cancel</button>
 <button class="btn btn-danger" data-bind="click: createProduct">Create</button>
</div>

This is a simple set of input elements that use Knockout bindings to set values on the newProduct object in the
data model. There is a Create button that calls the createProduct function to trigger the Ajax request and a Cancel
button that returns to the list of products.

As with the customer client, I have not implemented any client-side validation so that all requests are sent to the
web service, even when the data they contain won’t pass the validation checks.

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

165

Testing the Admin Client
All that remains is to test the client, which you can do by starting the application and using the browser to navigate
to the /Admin/Index URL. The first view obtains the credentials required for authentication. Enter Admin as the
username and secret as the password, as shown in Figure 7-11.

Figure 7-11. Providing credentials to the admin client

Click the Sign In button to authenticate the client, and you will be presented with the product list view,
as illustrated by Figure 7-12.

Figure 7-12. The admin product list

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

166

Clicking the Create button will send an Ajax request to the server and then update the product data, ensuring
that the new product is displayed in the list. The final view is shown by clicking the Orders button at the left side of the
window, which shows a list of the orders in the repository, as illustrated by Figure 7-14.

You can delete products from the repository by clicking the Remove buttons or create a new product by clicking
the Add Product button. Clicking Add Product allows you to enter the details of the product you want to create, as
shown in Figure 7-13. You can remove individual orders by clicking the Remove buttons or return to the product list
by clicking the Products button at the left side of the window.

Figure 7-13. Creating a new product

www.it-ebooks.info

http://www.it-ebooks.info/

CHapTer 7 ■ SporTSSTore: CreaTIng THe CLIenTS

167

Summary
In this chapter, I completed the development of the SportsStore application by creating clients for customers and
administrators. I built a common foundation of client code, following the model/controller approach I used on the
server side. I used this foundation to build clients that offer different functionality from the pair of Web API web
services I created in Chapter 6. I covered a lot of ground without going into too much detail because the client-side
development—especially the creation of view—is not directly related to Web API, but you can see how the overall
structure of the client shows the use of the single-page application model in practice. In the next chapter, I show you
how to deploy the SportsStore application to Microsoft Azure.

Figure 7-14. The admin orders list

www.it-ebooks.info

http://www.it-ebooks.info/

169

Chapter 8

SportsStore: Deployment

The biggest day in the life of any application is the one on which it is deployed and used for the first time. In this
chapter, I will show you how to prepare and deploy the SportsStore application to the Microsoft Azure platform.

Web API introduces some new patterns for application deployment through its support for OWIN, which
I describe in Chapter 26. However, if you have developed an application that contains MVC and Web API
functionality—which is the most common use for Web API currently—then you are limited to deployment to IIS or
Azure. I have selected Azure for this chapter because it is universally available and offers free trials, whereas not all
developers have access to a Windows Server installation running IIS.

Caution ■ Deploying an application can be fraught with problems, and it pays dividends to practice with a test applica-
tion before doing it for real. It is not that the ASP.NET deployment features are especially dangerous (they are not), but
rather, any interaction that involves a running application with real user data deserves careful thought and planning.

Preparing the SportsStore Application
There are a couple of changes I need to make to the project before I can deploy the SportsStore application. I perform
the changes—and explain their significance—in the sections that follow.

Preventing the Product Database from Resetting
The first change is to prevent the product database from being dropped and re-created each time that the application
is started. That has been a useful feature to ensure that you see the right results in the previous chapters, but it is a
dangerous feature to leave in a deployed application. Listing 8-1 shows the changes I made to the database initializer
class.

Listing 8-1. Changing the Base Class in the ProductDbInitializer.cs File

using System.Collections.Generic;
using System.Data.Entity;

namespace SportsStore.Models {

 public class ProductDbInitializer : CreateDatabaseIfNotExists<ProductDbContext> {

 protected override void Seed(ProductDbContext context) {

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTEr 8 ■ SPorTSSTorE: DEPloymENT

170

 new List<Product> {
 new Product() { Name = "Kayak", Description = "A boat for one person",
 Category = "Watersports", Price = 275m },
 new Product() { Name = "Lifejacket",
 Description = "Protective and fashionable",
 Category = "Watersports", Price = 48.95m },
 new Product() { Name = "Soccer Ball",
 Description = "FIFA-approved size and weight",
 Category = "Soccer", Price = 19.50m },
 new Product() {
 Name = "Corner Flags",
 Description = "Give your playing field a professional touch",
 Category = "Soccer", Price = 34.95m },
 new Product() { Name = "Stadium",
 Description = "Flat-packed 35,000-seat stadium",
 Category = "Soccer", Price = 79500m },
 new Product() { Name = "Thinking Cap",
 Description = "Improve your brain efficiency by 75%",
 Category = "Chess", Price = 16m },
 new Product() { Name = "Unsteady Chair",
 Description = "Secretly give your opponent a disadvantage",
 Category = "Chess", Price = 29.95m },
 new Product() { Name = "Human Chess Board",
 Description = "A fun game for the family",
 Category = "Chess", Price = 75m },
 new Product() { Name = "Bling-Bling King",
 Description = "Gold-plated, diamond-studded King",
 Category = "Chess", Price = 1200m },
 }.ForEach(product => context.Products.Add(product));

 context.SaveChanges();

 new List<Order> {
 new Order() { Customer = "Alice Smith", TotalCost = 68.45m,
 Lines = new List<OrderLine> {
 new OrderLine() { ProductId = 2, Count = 2},
 new OrderLine() { ProductId = 3, Count = 1},
 }},
 new Order() { Customer = "Peter Jones", TotalCost = 79791m,
 Lines = new List<OrderLine> {
 new OrderLine() { ProductId = 5, Count = 1},
 new OrderLine() { ProductId = 6, Count = 3},
 new OrderLine() { ProductId = 1, Count = 3},
 }}
 }.ForEach(order => context.Orders.Add(order));

 context.SaveChanges();
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTEr 8 ■ SPorTSSTorE: DEPloymENT

171

I explained the different base classes that can be used in Chapter 5, and applying the
CreateDatabaseIfNotExists ensures that a new database will be created the first time the application starts but not
on subsequent restarts.

Adding Database Connection Strings
The second change I need to make is a little odd. I need to add connection strings to the Web.config file so that they
can be updated during the publishing process. I have not needed to define connection strings so far because the
default behavior for creating databases is to use the LocalDB feature, which is what I wanted. The default behavior will
not work within Azure, but the publishing process doesn’t work correctly unless there are connection strings for it to
modify. Listing 8-2 shows the changes I made to the Web.config file.

Listing 8-2. Adding Connection Strings to the Web.config File

...
<configuration>
 <configSections>
 <section name="entityFramework"
 type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection,
 EntityFramework, Version=6.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 requirePermission="false" />
 </configSections>

 <connectionStrings>
 <add name="SportsStoreDb" providerName="System.Data.SqlClient"
 connectionString="Data Source=(localdb)\v11.0;
 Initial Catalog=SportsStoreDb;Integrated Security=True;
 Connect Timeout=15;Encrypt=False;TrustServerCertificate=False" />
 <add name="SportsStoreIdentityDb" providerName="System.Data.SqlClient"
 connectionString="Data Source=(localdb)\v11.0;
 Initial Catalog=SportsStoreIdentityDb;Integrated Security=True;
 Connect Timeout=15;Encrypt=False;TrustServerCertificate=False" />
 </connectionStrings>

<appSettings>
 <add key="webpages:Version" value="3.0.0.0" />
...

Caution ■ The values for the connectionString properties should be on a single line and not wrapped as they are
shown in the listing. I had to break up the string to fit it on the page.

These connection strings have no effect, other than to give the publishing process what it needs to replace them
with details of the Azure databases I created in the previous section.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTEr 8 ■ SPorTSSTorE: DEPloymENT

172

Preparing Azure
You have to create an account before you can use Azure, which you can do by going to http://azure.microsoft.com.
At the time of writing, Microsoft is offering free trial accounts, and most MSDN packages include Azure services.
Once you have created your account, you can manage your Azure services by going to http://manage.windowsazure.
com to provide your credentials. When you start, you will see the summary view shown in Figure 8-1.

Figure 8-1. The Azure portal

Creating the Databases
The first step is to create the databases that will be used to store the product and ASP.NET Identity data. In the sections
that follow, I will create the databases and get the information I need to configure the application.

Create the Product Database
Click the large plus (+) sign at the bottom of the window and select Data Services ➤ SQL Database ➤ Quick Create.
Populate the input elements using the values in Table 8-1.

www.it-ebooks.info

http://azure.microsoft.com/
http://manage.windowsazure.com/
http://manage.windowsazure.com/
http://www.it-ebooks.info/

ChAPTEr 8 ■ SPorTSSTorE: DEPloymENT

173

When you have configured the database, the screen should be similar to Figure 8-2.

Table 8-1. Creating the Azure Product Database

Field Description

Database Name Enter SportsStoreDb.

Subscription Leave as is.

Server Leave as New SQL Database Server.

Region Select the region you want to deploy to. I live in London, so I selected the West Europe region.

Login Name Enter a memorable account name that will be used by the application to connect to the
database. I selected SportsStoreDb.

Password Select a secure and memorable password. I selected SuperSecurePassword100.

Figure 8-2. Configuring the Azure product database

Click the Create SQL Database button to create the database.

Create the Identity Database
Click the plus button again and select Data Services ➤ SQL Database ➤ Quick Create. Populate the input elements
using the values in Table 8-2.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTEr 8 ■ SPorTSSTorE: DEPloymENT

174

When you have configured the database, the screen should be similar to Figure 8-3.

Figure 8-3. Configuring the Azure Identity database

Figure 8-4. Getting the database name

Table 8-2. Creating the Azure Product Database

Field Description

Database Name Enter SportsStoreIdentityDb.

Subscription Leave as is.

Server Leave as is; the server created for the product server will be selected automatically.

Click the Create SQL Database button to create the database.

Getting the Server Name
Once you have created the databases, click the Servers button and make note of the server name that has been created
as part of the process, as shown in Figure 8-4.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTEr 8 ■ SPorTSSTorE: DEPloymENT

175

The server name is a random string. The one that Azure has created for me is called icfw64go15, but your name
will differ. You will need the server name when configuring the application for deployment.

Creating the Web Site
I am going to deploy the application using an Azure web site, which is one of the options for deploying ASP.NET
applications. Within the Azure management portal, click the plus sign and select Compute ➤ Web Site ➤ Quick
Create.

Select a URL for your application and enter it into the URL input element. URLs have to be unique, although you
can pay more to use custom URLs. The URL I selected for my deployment is sportsstorews, as shown in Figure 8-5.
Click the Create Web Site button to complete the process.

Figure 8-5. Creating the Azure web site

Downloading the Publish Profile
Once the web site has been created, you will see an entry under the web sites area with the name you selected in the
previous section. Click the name to open the detail page and click the Download the Publish Profile link. This will
cause the browser to download a file that contains the configuration details of the web site you created; save this file
where you can easily access it.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTEr 8 ■ SPorTSSTorE: DEPloymENT

176

Deploying the Application
I am now at the stage where I can deploy the application. Table 8-3 shows the pieces of information that are needed
for the process.

Figure 8-6. Details of the deployment connection

Table 8-3. The Information Needed to Deploy the Application

Item My Value

Database Server Name icfw64go15

Database User Name SportsStoreDb

Database Password SuperSecurePassword100

Select Publish SportsStore from the Visual Studio Build menu to start the process. Click the Import button and
locate the publish profile file that you downloaded after creating the Azure web site. The window will jump to the
Connection section, as shown in Figure 8-6.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPTEr 8 ■ SPorTSSTorE: DEPloymENT

177

There is no need to change any of the values. Click Next to move to the Settings part of the dialog.

Configuring the Databases
This is the part of the deployment process that sets up the database connections. The publishing wizard gets confused
at this point and displays more entries than it should. I’ll explain how to deal with each of them in turn.

Configuring the ProductDbContext(SportsStoreDb) Entry
Click the ellipsis (...) button to open a dialog that allows a connection string to be composed. Ensure that Microsoft
SQL Server is selected as the data source; then enter the name of the database server from the start of this section,
followed by .database.windows.net, into the Server Name field. My server is called ijrfbkqxdu, so I entered
icfw64go15.database.windows.net. Ensure that the Use SQL Server Authentication option is checked, enter the
database username and password into the fields, and check the Save my password option. Enter SportsStoreDb into
the Select or Enter a Database Name field to specify the database that will be used. Click the OK button to close the
database and set the connection string, which will be as follows (although your server name and credentials will differ):

Data Source=icfw64go15.database.windows.net;
 Initial Catalog=SportsStoreDb;Persist Security Info=True;
 User ID=SportsStoreDb;Password=SuperSecurePassword100

Configuring the SportsStoreIdentityDb Entry
Repeat the same process as in the previous section, but enter SportsStoreIdentityDb into the Select or Enter a
Database Name field. The connection string will be similar to this, but with a different server name and credentials:

Data Source=icfw64go15.database.windows.net;
 Initial Catalog=SportsStoreIdentityDb;Persist Security Info=True;
 User ID=SportsStoreDb;Password=SuperSecurePassword100

Configuring the StoreIdentityDbContext Entry
Uncheck the Use this Connection String at Runtime box. This entry isn’t required.

Publishing the Application
All that remains is to push the application to Azure, which is done by clicking the Publish button. You can follow the
publishing process in the Visual Studio Output window, but it can take a while to publish an application, especially if
this is the initial update to the cloud since all of the files have to be uploaded. Only differences are uploaded for future
releases.

Once the application has been published, Visual Studio will open a browser window that loads the SportsStore
web site URL, which is http://sportsstorews.azurewebsites.net in my case, as shown in Figure 8-7.

www.it-ebooks.info

http://sportsstorews.azurewebsites.net/
http://www.it-ebooks.info/

ChAPTEr 8 ■ SPorTSSTorE: DEPloymENT

178

Tip ■ my Url won’t be in service by the time you read this. I use my Azure web sites to test problems that readers
encounter, and I keep these private to avoid generating odd results.

Summary
In this chapter I showed you how to deploy the SportsStore application to Azure, which is one of the platform options
for an application that mixes Web API and MVC framework functionality. (The other option is to deploy to IIS running
on Windows Server.) Deployment concludes the SportsStore chapters and this part of the book. In Part 2, I start to dig
into the details of how Web API works, starting with the results that action methods produce and the parameter values
they consume.

Figure 8-7. Using the published SportsStore application

www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Results and Parameters

www.it-ebooks.info

http://www.it-ebooks.info/

181

Chapter 9

The Anatomy of ASP.NET Web API

This chapter isn’t meant to be read right away. Instead, it contains a number of tables that you can refer to as you read
through the chapters that follow. ASP.NET Web API uses a completely different set of namespaces and types than the
ones you are familiar with in the MVC framework, and keeping track of which class or interface is responsible for a
feature or behavior can be difficult, especially when you start working on your own Web API projects.

Understanding the Web API Namespaces and Types
Web API and the MVC framework share a common heritage and a common design philosophy, but for every important
interface and class that you are familiar with in MVC framework development, there is a completely separate
counterpart used by Web API. Table 9-1 provides a loose mapping for the ones that you will encounter most often.

Table 9-1. Commonly Used MVC Framework Classes and Their Web API Counterparts

MVC Class or Interface Web API Equivalent

System.Web.Mvc.IController System.Web.Http.Controllers.IHttpController

System.Web.Mvc.Controller System.Web.Http.ApiController

System.Web.HttpContext System.Web.Http.Controllers.HttpRequestContext

System.Web.HttpRequest System.Net.Http.HttpRequestMessage

System.Web.HttpResponse System.Net.Http.HttpResponseMessage

System.Web.HttpApplication System.Web.Http.HttpConfiguration

The classes and interfaces are equivalent, but there isn’t a one-to-one mapping of methods and properties.
In part this is because Web API builds on the System.Net.Http namespace, which was introduced in .NET 4.5 and
provides a set of classes that allow any .NET application to support HTTP by providing objects that describe HTTP in a
neutral way. Web API uses the types from the System.Net.Http namespace to represent requests and responses (the
HttpRequestMessage and HttpResponseMessage classes), HTTP status codes (the HttpStatusCode enum), and HTTP
verbs (the HttpMethod class).

Functionality that is specified to Web API is contained in the System.Web.Http namespace and its children,
defined as regular interfaces and classes or defined as extension methods that operate on System.Net.Http classes.

Microsoft has avoided the System.Web and System.Web.Mvc namespaces for Web API as part of a gradual effort
to rework the ASP.NET platform into something more flexible for web application development and one that can be
enhanced independently of the main .NET Framework. At the moment, Web Forms and MVC framework applications
get a monolithic block of services through the System.Web assembly, which is shipped as part of the main .NET

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ the anatomy of aSp.net Web apI

182

Framework. The approach that the ASP.NET team is moving toward allows developers to select just the services they
want and to have choices about which implementations are used.

You might, for example, decide to use Microsoft’s session state implementation, a third-party logging and tracing
implementation, and not to use caching services at all. The engine for this change is a standard called Open Web
Interface for .NET (OWIN) that allows more flexibility in how Web API applications are hosted. I describe it in Chapter 26.

For the moment, it is enough to know that Web API doesn’t use the System.Web and System.Web.Mvc namespaces
that you are familiar with and that even the most venerable ASP.NET classes, such as HttpRequest and HttpResponse,
are not used when developing HTTP web services with Web API. As a quick reference, Table 9-2 lists the main
namespaces that you will use during Web API development and where in the book I describe them in detail.

Table 9-2. The Main Web API Namespaces

Namespace Description

System.Net.Http This namespace defines types that represent HTTP requests and responses.

System.Net.Http.Formatting This namespace contains the media type formatters, which are used to
serialize data sent to the client and to create model objects from requests.
See Chapters 12–17 for details.

System.Web.Http This is the top-level Web API namespace. The most important class for most
projects is ApiController, which is the base for Web API controllers and
which I describe in Chapter 22, but there are many other useful classes in this
namespace.

System.Web.Http.Controllers This namespace contains the interface that defines a controller
(IHttpController) and all of the support classes that the most common
controller base class—ApiController—requires. See Chapter 22 for details of
how controllers are used in Web API, and see the chapters in this part of the
book for details of the features that ApiController brings conveniently together.

System.Web.Http.Dependencies This namespace contains the classes that provide dependency injection,
which I describe in Chapter 10.

System.Web.Http.Dispatcher This namespace contains the classes that manage the Web API request
dispatch process from receiving a request from the hosting platform through to
selecting and executing a controller. I describe the dispatch process in Part 3 of
this book.

System.Web.Http.Filters This namespace contains the filters support, which allows for additional logic
to be inserted into the dispatch process. I describe filters in Chapters 23 and 24.

System.Web.Http.Metadata This namespace contains classes that provide descriptions of model classes.
These classes are not used directly but are presented through context objects
in the dispatch process (which is the topic of Part 3 of this book) or when data
provided by a client is being validated (which I describe in Chapter 18).

System.Web.Http.ModelBinding This namespace contains classes responsible for creating objects and values
from HTTP requests that can be used by action methods. I describe the model
binding process in Chapter 14 and explain how the process works in detail in
Chapters 15–17.

System.Web.Http.Results This namespace contains classes that implement the IHttpActionResult
interface, which is used by action methods to describe the responses that will
be sent to a client. I describe action method results in Chapter 11.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ the anatomy of aSp.net Web apI

183

Tip ■ as the table illustrates, there are a lot of Web apI namespaces, but many of them contain just a few types, and
basic Web apI applications can be created with little effort, as I demonstrated in Chapter 2. even more complicated
applications, such as the one I created in Chapters 5–8, can’t be created using a small number of classes.

WhY CaN’t I USe the aSp.Net pLatFOrM FeatUreS aNYWaY?

It often feels like microsoft makes changes just for the sake of it, and you may have a familiar sinking feeling as
you look over the types and namespaces in tables 9-1 and 9-2, contemplating another steep learning curve.

at this moment, most experienced aSp.net developers realize that there is a shortcut: use the static
HttpContext.Current property to get access to the familiar set of classes provided by the aSp.net platform,
which are still there behind the scenes as long as you are deploying your application to IIS.

Like most shortcuts, you gain in the near term only to pay a price in the long term. you can ignore the System.
Net.Http classes, for example, and focus on the classes you know from the System.Web namespace, such as
HttpRequest and HttpResponse. and, at first, you will start to produce Web apI http web services more quickly
and more easily, which is the near-term gain.

the long-term price is that you can’t access advanced Web apI features using the old classes and you end up
with even more tortured adaptor classes as your Web apI needs become more complex. In the end, you’ll spend
more time trying to avoid the new Web apI classes than it takes to learn how they work. having two separate sets
of namespaces in an application is a little awkward, but my advice is to embrace the change and avoid long-term
complexity and maintenance problems.

Understanding the Web API Context Objects
Web API provides a set of objects that provide context about the state of the application and the request that is being
handled. The main way you will encounter these objects is through properties defined by the ApiController class,
from which Web API controller classes are derived. I describe the role of the ApiController class in more detail in
Chapter 22, but Table 9-3 describes the properties it defines that return context objects.

Table 9-2. (continued)

Namespace Description

System.Web.Http.Routing This namespace contains the Web API URL routing classes, which I describe in
Chapters 20 and 21.

System.Web.Http.Validation This namespace contains the classes that are used to validate data sent from a
client, a process I describe in Chapter 18.

System.Web.Http.ValueProviders This namespace contains classes that are used to retrieve values from requests
so that they can be used with action methods. I describe this process in
Chapters 14–17.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ the anatomy of aSp.net Web apI

184

Getting Information About the Request
Requests are represented by the HttpRequestMessage class, which is defined in the System.Net.Http namespace.
You are unlikely to need to use the HttpRequestMessage class directly as you start creating simple web
services with Web API, but you will begin to use it a lot when you apply some of the more advanced features or
begin to customize the way that Web API handles HTTP requests. Table 9-4 describes the properties that the
HttpRequestMessage class defines.

Table 9-3. The Context Properties Defined by the ApiController Class

Name Description

Configuration Returns an HttpConfiguration object, which provides information about the
configuration of the application. See Chapter 10.

ControllerContext Returns the HttpControllerContext object that was passed to the controller’s
ExecuteAsync method. See Table 9-6.

ModelState Returns the object used for model binding validation. See Chapter 18.

Request Returns the HttpRequestMessage that describes the current request. See Table 9-4.

RequestContext Returns an HttpRequestContext object that provides Web API–specific information about
the current request. See Table 9-5.

User Returns details of the user associated with the current request. See Chapters 5, 23, and 24.

Table 9-4. The Properties Defined by the HttpRequestMessage Class

Name Description

Content Returns an HttpContent object that contains the content of the HTTP request. Request content is
generally accessed through the model binding feature, which I describe in Chapter 14.

Headers Returns an HttpRequestHeaders object that contains the headers sent by the client. I use request
headers to demonstrate several features, including data binding (in Chapter 14) and URL routing
(in Chapters 20 and 21).

Method Returns an HttpMethod object that describes the HTTP method/verb for the request.

Properties Returns a collection that contains objects provided by the hosting environment or by components
that need to communicate with one another. Many of the objects that Web API uses to provide
context information define a Properties property, but the only one that I use in this book is the one
defined by the HttpRequestMessage object in Chapter 23.

RequestUri Returns the URL requested by the client, expressed as an Uri object.

Version Returns the version of HTTP that was used to make the request, expressed as a System.Version
object.

The HttpRequestMessage class provides a generalized view of an HTTP request, without any detail that is specific
to web services. Web API supplements the HttpRequestMessage class with the HttpRequestContext class, the most
important properties of which I describe in Table 9-5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ the anatomy of aSp.net Web apI

185

Getting Information About the Controller
The HttpControllerContext class provides access to much of the same context data as the HttpRequestContext
class but also describes the controller. The similarity between the properties defined by context classes is a facet of
the Web API dispatch process, which I describe in Part 3, which doesn’t make assumptions about the controller that
will be selected to handle a request—a feature that allows custom controller implementations to be easily created,
as I demonstrate in Chapter 22. Some context classes, such as HttpRequestContext, are used more when writing
individual web service, and others, such as HttpControllerContext, are more useful when you are customizing the
request dispatch process. Table 9-6 lists the properties defined by the HttpControllerContext class.

Table 9-5. The Properties Defined by the HttpRequestContext Class

Name Description

Configuration This property returns the HttpConfiguration object associated with the current request.
I describe the HttpConfiguration class in Chapter 10 and explain how to apply custom
configurations to individual controllers in Chapter 22.

IncludeErrorDetail This property is used to control the amount of information sent to the client when an
exception is thrown and in an action method or filter and left unhandled. See Chapter 25
for details.

IsLocal This property returns true if the request originates from the local computer.

Principal This property returns the IPrincipal implementation object that describes the user
associated with the request. I used this property in Chapters 6 and 7 for the SportsStore
application, and I demonstrate how to create a custom—albeit simple—authentication
mechanism in Chapters 23 and 24.

RouteData This property returns the routing data associated with the request. See Chapters 20 and 21.

Table 9-6. The Properties Defined by the HttpControllerContext Class

Name Description

Configuration Returns a System.Web.Http.HttpConfiguration object, which provides information
about the configuration of the application. See Chapter 10.

Controller Returns the System.Web.Http.Controllers.IHttpController implementation that is
handling the request. See Chapter 22.

ControllerDescriptor Returns a System.Web.Http.Controllers.HttpControllerDescriptor object that
provides information about the controller, which can be used to select controllers to
handle a request, as described in Chapter 19.

Request Returns a System.Net.Http.HttpRequestMessage that provides information about the
request being handled. See Table 9-4.

RequestContext Returns a System.Web.Http.Controllers.HttpRequestContext object that provides
Web API–specific information about the request, including details of the user identity
associated with the request. See Table 9-5 for details.

RouteData Returns a System.Web.Http.Routing.IHttpRouteData implementation that provides
information about how the request was routed. See Chapters 20 and 21 for details of
Web API routing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ the anatomy of aSp.net Web apI

186

Getting Information About Everything Else
The Web API namespaces contain other context objects that are of use only for specific—often advanced—tasks.
Rather than list all of their properties here, Table 9-7 describes the classes and references the chapter where I describe
each of them in more detail.

Table 9-7. The Web API Context Classes

Name Description

ExceptionHandlerContext This class is used to provide context information to global exception
handlers. See Chapter 25.

ExceptionLoggerContext This class is used to provide context information to global exception
loggers. See Chapter 25.

HttpActionContext This class is used to describe an action method and is employed as
part of the data binding process. See Chapter 15.

HttpActionDescriptor This class is used to describe an action method and is employed as
part of the data binding process. See Chapter 15.

HttpActionExecutedContext This class is used to provide context information to exception filters.
See Chapter 24.

HttpAuthenticationChallengeContext This class is used to provide context information to authentication
filters. See Chapter 23.

HttpAuthenticationContext This class is used to provide context information to authentication
filters. See Chapter 23.

HttpControllerContext This class is used to provide a controller with the information it needs
to process a request. See Chapter 19.

HttpControllerDescriptor This class is used during the selection of a controller to process a
request. See Chapter 19.

HttpParameterDescriptor This class is used to describe an action method parameter during the
data binding process. See Chapter 15.

HttpRequestContext This class is used to provide context information about a request. See
Table 9-5.

ModelBindingContext This class is used to provide context information about a model class
during the data binding process. See Chapter 16.

Understanding the Web API Components
The basic approach that Web API follows to handle HTTP requests will be familiar from using the MVC framework,
but there are a few wrinkles and some important differences to be aware of. In the sections that follow, I briefly
describe the major components in a Web API application and explain how they are applied, along with references to
the chapters in this book where you can find more information.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ the anatomy of aSp.net Web apI

187

Application Configuration
Web API configuration is performed in the App_Start/WebApiConfig.cs file. Add all configuration statements—
including those for URL routing—to the Register method, including those that set up URL routes. See Chapter 10
for details of configuring a Web API application and remember not to do any configuration in the Global Application
Class (the Global.asax.cs file) because it isn’t supported for all Web API deployment options.

Controllers, Actions, and Results
Web services are defined through controllers. The most common way to create a controller is to derive a class from
ApiController, which is defined in the System.Web.Http namespace. The ApiController class provides a number of
features that make it simple to create HTTP web services, including action methods, action results, and model binding
and validation. I explain how action methods are used to generate results in Chapter 11, how parameters objects and
values are created in Chapters 12–17, and how to validate data in Chapter 18.

Although the ApiController class is the normal base for controllers, you can also implement your own approach
to processing requests by implementing the IHttpController interface. I describe this process in Chapter 22 and
explain where controllers fit into the wider dispatch process throughout Part 3 of this book.

Services
ASP.NET Web API defines a set of interfaces and classes that are used to process requests, and these are known as
services. Examples include the interfaces that select controllers and action methods, perform model binding, and
validate content. The implementations of these interfaces define the infrastructure of a Web API application.

Services are either single-instance or multiple-instance. For single-instance services, there is a single
implementation of the service interface used across the entire application. An example of a single-instance service
interface is IHttpActionInvoker, which I describe in Chapter 22 and which is responsible for invoking action
methods in Web API controllers. There is a default implementation of this interface included in Web API, and you can
choose to replace it with a custom implementation, but only one of them will be used to invoke action methods.

For multiple-instance services, several implementations are available, presenting a choice about which one is
used. An example is the ModelBinderProvider class, which I describe in Chapter 16 and which provides a model
binder for a given type. There are built-in derivations of the ModelBinderProvider class included in Web API,
and you can define your own—and at runtime, the combined collection is available so that the most appropriate
implementation can be selected and used.

Services are set up and accessed through the HttpConfiguration.Services property; this property returns an
instance of the ServicesContainer class, which is defined in the System.Web.Http.Controllers namespace. Table 9-8
shows the methods defined by the ServicesContainer class that are used to register and obtain services.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ the anatomy of aSp.net Web apI

188

Tip ■ Implementations of the service interfaces can also be provided through dependency injection, which I describe in
Chapter 10.

In addition to the methods described in Table 9-8, Web API provides a set of extension methods that provide
strongly typed access to specific services. I describe the most important of these extension methods in Table 9-9, along
with details of the service interface they relate to and the chapter of this book where I explain the use of each of them.

Table 9-8. The Methods Defined by the ServicesContainer Class

Name Description

Add(service, impl) Adds a new implementation of the specified service interface to the
collection. There is also an AddRange method that allows multiple
implementation objects to be added in a single method call.

AddRange(service, impls) Adds an enumeration of implementations of the specified interface to the
collection.

Clear(service) Removes all implementations of the specified service interface from the
collection.

GetService(service) Gets an implementation of the specified single-instance service.

GetServices(service) Gets the implementations of the specified multiple-instance service.

Insert(service, index,
impl)

Inserts an implementation of a multiple-instance service into the collection
at a specific index. There is also an InsertRange method that allows
multiple implementation objects to be inserted in a single method call.

IsSingleService(service) Returns true if the specified service interface is single-instance and false
if it is a multiple-instance service.

Remove(service, impl) Removes the specified implementation of a service interface from the
collection. There are also RemoveAll and RemoveAt methods that allow
multiple implementation objects to be removed or an object at a specified
index to be removed.

Replace(service, impl) Replaces the implementation object for the specified service in the
collection. This method works for single- and multiple-instance services.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ the anatomy of aSp.net Web apI

189

Table 9-9. The Extension Methods Defined for the ServicesContainer Class

Name Description

GetActionInvoker This method returns an implementation of the IHttpActionInvoker interface,
which is responsible for executing an action method. See Chapter 22.

GetActionSelector This method returns an implementation of the IHttpActionSelector
interface, which is responsible for selecting an action method. See Chapter 22.

GetActionValueBinder This method returns an implementation of the IActionValueBinder interface,
which is used to bind values for action method parameters. See Chapter 17.

GetAssembliesResolver This method returns an implementation of the IAssembliesResolver
interface, which is used to locate controller classes when the application
starts. See Chapter 19.

GetContentNegotiator This method returns an implementation of the IContentNegotiator interface,
which is used to select a media type formatter to serialize the data in a
response. See Chapter 11.

GetExceptionHandler This method returns an implementation of the IExceptionHandler interface,
which is used to define the way that unhandled exceptions are processed to
create client responses. See Chapter 25.

GetExceptionLoggers This method returns all of the registered implementations of the
IExceptionLogger interface, which are used to record unhandled exceptions.
See Chapter 25.

GetHttpControllerActivator This method returns an implementation of the IHttpControllerActivator
interface, which is used to instantiate controller classes. See Chapter 19.

GetHttpControllerSelector This method returns an implementation of the IHttpControllerSelector
interface, which is used to select controllers. See Chapter 19.

GetHttpControllerTypeResolver This method returns an implementation of the
IHttpControllerTypeResolver, which is used to locate controller classes
when the application starts. See Chapter 19.

GetModelBinderProviders This method returns all of the registered classes that are derived from the
abstract ModelBinderProvider class, which are used during the model
binding process. See Chapter 16.

GetValueProviderFactories This method returns all of the registered classes that are derived from the
abstract ValueProviderFactory class, which are used during the parameter
binding process. See Chapter 15.

Dispatchers and Handlers
Web API has a well-defined model for processing requests, which I describe in Part 3 of this book. There are lots of
opportunities for customizing or extending this process, including adding message handlers and changing the way
that controllers are selected, instantiated, and executed (all of which I describe in Chapter 19). You can also customize
the way that errors are handled (Chapter 25) and inject additional logic into the dispatch process through the use of
filters (Chapters 23 and 24).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ the anatomy of aSp.net Web apI

190

Summary
In this chapter, I described the components that you will encounter in Web API development, briefly explained what
they do, and told you which chapters contain more detailed information. A chapter made up of quick-reference
tables does not make for exciting reading, but you will find the information that the tables contain useful as you
start to create your own Web API projects because there are a bewildering number of new classes and interfaces to
understand. In the next chapter, I show you how to create and configure a Web API application.

www.it-ebooks.info

http://www.it-ebooks.info/

191

Chapter 10

Creating and Configuring a Web API
Application

In this chapter, I create the example application that I use for all the chapters in this part of the book. I show you how
to perform basic configuration and set up dependency injection to create loosely coupled components. In short,
this chapter sets the foundation for the more detailed topics that follow so that I don’t have to create a new example
application in each chapter.

That said, dependency injection for Web API applications is an interesting topic in its own right because it is an
example of the kinds of problems that arise when designing applications that have Web API and MVC components
that work together. Web API uses a completely different set of namespaces and types, but behind that is an evolution
in design that shows up in the way that dependency injection for Web API differs from what you are used to in the
MVC framework. Table 10-1 summarizes this chapter.

Table 10-1. Chapter Summary

Problem Solution Listing

Configure a Web API
application.

Add statements that manipulate the properties of the
HttpConfiguration object in the Register method of the
WebApiConfig class (which can be found in the App_Start folder).

1–9

Implement dependency
injection for Web API.

Implement the IDependencyResolver and IDependencyScope
interfaces and register the IDependencyResolver implementation
using the HttpConfiguration.DependencyResolver property.

10–16

Implement shared
dependency injection for
Web API and MVC.

Like for Web API, but add the System.Web.Mvc.IDependencyResolver
interface to the set implemented by the resolver and call the
DependencyResolver.SetResolver method.

17–20

Preparing the Example Project
For this chapter, I need to create a new Visual Studio project. Select New Project from the File menu to open the
Visual Studio New Project dialog window, select the ASP.NET Web Application project type, and set the name to
ExampleApp. Click the OK button to advance through the wizard, selecting the Empty project template and checking
the options to add the core references for MVC and Web API, just as I did in Chapter 2. Click the OK button, and Visual
Studio will create the new project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

192

After Visual Studio finishes creating the project, enter the following commands into the Package Manager
Console to get the NuGet packages that are required:

Update-Package microsoft.aspnet.mvc -version 5.1.1
Update-Package microsoft.aspnet.webapi -version 5.1.1
Update-Package Newtonsoft.json -version 6.0.1
Install-Package jquery -version 2.1.0
Install-Package bootstrap -version 3.1.1
Install-Package knockoutjs –version 3.1.0

Creating the Model and Repository
My focus in this part of the book is on components that deliver web application functionality, so I need only a basic
model and repository. To keep the example simple, I will create a repository that maintains a collection of data objects
in memory. Listing 10-1 shows the contents of the Product.cs file that I added to the Models folder.

Listing 10-1. The Contents of the Product.cs File

namespace ExampleApp.Models {
 public class Product {
 public int ProductID { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
 }
}

This is a simplified version of the model class that I created for the SportsStore application in Chapter 5.
Listing 10-2 shows the contents of the Repository.cs class file that I added to the Models folder.

Listing 10-2. The Contents of the Repository.cs File

using System.Collections.Generic;

namespace ExampleApp.Models {
 public class Repository {
 private Dictionary<int, Product> data;
 private static Repository repo;

 static Repository() {
 repo = new Repository();
 }

 public static Repository Current {
 get { return repo; }
 }

 public Repository() {
 Product[] products = new Product[] {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

193

 new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 data = new Dictionary<int, Product>();

 foreach (Product prod in products) {
 data.Add(prod.ProductID, prod);
 }
 }

 public IEnumerable<Product> Products {
 get { return data.Values; }
 }

 public Product GetProduct(int id) {
 return data[id];
 }

 public Product SaveProduct(Product newProduct) {
 newProduct.ProductID = data.Keys.Count + 1;
 return data[newProduct.ProductID] = newProduct;
 }

 public Product DeleteProduct(int id) {
 Product prod = data[id];
 if (prod != null) {
 data.Remove(id);
 }
 return prod;
 }
 }
}

My example repository populates an in-memory collection with Product objects and exposes them through a mix
of properties and methods. Storing the data in memory means that the contents of the repository will be reset when
the application is restarted. There is a static Current property that returns a shared instance of the Repository class.
I use this to get the application up and working and then remove it when I demonstrate how to set up dependency
injection.

Creating an HTTP Web Service
I need a Web API controller to provide the HTTP web service for this chapter. I right-clicked the Controllers folder,
selected Add ➤ Controller from the pop-up menu, and selected Web API 2 Controller – Empty from the list of
controller types. I set the name to ProductsController and edited the Controllers/ProductsController.cs file that
Visual Studio created to define the controller shown in Listing 10-3. After editing the file, the controller defines a single
action that returns the collection of Product objects contained in the repository.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

194

Tip ■ by default, the action method is targeted with an http get request sent to the /api/products url. i explain
how this is handled in Chapter 22.

Listing 10-3. The Contents of the ProductsController.cs File

using System.Collections.Generic;
using System.Web.Http;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class ProductsController : ApiController {
 Repository repo;

 public ProductsController() {
 repo = Repository.Current;
 }

 public IEnumerable<Product> GetAll() {
 return repo.Products;
 }
 }
}

Note ■ the Repository object is obtained through the static Current property i added to the Repository class,
which means the ProductsController and Repository classes are tightly coupled. this presents the same problems in
a Web api application as it does in the MVC framework. i explain how you can use dependency injection to decouple the
components later in this chapter.

Creating the Browser Client
I am going to create a simple browser client using the MVC framework. The client will include the initial data
available in the repository and provide the user with the means to refresh that data through an Ajax request sent
to the web service. I right-clicked the Controllers folder, selected Add ➤ Controller from the pop-up menu, and
selected MVC 5 Controller – Empty from the list of controller types. I set the name to HomeController and edited the
Controllers/HomeController.cs file that Visual Studio created to define the controller shown in Listing 10-4.

Note ■ the HomeController class is tightly coupled to the Repository class in the same way that the Web api
controller i defined in the previous section is. i explain how to use dependency injection to break the dependency later in
the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

195

Listing 10-4. The Contents of the HomeController.cs File

using System.Web.Mvc;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class HomeController : Controller {
 Repository repo;

 public HomeController() {
 repo = Repository.Current;
 }

 public ActionResult Index() {
 return View(repo.Products);
 }
 }
}

I created a view for the Index action by right-clicking the method in the code editor and selecting Add View
from the pop-up menu. I set the name of the view to Index and checked the option to use a layout page. Listing 10-5
shows the contents of the Views/Index.cshtml file.

Listing 10-5. The Contents of the Index.cshtml File

@model IEnumerable<ExampleApp.Models.Product>
@{ ViewBag.Title = "Index";}

@section Scripts {
 <script>
 var products = ko.observableArray(
 @Html.Raw(Newtonsoft.Json.JsonConvert.SerializeObject(Model)));
 </script>
 <script src="~/Scripts/exampleApp.js"></script>
}

<div class="panel panel-primary">
 <div class="panel-heading">RSVPs</div>
 <table id="rsvpTable" class="table table-striped">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Price</th></tr>
 </thead>
 <tbody data-bind="foreach: products">
 <tr>
 <td data-bind="text: ProductID"></td>
 <td data-bind="text: Name"></td>
 <td data-bind="text: Price"></td>
 </tr>
 </tbody>
 </table>
</div>
<button data-bind="click: getProducts" class="btn btn-primary">Refresh</button>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

196

This view contains a table element, the contents of which I manage using the Knockout techniques that I
described in Chapter 3. To that end, I took the view model data and rendered it to a JavaScript array, like this:

...
<script>
 var products = ko.observableArray(
 @Html.Raw(Newtonsoft.Json.JsonConvert.SerializeObject(Model)));
</script>
...

MVC framework views that process data from HTTP web services need some way of generating HTML content
from that data, and the easiest way to approach this is to adopt a single mechanism throughout the view, starting with
the view model data that is rendered by Razor.

The view also contains a script element that loads the exampleApp.js file from the Scripts folder. I created
this file and added the code that is shown in Listing 10-6, which contains the getProducts function that I used in the
Knockout click binding on the Refresh button.

Tip ■ if you are following the examples by typing them in, then see Chapter 7 for details of how to create a
_references.js file that will enable intelliSense for JavaScript files. and don’t forget that you can download the
complete source code for every chapter in this book from www.apress.com.

Listing 10-6. The Contents of the exampleApp.js File

$(document).ready(function () {
 getProducts = function() {
 $.ajax("/api/products", {
 success: function (data) {
 products.removeAll();
 for (var i = 0; i < data.length; i++) {
 products.push(data[i]);
 }
 }
 })
 };
 ko.applyBindings();
});

The exampleApp.js file defines the getProducts function, which uses jQuery to make an Ajax GET request to the
/api/products URL. I have specified a success function, as described in Chapter 3, which updates the model that
Knockout maintains to update the contents of the table element.

The last step is to update the Views/Shared/_Layout.cshtml file that Visual Studio created when I added a view
for the Index action, as shown in Listing 10-7.

Listing 10-7. The Contents of the _Layout.cshtml File

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <script src="~/Scripts/jquery-2.1.0.min.js"></script>

www.it-ebooks.info

http://www.apress.com/
http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

197

 <script src="~/Scripts/jquery.validate.js"></script>
 <script src="~/Scripts/jquery.validate.unobtrusive.js"></script>
 <script src="~/Scripts/knockout-3.1.0.js"></script>
 <link href="~/Content/bootstrap.css" rel="stylesheet" />
 <link href="~/Content/bootstrap-theme.css" rel="stylesheet" />
 <title>@ViewBag.Title</title>
 <style>
 body { padding-top: 10px; }
 .validation-summary-errors { font-weight: bold; color: #f00; }
 </style>
 @RenderSection("Scripts", false)
</head>
<body class="container">
 @RenderBody()
</body>
</html>

Visual Studio adds default content that I don’t need, so I have replaced the content with a simple document that
loads the JavaScript and CSS files I require and renders the Scripts and body sections of views.

Testing the Example Application
I am going to test the web service and web client separately. Start the application and request the /Home/Index URL.
If the application is working, then you will see an initial snapshot of the data in the HTML that the MVC controller
sends to the browser, as shown in Figure 10-1.

Figure 10-1. Testing the MVC client for the example application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

198

Tip ■ the jQuery code in the exampleApp.js file handles the refresh button click event by requesting the same data
from the Web api controller, but you will need to use the f12 tools to monitor the network requests to see what’s
happening because there is no visible change in the browser window.

I am going to use Postman, which I explained how to set up in Chapter 1, to test the web service. There is only
one action method defined by the Web API controller, which is targeted through the /api/products URL.

To test with Postman, I need to know what TCP port the example application will be using to listen for HTTP
requests, which there are two ways to determine. The first is to select ExampleApp Properties from the Visual Studio
Project menu, select the Web tab, and locate the Project URL field, as shown in Figure 10-2.

Figure 10-2. Determining the project URL using Visual Studio

Figure 10-3. Getting the TCP port from the browser bar

The other approach is to look at the browser bar, which shows the URL that Visual Studio told the browser to
request, as shown in Figure 10-3.

As both figures show, the example application will run on port 29844 on my system, although you will have a
different value. The following is the URL I need to enter into Postman is to test my example:

http://localhost:29844/api/products

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

199

Using Postman to send a GET request to the URL produced the following result:

 [{"ProductID":1,"Name":"Kayak","Price":275.0},
 {"ProductID":2,"Name":"Lifejacket","Price":48.95},
 {"ProductID":3,"Name":"Soccer Ball","Price":19.50},
 {"ProductID":4,"Name":"Thinking Cap","Price":16.0}]

Configuring a Web API Application
It should come as no surprise that Web API applications are configured in a new and different way. In this section,
I explain how Web API applications are configured and describe the classes that are used to manage the
configuration process. I use these classes later in the chapter when I demonstrate the process for setting up
dependency injection and throughout the rest of the book as I describe different Web API features. Table 10-2 puts
Web API configuration in context.

Table 10-2. Putting Web API Configuration in Context

Question Answer

What is it? The configuration system allows the behavior of Web API infrastructure and
components to be customized.

When should I use it? Configuring Web API is required whenever you want to change the default behavior,
including defining new routes (see Chapters 20 and 21) or setting up dependency
injection (described later in this chapter).

What do I need to know? Web API doesn’t use the standard ASP.NET platform configuration features, such as the
Web.config file. Configuration is performed in the App_Start/WebApiConfig.cs file,
which is referenced from the global application class when Web API is deployed to IIS.

Configuring Web API Through the ASP.NET Platform
When hosting Web API in IIS, either hosted locally or on Azure, the starting point for the configuration process is the
Global Application Class, just as it is for the MVC framework. However, not all Web API deployment options have a
global application class, and it is used only to bootstrap the configuration process. Listing 10-8 shows the contents of
the Global.asax.cs file, which you can open by double-clicking the Global.asax item in Solution Explorer.

Listing 10-8. The Contents of the Global.asax.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using System.Web.Security;
using System.Web.SessionState;
using System.Web.Http;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

200

namespace ExampleApp {
 public class Global : HttpApplication {
 void Application_Start(object sender, EventArgs e) {
 AreaRegistration.RegisterAllAreas();
 GlobalConfiguration.Configure(WebApiConfig.Register);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 }
 }
}

The important statement is this one, which kicks off the Web API configuration process:

...
GlobalConfiguration.Configure(WebApiConfig.Register);
...

The System.Web.Http.GlobalConfiguration class provides the entry point for configuring Web API and defines
the static members shown in Table 10-3.

Table 10-3. The Members Defined by the GlobalConfiguration Class

Name Description

Configuration Returns an HttpConfiguration object that represents the Web API configuration.
See Table 10-4 for details.

DefaultHandler Returns the HttpMessageHandler that is used to handle requests by default.
See Chapter 19.

Configure(callback) Registers a callback method that will be invoked to configure the application.

Caution ■ do not add configuration statements for Web api components to the global application Class because
it won’t be available if you deploy your web service outside of iiS or azure. use the WebApiConfig.cs file shown
in listing 10-9.

Listing 10-9. The Contents of the WebApiConfig.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

201

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

The Configure method allows a callback method to be specified that will be passed a
System.Web.Http.HttpConfiguration object so that Web API can be configured.

Tip ■ an instance of the HttpConfiguration class is accessible throughout the application via the static
GlobalConfiguration.Configuration property and through some of the Web api context objects that i described
in Chapter 9.

The call to the GlobalConfiguration.Configure method in the global application class calls the
WebApiConfig.Register method, defined in the App_Start/WebApiConfig.cs file. Listing 10-9 shows the initial
contents of the WebAPiConfig.cs file, as created by Visual Studio.

The default configuration statements in the WebApiConfig.cs file sets up the URL routing, which I describe in
Chapters 20 and 21, but I’ll add additional configuration statements that set other HttpConfiguration properties
throughout the book.

Tip ■ notice that the routing configuration for Web api is kept separate from the RouteConfig.cs file used to
configure routes for MVC framework and Web forms applications.

Understanding the Configuration Object
The Web API configuration is managed through an instance of the HttpConfiguration class, which presents a series
of properties that return objects that determine how Web API will handle HTTP requests. Configuring or customizing
Web API means changing the value of these properties in the configuration callback method described in the previous
section. The HttpConfiguration class defines the properties shown in Table 10-4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

202

These properties—and the objects they return—define the infrastructure that Web API uses to process HTTP
requests, and the table contains references to the parts of the book where I describe of them in depth. I start in the
next section, where I show you how to set up an important feature: dependency injection.

Tip ■ You can also define configurations for individual controllers. See Chapter 22 for details.

Configuring Web API Dependency Injection
In Chapter 4, I explained the importance of ensuring that web services and their clients are loosely coupled, and this
is a theme that carries over to the components within the Web API application.

The controllers and the repository that I created in the example application are tightly coupled: the controllers
obtain an instance of the Repository class and use its properties directly to access the data it provides access to. This
is a problem for the same reasons that tightly coupled components are avoided in the MVC framework: it makes it
harder to test the controller without also implicitly testing the repository, and it means that changing the repository
means finding all of the references to the Repository class and replacing them, a process that is time-consuming and
error-prone.

Dependency injection (DI) breaks the direct dependency between classes. A dependency injection container is
configured with mappings between interfaces and implementation classes and is used by Web API to create instances
of the classes it requires to handle HTTP requests. The DI container inspects the classes it has been asked to create
and resolves dependencies on the interfaces it has been configured with by creating and injecting the implementation
classes. In this way, I can arrange my application so that my controllers depend on the IRepository interface without
any direct knowledge of which implementation class they receive in their constructor. DI allows me to change the
implementation that I use or to create mock implementations for unit testing without having to make any changes to
the controller class.

Table 10-4. The Properties Defined by the HttpConfiguration Class

Name Description

DependencyResolver Gets or sets the class used for dependency injection. See the “Configuring Web API
Dependency Injection” section of this chapter.

Filters Gets or sets the request filters, which I describe in Chapters 23 and 24.

Formatters Gets or sets the media type formatters, which I describe in Chapters 12 and 13.

IncludeErrorDetailPolicy Gets or sets whether details are included in error messages. See Chapter 25.

MessageHandlers Gets or sets the message handlers, which I describe in Chapter 19.

ParameterBindingRules Gets the rules by which parameters are bound, as described in Chapter 14.

Properties Returns a ConcurrentDictionary<object, object> that can be used as a general
property bag to coordinate the behavior of components.

Routes Gets the set of routes configured for the application. See Chapters 20 and 21.

Services Returns the Web API services, as described in Chapter 9.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

203

a WOrD aBOUt DepeNDeNCY INJeCtION

not everyone likes dependency injection: it can be a mind-bending topic, the tools can be difficult to master, and it
is easy to end up creating objects that are disposed of too quickly or kept around too long.

there is no rule that says you must use di in your projects. i am a fan di, but even i don’t use it when prototyping
or working on simple applications. if you are a non-di reader, then skip the rest of this chapter and go to Chapter 11,
where i start digging into the detail of Web api.

Although DI plays the same role for Web API as it does in the MVC framework, the approach required is different
and a slight improvement, but there are some issues to be aware of, especially when it comes to creating instances of
objects for each HTTP request. Table 10-5 puts Web API dependency injection in context.

Table 10-5. Putting Dependency Injection in Context

Question Answer

What is it? Dependency injection allows interfaces to be used without direct knowledge of the
classes that implement them, creating loosely coupled components.

When should I use it? You should use dependency injection in any project that you need to unit test or where
you expect to make changes following deployment.

What do I need to know? Web API defines two interfaces to support DI but are some obstacles to implementing
per-request object scopes in Web API applications without relying on the ASP.NET
platform.

Preparing for Dependency Injection
In this section, I’ll add an interface to the example application and use it to break the direct dependency so that the
Web API controller can access repository functionality abstractly. I am going to focus on setting up DI for Web API first
and then show you how to manage DI in an application that contains both MVC framework and Web API controllers.

I need to define an interface that the Repository class can implement and that the Products controller can
depend on. To this end, I created a class file called IRepository.cs in the Models folder and used it to define the
interface shown in Listing 10-10.

Listing 10-10. The Contents of the IRepository.cs File

using System.Collections.Generic;

namespace ExampleApp.Models {
 public interface IRepository {

 IEnumerable<Product> Products { get; }
 Product GetProduct(int id);
 Product SaveProduct(Product newProduct);
 Product DeleteProduct(int id);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

204

Having defined the interface, I can update the Repository class to implement it, as shown in Listing 10-11.

Listing 10-11. Implementing the IRepository Interface in the Repository.cs File

using System.Collections.Generic;

namespace ExampleApp.Models {
 public class Repository : IRepository {
 private Dictionary<int, Product> data;
 private static Repository repo;

 // ...statements omitted for brevity...
 }
}

The final preparatory step is to update the Web API controller so that it declared a dependency on the IRepository
interface in its constructor. Listing 10-12 shows the changes I made to the Products controller.

Listing 10-12. Declaring a Dependency in the ProductsController.cs File

using System.Collections.Generic;
using System.Web.Http;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class ProductsController : ApiController {
 IRepository repo;

 public ProductsController(IRepository repoImpl) {
 repo = repoImpl;
 }

 public IEnumerable<Product> GetAll() {
 return repo.Products;
 }
 }
}

Tip ■ i am focusing on just the Web api controller for the moment. i’ll add di support for the MVC Home controller in the
“Configuring dependency injection for Web api and MVC” section.

The controller now declares a dependency on the IRepository interface in its constructor. Ninject supports a
range of different ways for classes to declare dependencies, but using the constructor is the one I like to use.

Understanding the Web API Dependency Interfaces
Dependency injection in Web API is handled by the IDependencyResolver and IDependencyScope interfaces,
which are defined in the System.Web.Http.Dependencies namespace. Listing 10-13 shows the definition of the
IDependencyResolver interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

205

Listing 10-13. The Definition of the IDependencyResolver Interface

namespace System.Web.Http.Dependencies {
 public interface IDependencyResolver : IDependencyScope {
 IDependencyScope BeginScope();
 }
}

Notice that the IDependencyResolver interface is derived from IDependencyScope; I’ll explain the effect of this
in the “The Relationship Between the Dependency Interfaces” sidebar, but Listing 10-14 shows the definition of the
IDependencyScope interface.

Listing 10-14. The Definition of the IDependencyScope Interface

using System.Collections.Generic;

namespace System.Web.Http.Dependencies {

 public interface IDependencyScope : IDisposable {

 object GetService(Type serviceType);
 IEnumerable<object> GetServices(Type serviceType);
 }
}

This IDependencyScope interface defines GetService and GetServices methods, which perform the same role as
in the equivalents in the MVC framework. The GetService method is called when the Web API infrastructure needs a
concrete type (such as a controller) or needs to use an interface for which there should be only one implementation
(such as the IHttpActionInvoker interface, which I describe in Chapter 22). The GetServices method is used when
the Web API infrastructure expects there to be multiple implementations of an interface, all of which are required
(such as IFilter, which I describe in Chapter 23).

the reLatIONShIp BetWeeN the DepeNDeNCY INterFaCeS

the inheritance relationship between the interfaces can be confusing, but it starts to make sense when you
understand that the Web api developers were trying to make it easier to deal with the two most common
dependency injection scenarios in a web application: creating objects that are used for the life of the application
and creating objects that are used for a single request.

When the application starts, a single instance of the IDependencyResolver implementation object is created and
kept by Web api for the life of the application, and its GetService and GetServices methods are used whenever
an object is required for the Web api infrastructure. in practice, this means it is used to create a lot of objects
when the application is started (filters, data formatters, and so on) and then not used again.

there is only ever one instance of the class that implements the IDependencyResolver interface. When Web
api needs an object that will be used for a single request, such as a controller or a database context class, then
it calls the BeginScope method of the IDependencyResolver object in order to get an implementation of the
IDependencyScope interface and uses the GetService and GetServices methods to create the instances it
needs. When the request has been handled and the objects that have been created are no longer required, Web
api calls the Dispose method on the IDependencyScope object (because it implements IDisposable) so that the
objects that have been created can be prepared for destruction.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

206

Most di containers support scopes, which are used to decide when to create a new instance of a class and when
to reuse an existing instance. building the per-request scopes into the dependency interfaces makes it easier to
integrate di containers into the Web api request handling process. Most di containers rely on the System.Web.
HttpContext class to support per-request object life cycles, which can be a problem with Web api because you
cannot rely on the System.Web classes. it will be a while before the mainstream dependency injection containers
catch up to the new Web api design, and until then, it can be slightly awkward to align container scopes to Web
api scopes (as you will see in the “implementing the dependency interfaces” section).

Installing the Dependency Injection Container
Many dependency injection containers are available, and it is worth looking at a few before making a decision.
Popular choices include StructureMap, Castle Windsor, and Unity, which comes from Microsoft.

The DI container that I always return to in my projects and my books is Ninject, which I described in Pro ASP.NET
MVC 5. I like its simple and fluent API, and I have yet to encounter a problem that wasn’t easily solved. You don’t have
to use Ninject in your own projects, of course, and the techniques that I describe in this chapter apply equally to any
DI container package.

Ninject, like all of the major DI containers, is available as a NuGet package. To install Ninject, I entered the
following commands into the Visual Studio Package Manager Console window:

Install-Package Ninject -version 3.0.1.10
Install-Package Ninject.Extensions.ChildKernel -Version 3.0.0.5

Implementing the Dependency Interfaces
Ninject makes it easy to support the two Web API resolution interfaces, and although it may seem odd, the
easiest way to do so is by creating a single class. I created an Infrastructure folder and added a class file called
NinjectResolver.cs to it, the contents of which are shown in Listing 10-15.

Listing 10-15. The Contents of the NinjectResolver.cs File

using System;
using System.Collections.Generic;
using System.Web.Http.Dependencies;
using ExampleApp.Models;
using Ninject;
using Ninject.Extensions.ChildKernel;

namespace ExampleApp.Infrastructure {

 public class NinjectResolver : IDependencyResolver {
 private IKernel kernel;

 public NinjectResolver() : this (new StandardKernel()) {}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

207

 public NinjectResolver(IKernel ninjectKernel, bool scope = false) {
 kernel = ninjectKernel;
 if (!scope) {
 AddBindings(kernel);
 }
 }

 public IDependencyScope BeginScope() {
 return new NinjectResolver(AddRequestBindings(
 new ChildKernel(kernel)), true);
 }

 public object GetService(Type serviceType) {
 return kernel.TryGet(serviceType);
 }

 public IEnumerable<object> GetServices(Type serviceType) {
 return kernel.GetAll(serviceType);
 }

 public void Dispose() {
 // do nothing
 }

 private void AddBindings(IKernel kernel) {
 // singleton and transient bindings go here
 }

 private IKernel AddRequestBindings(IKernel kernel) {
 kernel.Bind<IRepository>().To<Repository>().InSingletonScope();
 return kernel;
 }
 }
}

UNDerStaNDING OBJeCt SCOpeS

When working with dependency injection in web applications, there are three types of objects you need to create:
singleton objects, request objects, and transient objects.

Singleton objects are instantiated the first time they are required, and all classes that depend on them share
the same instance. as the same suggests, there is a single instance in the application. if my Repository class
in the example application were configured as a singleton, then only one instance would be created, and every
Products controller object that was created would receive that instance to satisfy its dependency on the
IRepository interface. Singleton objects have to be written to deal with their long life and the need to protect
their state against multiple concurrent callers.

transient objects are instantiated every time there is a dependency on them. if my Repository class were configured
as a transient, a new instance would be created each time a Products controller was created. transient objects are not
reused by the dependency injection container, and their life is generally tied to the life of the object they are injected into.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

208

request objects are somewhere in the middle. a new instance is created for each request that the web
application receives and is reused to resolve dependencies declared by all of the objects created by the Web api
infrastructure to process that request. or, to put it another way, the objects created to process a single request
share a single instance of the request object. the request object is discarded after the request has been handled.

repository classes are usually configured as request objects, which allows all of the objects that deal with a
single request to share a common view of the model, and all see the changes that the request causes. and,
since just about every Web api and MVC framework application has a repository, supporting request objects is an
important feature.

each of these object types is configured by creating a dependency injection scope. i explain how to create each
kind of scope using ninject later in the chapter.

Caution ■ a number of nuget packages extend ninject in order to integrate the di functionality into different
environments. as i write this, there are several that are aimed at aSp.net Web api, but they all assume you will be
deploying your application to iiS, and they rely on the aSp.net platform module feature to manage per-request object life
cycles. the class shown in listing 10-15 supports Web api dependency injection without relying on the aSp.net platform,
so you can deploy your web service freely. See the “Configuring dependency injection for Web api and MVC” section for
sharing di between Web api and MVC framework components, where relying on the aSp.net platform can be an
acceptable compromise.

This class acts as the touch point between Web API and Ninject. It implements both of the Web API dependency
interfaces (NinjectResolver implements IDependencyResolver, which is derived from IDependencyScope) and
responds to the BeginScope method by creating a child kernel, which allows me to use Ninject to create objects scopes
for each request. There is only one dependency mapping in the example application, which I set up as follows:

...
kernel.Bind<IRepository>().To<Repository>().InSingletonScope();
...

I have highlighted the three important parts of the statement. The generic type parameter for the Bind method
specifies the interface that I want to configure, which is IRepository in this case. The generic type parameter for the
To method specifies the implementation class that Ninject should use to resolve dependencies on the interface, which
is the Repository class in this example.

The final part of the mapping statement is a call to the InSingletonScope method, which specifies the scope for
the instances of the class that are created to resolve dependencies on the interface.

This is where things get a little confusing because of the way that the NinjectResolver class works: I create a
request scope by creating a child kernel for each request and creating a singleton scope on the child kernel, ensuring
that there is only one instance of the object created for each request.

Tip ■ don’t worry if this doesn’t make immediate sense because it is an implementation detail specific to one
dependency injection container. You can use the NinjectResolver class as-is in your projects, just as long as you follow
the instructions in table 10-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

209

This wrinkle means there are two methods in which bindings between interfaces and their implementations are
defined: the AddBindings and AddRequestBindings methods. The AddBindings method is used to define singleton
and transient scopes, and the AddRequestBindings method is used to define request scopes. Table 10-6 summarizes
the three object scopes and gives examples of how to use the methods defined by the NinjectResolver class.

Tip ■ the singleton and request bindings are both created with the InSingletonScope method, but request scopes
are set up in the AddRequestBindings method, which is called on the child ninject kernels created when the
BeginScope method is called.

Configuring Web API
The final step is to configure the Web API to use the NinjectResolver class to resolve dependencies. Listing 10-16
shows the additions I made to the WebApiConfig.cs file to perform the configuration.

Listing 10-16. Configuring Dependency Injection in the WebApiConfig.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using ExampleApp.Infrastructure;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

Table 10-6. Creating Web API Object Scopes with Ninject

Scope Method Example

Singleton AddBindings kernel.Bind<IRepository>().To<Repository>() .InSingletonScope();

Request AddRequestBindings kernel.Bind<IRepository>().To<Repository>() .InSingletonScope();

Transient AddBindings kernel.Bind<IRepository>().To<Repository>();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

210

The HttpConfiguration.DependencyResolver is set to a new instance of the NinjectResolver class, which
means that Web API will use it to instantiate the objects it needs for the application infrastructure and to handle
individual requests.

Configuring Dependency Injection for Web API and MVC
Although Web API is using the NinjectResolver class to resolve dependency, the MVC Home controller remains tightly
coupled to the Repository class. In this section, I am going to show you how to set up dependency injection for an
application that contains Web API and MVC components. This is a simple process because the MVC framework can
be hosted only on the ASP.NET platform, which means that the request scope support that DI containers such as
Ninject provide can be used, even in the Web API components.

Note ■ using the technique in this section ties your web services the aSp.net platform because it relies on the
System.Web.HttpContext class being instantiated and providing access to an HttpRequest object that describes the
current request. these classes are not part of the Web api namespaces, and using them prevents Web api components
from being deployed outside of iiS. for the moment, at least, most Web api applications will be deployed to the aSp.net
platform, but if you decide that you want to separate the Web api and MVC components at a later date, then you will have
to revert to the techniques i described earlier in the chapter.

Declaring the Dependency
I am going to start by updating the Home controller so that it no longer uses the Repository class directly and instead
declares a dependency on the IRepository interface, as shown in Listing 10-17.

Listing 10-17. Declaring a Dependency in the HomeController.cs File

using System.Web.Mvc;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class HomeController : Controller {
 IRepository repo;

 public HomeController(IRepository repoImpl) {
 repo = repoImpl;
 }

 public ActionResult Index() {
 return View(repo.Products);
 }
 }
}

Now that both the Web API and MVC controllers declare dependencies on the IRepository interface, I have
taken the opportunity to remove the static property and constructor from the Repository class, which would
cause an extra Repository object to be created the first time the class was instantiated to resolve a dependency.
Listing 10-18 shows the statements that I commented out.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

211

Listing 10-18. Removing the Static Instance from the Repository.cs File

using System.Collections.Generic;

namespace ExampleApp.Models {
 public class Repository : IRepository {
 private Dictionary<int, Product> data;
 //private static Repository repo;

 //static Repository() {
 // repo = new Repository();
 //}

 //public static Repository Current {
 // get { return repo; }
 //}

 // ...other statements omitted for brevity...
 }
}

Installing the Dependency Injection Packages
I need to install two additional Ninject packages, which I do by entering the following commands into the Visual
Studio Package Manager Console window:

Install-Package Ninject.Web.Common -version 3.0.0.7
Install-Package Ninject.MVC3 -Version 3.0.0.6

The Ninject.Web.Common package contains support for integrating dependency injection with the ASP.NET

platform so that dependencies on modules and handlers can be resolved. The Ninject.MVC3 package adds additional
features required by the MVC framework (don’t worry about the reference to MVC3 because the package works
happily with MVC 3, 4, and 5). This package adds a NinjectWebCommon.cs file to the App_Start folder that contains
code to set up dependency injection for ASP.NET modules and handlers. This file can be ignored or deleted because it
has no bearing on Web API.

Tip ■ See my Pro ASP.NET MVC 5 Platform book, published by apress, if you are not familiar with aSp.net platform
components such as modules and handlers. even though you should avoid directly relying on the aSp.net platform when
using Web api, there are many features that are useful in MVC framework applications.

Adding MVC Support to the Resolver
MVC framework dependency resolution is handled by the System.Web.Mvc.IDependencyResolver interface, which
defines the methods described in Table 10-7.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

212

These methods match the ones defined by the Web API IDependencyScope interface, which I listed in
Listing 10-14. This duplication allows me to extend the NinjectResolver class to support both Web API and the
MVC framework, as shown in Listing 10-19.

Listing 10-19. Adding MVC Framework Support to the NinjectResolver.cs File

using System;
using System.Collections.Generic;
using System.Web.Http.Dependencies;
using ExampleApp.Models;
using Ninject;
using Ninject.Extensions.ChildKernel;
using Ninject.Web.Common;

namespace ExampleApp.Infrastructure {

 public class NinjectResolver : System.Web.Http.Dependencies.IDependencyResolver,
 System.Web.Mvc.IDependencyResolver {
 private IKernel kernel;

 public NinjectResolver() : this (new StandardKernel()) {}

 public NinjectResolver(IKernel ninjectKernel) {
 kernel = ninjectKernel;
 AddBindings(kernel);
 }

 public IDependencyScope BeginScope() {
 return this;
 }

 public object GetService(Type serviceType) {
 return kernel.TryGet(serviceType);
 }

 public IEnumerable<object> GetServices(Type serviceType) {
 return kernel.GetAll(serviceType);
 }

 public void Dispose() {
 // do nothing
 }

Table 10-7. The Methods Defined by the MVC IDependencyResolver Interface

Name Description

GetService(type) Resolves a type for which one implementation is registered

GetServices(type) Resolves a type for which multiple implementations are registered

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

213

 private void AddBindings(IKernel kernel) {
 kernel.Bind<IRepository>().To<Repository>().InRequestScope();
 }
 }
}

The Web API and MVC framework interfaces have the same name, so I have to use the fully qualified names in
the class definition in order to implement both interfaces.

Being able to rely on the ASP.NET platform means that Ninject is able to provide the InRequestScope method,
which configures bindings so that the objects they create are scoped to the request. This allows me to support the Web
API BeginScope method without using child kernels and, in turn, to consolidate my bindings into a single method.
The overall effect is to simplify the dependency resolution class by tying the life of per-request objects to the features
provided by the ASP.NET platform.

But this simpler and more elegant approach comes at the cost of depending on the ASP.NET platform, which
limits the deployment options for the application, but that is likely to be an acceptable trade-off for most applications
if they contain MVC components. Table 10-8 shows how to create the different object scopes using the resolver in
Listing 10-19.

Table 10-8. Creating Web API and MVC Object Scopes with Ninject

Scope Method Example

Singleton AddBindings kernel.Bind<IRepository>().To<Repository>().InSingletonScope();

Request AddBindings kernel.Bind<IRepository>().To<Repository>().InRequestScope();

Transient AddBindings kernel.Bind<IRepository>().To<Repository>();

This is a more natural way of using Ninject and is the same set of methods that you would use if you were working
with just the MVC framework on its own.

Configuring the MVC Framework
The final step is to configure the MVC framework so that the NinjectResolver class is used to create objects and
resolve dependencies. Listing 10-20 shows the changes that I made to the Global Application Class.

Listing 10-20. Configuring Dependency Injection in the Global.asax.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using System.Web.Security;
using System.Web.SessionState;
using System.Web.Http;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Creating and Configuring a Web api appliCation

214

namespace ExampleApp {
 public class Global : HttpApplication {
 void Application_Start(object sender, EventArgs e) {

 AreaRegistration.RegisterAllAreas();
 GlobalConfiguration.Configure(WebApiConfig.Register);
 RouteConfig.RegisterRoutes(RouteTable.Routes);

 System.Web.Mvc.DependencyResolver.SetResolver(
 (System.Web.Mvc.IDependencyResolver)
 GlobalConfiguration.Configuration.DependencyResolver);
 }
 }
}

I could have moved the Web API configuration statement from the WebApiConfig.cs file to the Global
Application Class, but I wanted to demonstrate the way that the Web API configuration is universally available.
The statement I added uses the GlobalConfiguration.Configuration property to obtain an instance of the
HttpConfiguration class, reads the DependencyResolver to get the NinjectResolver instance, and uses it as the
argument to the DependencyResolver.SetResolver method to configure the MVC framework. The effect is to apply a
single instance of the NinjectResolver class as the resolver for the entire application so that the MVC framework and
Web API share the same set of singleton objects and have access to the same set of request and transient objects.

Summary
In this chapter, I created and configured the example application that I will use in this part of the book. I explained
the most important configuration classes and used them to show you how to set up dependency injection, with and
without dependencies on the ASP.NET platform. In the next chapter, I start to dig into the details of ASP.NET Web API,
starting with the results that action methods produce. This may not sound like a promising topic, but, as you will see,
results define the character of an HTTP web service, and knowing how to produce the results you require is essential
for effective Web API development.

www.it-ebooks.info

http://www.it-ebooks.info/

215

Chapter 11

Action Method Results

In this chapter, I start digging into the details of how Web API web services work, starting right at the heart of web
services, namely, the different ways that action methods return results and how these are used to generate HTTP
responses. As you will learn, Web API has convenient features that use the standard characteristics of C# methods to
express results, which makes generating the most common types of results easy. Behind this convenience is a flexible
and extensible system of action results, which are similar to the ones used by the MVC framework and which allow for
complete control over the HTTP response sent to the client. I explain how this system works and demonstrate how
you can customize it. Table 11-1 summarizes this chapter.

Table 11-1. Chapter Summary

Problem Solution Listing

Define an action method that doesn’t
return any data.

Return void from the method. 1–4

Define an action method that returns
a result.

Return an implementation of the IHttpActionResult
interface from the action method.

5–10

Select the data format that will be used
for serialized data.

Create a content negotiation class. 11, 12

Register a content negotiation class. Replace the service implementation of the
IContentNegotiator interface with the custom class.

13, 14

Specify a result code to be used in a
response that contains serialized data.

Create a negotiable action result. 15

Preparing the Example Project
In this chapter, I am going to continue working with the ExampleApp project I created in Chapter 10. There is one
change required to prepare for this project, which is to change the dependency injection object life cycle for the
Repository class. In Chapter 10, I was focused on showing you how to create objects that are scoped to individual
requests because that is what is usually required for real repository objects that are backed by a database, such as the
one I used in Chapter 5. My example Repository class, however, keeps its model data in memory, which means
I need to create one instance of the Repository class and use it throughout the life of the application; otherwise, each
request will be working solely with the default data. Listing 11-1 shows the change I made to the NinjectResolver
class to change the scope of the Repository class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

216

Tip ■ remember that you don’t have to create the example project yourself. You can download the source code for
every chapter for free from Apress.com.

Listing 11-1. Changing an Object Scope in the NinjectResolver.cs File

using System;
using System.Collections.Generic;
using System.Web.Http.Dependencies;
using ExampleApp.Models;
using Ninject;
using Ninject.Extensions.ChildKernel;
using Ninject.Web.Common;

namespace ExampleApp.Infrastructure {

 public class NinjectResolver : System.Web.Http.Dependencies.IDependencyResolver,
 System.Web.Mvc.IDependencyResolver {
 private IKernel kernel;

 public NinjectResolver() : this(new StandardKernel()) { }

 public NinjectResolver(IKernel ninjectKernel) {
 kernel = ninjectKernel;
 AddBindings(kernel);
 }

 public IDependencyScope BeginScope() {
 return this;
 }

 public object GetService(Type serviceType) {
 return kernel.TryGet(serviceType);
 }

 public IEnumerable<object> GetServices(Type serviceType) {
 return kernel.GetAll(serviceType);
 }

 public void Dispose() {
 // do nothing
 }

 private void AddBindings(IKernel kernel) {
 kernel.Bind<IRepository>().To<Repository>().InSingletonScope();
 }
 }
}

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

217

As I explained in Chapter 10, using the InSingletonScope method means that one instance will be created and
used to resolve all of the dependencies for the IRequest interface in the application. (As a reminder, this is the version
of the resolver that supports applications containing MVC and Web API components.)

Understanding Action Method Results
As I explain in detail in Chapter 22, the goal of a controller is to use an action method to process an
HttpRequestMessage object in order to create an HttpResponseMessage object. The HttpRequestMessage describes
the request to be handled, and the HttpResponseMessage describes the response to be returned to the client. The
hosting environment (which will typically be IIS, but see Chapter 26 for another option) is responsible for creating the
HttpResponseMessage object to represent the request and turning the HttpRequestMessage into an HTTP response
and sending it to the client. Figure 11-1 shows the basic flow.

Client Hosting Controller Action

Request HttpRequestMessage
HttpRequestMessage

+ Model

ResultHttpResponseMessageResponse

Figure 11-1. The basic request and result flow

The controller provides the action method with the data contained in the request using model binding,
which I describe in Chapters 14–17, and about the request itself through the HttpRequestMessage object. The
HttpRequestMessage object is part of the System.Net.Http namespace and presents a general view of an HTTP
request that Web API can operate on using the properties shown in Table 11-2.

Table 11-2. The Properties Defined by the HttpRequestMessage Class

Name Description

Content Returns an HttpContent object that contains the content of the HTTP request. Request content is
accessed through the model binding feature, which I describe in Chapters 14 –17.

Headers Returns an HttpRequestHeaders object that contains the headers sent by the client.

Method Returns an HttpMethod object that describes the HTTP method/verb for the request.

Properties Returns a dictionary that contains objects provided by the hosting environment.

RequestUri Returns the URL requested by the client, expressed as an Uri object.

Version Returns the version of HTTP that was used to make the request, expressed as a
System.Version object.

Action methods can return C# objects that represent model data or by creating an HttpResponseMessage object
directly. Actions can also elect to return a result but still respond to the client to acknowledge that an operation has
been successfully completed. I describe the different kinds of results in the sections that follow, and Table 11-3 puts
action methods results into context.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

218

Returning No Result
The simplest way to respond to an HTTP request is to return no result data at all. This isn’t as odd as it might seem
because web services often need to provide actions that perform work but that don’t generate a data response. As
an example, a request to delete an object from the repository may not require any data to be returned to the client
because the HTTP status code will indicate whether the operation was successful. A status code in the 200 range will
indicate success, and a code in the 400 or 500 range will indicate a failure. Action methods that don’t produce data
return void, as shown in Listing 11-2.

Listing 11-2. Adding an Action Method That Returns void in the ProductsController.cs File

using System.Collections.Generic;
using System.Web.Http;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class ProductsController : ApiController {
 IRepository repo;

 public ProductsController(IRepository repoImpl) {
 repo = repoImpl;
 }

 public IEnumerable<Product> GetAll() {
 return repo.Products;
 }

 public void Delete(int id) {
 repo.DeleteProduct(id);
 }
 }
}

I have added a Delete action method that calls the corresponding method defined by the repository. The method
returns void, which means that no data will be returned to the client.

The simplest way to test the action method is with Postman, which will clearly display the HTTP result code returned
by the server. Sending an HTTP DELETE request to /api/products/1 will result in status code 204, as shown in Figure 11-2.

Table 11-3. Putting Action Method Results in Context

Question Answer

What is it? The result from an action method describes the HTTP response that will be sent to
the client.

When should you use it? You need to explicitly specify results when you want control over the HTTP response
sent to the client, but all action methods produce results, even when the void
keyword is used in the method signature.

What do you need to know? Web API has some nice features that hide away the details of creating HTTP
responses for common outcomes, but you will need to understand the different kinds
of results that are available to get full control over the operation of a web service.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

219

Figure 11-2. Targeting an action method that returns no data

Status code 204 is the No Data code, which is defined as follows:

The server has fulfilled the request but does not need to return an entity-body.

You can see the full W3C definition of status codes at www.w3.org/Protocols/rfc2616/rfc2616-sec10.html, but

this is the result code that is used most commonly for delete operations in web services.

Consuming a No Result Action Method
jQuery treats any HTTP status code in the 200 range as a success, so dealing with action methods that don’t return
data is a matter of defining a success callback function that updates the client-side data model to reflect the operation
that has been performed. Listing 11-3 shows the changes that I made to the Index.cshtml file to add Delete buttons
for each product data object.

Listing 11-3. Adding Product Delete Buttons to the Index.cshtml File

@model IEnumerable<ExampleApp.Models.Product>
@{ ViewBag.Title = "Index";}

@section Scripts {
 <script>
 var products = ko.observableArray(
 @Html.Raw(Newtonsoft.Json.JsonConvert.SerializeObject(Model)));
 </script>
 <script src="~/Scripts/exampleApp.js"></script>
}

<div class="panel panel-primary">
 <div class="panel-heading">RSVPs</div>
 <table id="rsvpTable" class="table table-striped">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Price</th></tr>
 </thead>
 <tbody data-bind="foreach: products">
 <tr>
 <td data-bind="text: ProductID"></td>
 <td data-bind="text: Name"></td>
 <td data-bind="text: Price"></td>
 <td>
 <button class="deleteBtn btn btn-danger btn-xs"
 data-bind="click: deleteProduct">
 Delete
 </button>
 </td>

www.it-ebooks.info

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

220

 </tr>
 </tbody>
 </table>
</div>
<button data-bind="click: getProducts" class="btn btn-primary">Refresh</button>

I have added a column to the table, and each td element contains a Deslete button to which I have applied the
Knockout click binding to invoke a function called deleteProduct when the button elements are clicked. Listing
11-4 shows the implementation of the deleteProduct function in the exampleApp.js file.

Listing 11-4. Handling Button Events in the exampleApp.js File

$(document).ready(function () {

 deleteProduct = function (data) {
 $.ajax("/api/products/" + data.ProductID, {
 type: "DELETE",
 success: function () {
 products.remove(data);
 }
 })
 };

 getProducts = function () {
 $.ajax("/api/products", {
 success: function (data) {
 products.removeAll();
 for (var i = 0; i < data.length; i++) {
 products.push(data[i]);
 }
 }
 })
 };
 ko.applyBindings();
});

As I explained in Chapter 3, Knockout passes the data item associated with the element that triggered the click
binding to the callback function, which means I can read the value of the ProductID property to create the URL that I
need to target, like this:

...
$.ajax("/api/products/" + data.ProductID, {
...

I use the type property to tell jQuery to make a DELETE request, and Web API uses the HTTP verb and the URL to
target the Delete action method on the Products controller (I explain how this happens in Chapter 22). The action
method performs the delete operation on the repository but doesn’t return a result because the method was defined
with the void keyword.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

221

The 204 status code will cause jQuery to invoke my success function, which I defined without arguments
because I am not expecting to receive data back from the web service. I remove the data object that Knockout passed
to the deleteProduct function from the model array, which causes the contents of the table element to be updated,
as shown in Figure 11-3.

Figure 11-3. Deleting items from the repository

aVOIDING the UrL VS. BODY pItFaLL

notice that i constructed the url for the delete request so that it included the ProductID property value of the
object i wanted to remove from the repository, like this:

...
deleteProduct = function (data) {
 $.ajax("/api/products/" + data.ProductID, {
 type: "DELETE",
 success: function () {
 products.remove(data);
 }
 })
};
...

if you have experience using jQuery to make ajax requests, then you might expect to be able to include the value
of the ProductID property in the request body, like this:

...
deleteProduct = function (data) {
 $.ajax("/api/products", {
 type: "DELETE",
 data: {id: data.ProductID},

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

222

 success: function () {
 products.remove(data);
 }
 })
};
...

this will result in an error because the Delete method in the Products controller is targeted based on the url
without taking into account the data contained in the request body. the effect of the previous code is to send a
delete request to an action method that will accept only Get requests. i explain how Web api routing works in
Chapters 20 and 21 and how parameter values are extracted from requests in Chapters 14–17, but the key point
for this chapter is that you must ensure that the urls you request uniquely identify the object or objects you want
to operate on.

Returning an Action Result
The next step up from returning no result is to return an implementation of the IHttpActionResult interface, which is
roughly equivalent to the ActionResult class in the MVC framework.

Web API goes to a lot of effort to make returning results from action methods as simple as possible, taking
responsibility for creating HttpResponseMessage objects for you whenever possible. You saw this in the previous
section for void action methods, and you’ll see it again in the “Returning Model Data” section when I demonstrate
how model objects are automatically serialized.

The IHttpActionResult interface allows an action method to specify how HttpResponseMessage objects should
be generated as instructions, which are then executed to produce the HttpResponseMessage that is used to respond
to the client. In this section of this chapter, I explain how the IHttpActionResult interface fits into Web API and
demonstrate the different ways it can be used. Table 11-4 puts action methods that return implementations of the
IHttpActionResult interface into context.

Table 11-4. Putting Action Methods That Return IHttpActionResult into Context

Question Answer

What is it? Action results are implementations of the IHttpActionResult interface that
produce an HttpResponseMessage that describes the response that should be sent
to the client.

When should you use it? Action results allow you to take control over the HTTP response that will be
returned to the client and, in particular, specify the status code that will be used.
Returning void from an action method generates a 204 code, and returning model
data (which I describe later in this chapter) generates a 200 code. For all other
status codes (or for action methods that need to decide which status code to return
dynamically), action results are required.

What do you need to know? The ApiController class defines a set of convenience methods that create
IHttpActionResult implementation objects for most common HTTP status codes.
Call these methods to get an object that will generate the response you require and
return it as the result from an action method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

223

Understanding the IHttpActionResult Interface
The IHttpActionResult interface is used to separate an action method from the HttpResponseMessage object
that represents its results. This is an example of the command pattern, which you can learn about at http://
en.wikipedia.org/wiki/Command_pattern and which makes it easier to isolate and test an action method and the
action result separately. Listing 11-5 shows the definition of the IHttpActionResult interface, which is defined in the
System.Web.Http namespace.

Listing 11-5. The Definition of the IHttpActionResult Interface

using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;

namespace System.Web.Http {
 public interface IHttpActionResult {
 Task<HttpResponseMessage> ExecuteAsync(CancellationToken cancellationToken);
 }
}

CaNCeLLING aSYNChrONOUS taSKS

You will see that many of the interfaces that describe Web api components are asynchronous and return Task
objects that produce other Web api or System.Net.Http types. You usually don’t have to worry about creating
Task objects when you are using the default implementations of these interfaces, but they become important
when you start to create custom implementations to change the default behaviors.

Most of the important methods receive a CancellationToken argument, which is used by the caller to signal
that the operation has been cancelled, allowing your implementation classes to avoid doing work that will just be
discarded when it is complete. You can check to see whether your operation has been cancelled by reading the
CancellationToken.IsCancellationRequested property, and it is good practice to do just that in your code. i
describe Task cancellation in detail in my Pro .NET Parallel Programming in C# book, published by apress.

The interface defines the ExecuteAsync method, which accepts a CancellationToken object as its argument
and returns a Task that produces an HttpResponseMessage object. Table 11-5 shows the properties of the
HttpResponseMessage, which gives a sense of the information that is required to generate an HTTP response.

Table 11-5. The Properties Defined by the HttpResponseMessage Class

Name Description

Content Gets or sets the content of the response, expressed as an HttpContent object

Headers Gets the HttpResponseHeaders objects that are used to collect the headers for the response

IsSuccessStatusCode Returns true if the result of the StatusCode property is between 200 and 299, inclusive

ReasonPhrase Gets or sets the explanatory phrase associated with the status code, expressed as a string

RequestMessage Gets or sets the HttpRequestMessage that the HttpResponseMessage is associated with

StatusCode Gets or sets the status code using the values defined in the HttpStatusCode class

Version Gets or sets the HTTP version, expressed as a System.Version

www.it-ebooks.info

http://en.wikipedia.org/wiki/Command_pattern
http://en.wikipedia.org/wiki/Command_pattern
http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

224

Using the ApiController Action Result Methods
The ApiController class, which is the default base for Web API controllers, defines a set of convenience methods
that make it easy to create a range of IHttpActionResult implementation objects, which are suitable for most of
the common responses that HTTP web services need. Table 11-6 describes the methods available. These methods
instantiate classes defined in the System.Web.Http.Results namespace.

Table 11-6. The ApiController Methods That Return Objects That Implement the IHttpActionResult Interface

Name Description

BadRequest() Creates a BadRequest object that uses status code 400.

BadRequest(message) Creates a BadRequestErrorMessageResult, which uses a status code of
400 and contains the specified message in the response body.

BadRequest(modelstate) Creates an InvalidModelStateResult that uses status code 400 and
includes validation information in the response body. See Chapter 18 for
details of Web API data validation.

Conflict() Creates a ConflictResult, which uses status code 409. This status code is
used when the request contravenes the internal rules defined by the web
service. The standard example is trying to upload an older version of a file
than is already stored by the web service, but this is a rarely used result.

Content(status, data) See the “Bypassing Content Negotiation” section of this chapter for details.

Created(url, data) See the “Creating Negotiable Action Results” section of this chapter for
details.

CreatedAtRoute(name, vals, data) See the “Creating Negotiable Action Results” section of this chapter for
details.

InternalServerError() Creates an InternalServerError, which uses status code 500.

InternelServerError(exception) Creates an ExceptionResult, which uses status code 500 and which details
of the specified exception in the response body.

NotFound() Creates a NotFoundResult, which uses status code 404.

Ok() Creates an OkResult, which uses status code 200.

Ok(data) See the “Creating Negotiable Action Results” section of this chapter for
details.

Redirect(target) Creates a RedirectResult, which uses status code 302 to redirect the client
to the URL, which can be specified as a string or a Uri.

RedirectToRoute(name, props) Creates a RedirectToRouteResult, which generates a URL from the
routing configuration and uses it to send a 302 response to the client.
See Chapters 20 and 21 for details of Web API routing.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

225

The methods that return objects that include information in the response body, such as BadRequest(message)
and InternalServerError(exception), rely on the media formatting and content negotiation features to format the
response content so that it can be processed by the client. I explain these features in the “Understanding Content
Negotiation” section.

The methods shown in Table 11-6 create the IHttpActionResult objects, which you then return as the result
from an action method, just as with ActionResult objects in the MVC framework. Listing 11-6 shows the addition of
an action method to the Products controller that just returns a result code to the client without doing any work.

Listing 11-6. Adding an Action Method in the ProductsController.cs File

using System.Collections.Generic;
using System.Web.Http;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class ProductsController : ApiController {
 IRepository repo;

 public ProductsController(IRepository repoImpl) {
 repo = repoImpl;
 }

 public IEnumerable<Product> GetAll() {
 return repo.Products;
 }

 public void Delete(int id) {
 repo.DeleteProduct(id);
 }

 [HttpGet]
 [Route("api/products/noop")]
 public IHttpActionResult NoOp() {
 return Ok();
 }
 }
}

Table 11-6. (continued)

Name Description

ResponseMessage(message) Creates a ResponseMessageResult, which is a wrapper around an existing
HttpResponseMessage object. See the “Creating an HttpResponseMessage
Object” section.

StatusCode(code) Creates a StatusCodeResult, which uses the specified status code,
expressed as a value from the HttpStatusCode class. See the “Creating an
HttpResponseMessage Object” section.

Unauthorized(headers) Creates a UnauthorizedResult, which uses the 401 status code. See
Chapters 23 and 24 for the details of authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

226

The NoOp action method calls the Ok method to create an OkResult object and then returns it as the result of the
action. You can test the action method by starting the application and using Postman to send a GET request to
/api/products/noop.

Tip ■ i had to apply the Route attributes to prevent the default Web api routes for restful web services from
directing the request to the GetAll method, which i explain in Chapter 22. the HttpGet attribute enables the action
method to receive http Get requests, as described in Chapter 14.

For quick reference, Table 11-7 lists the action result methods ordered by the status codes they produce, which is
usually what you need to know in the middle of a project.

Table 11-7. ApiController Action Result Methods by HTTP Status Code

Status Code Meaning Method

200 Operation successful Ok()

Ok(data)

302 Temporary redirection Redirect(target)

RedirectToRoute(name, props)

400 Bad request BadRequest()

BadRequest(message)

BadRequest(model)

404 Not found NotFound()

409 Conflict Conflict()

500 Internal server error InternalServerError()

InternalServerError(exception)

Returning Other Status Codes
There are predefined IHttpActionResult implementations for the most widely used HTTP result codes, but Web API
makes it easy to return other codes using the IHttpActionResult mechanism, which I’ll demonstrate by returning a
result from the Delete method, which currently relies on the controller to detect the void keyword and send the
204 response.

Creating a StatusCodeResult Object
The simplest approach is to use the StatusCode method, which returns a StatusCodeResult object whose
ExecuteAsync method yields an HttpResponseMessage with an arbitrary HTTP status code, as shown in Listing 11-7.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

227

Listing 11-7. Using a StatusCodeResult in the ProductsController.cs File

using System.Collections.Generic;
using System.Web.Http;
using ExampleApp.Models;
using System.Net;

namespace ExampleApp.Controllers {
 public class ProductsController : ApiController {
 IRepository repo;

 public ProductsController(IRepository repoImpl) {
 repo = repoImpl;
 }

 public IEnumerable<Product> GetAll() {
 return repo.Products;
 }

 public IHttpActionResult Delete(int id) {
 repo.DeleteProduct(id);
 return StatusCode(HttpStatusCode.NoContent);
 }

 [HttpGet]
 [Route("api/products/noop")]
 public IHttpActionResult NoOp() {
 return Ok();
 }
 }
}

A lot of different HTTP status codes are available, and this technique is useful if you find yourself needing one
of them that isn’t covered by the other controller convenience methods. The set of status codes that you can use is
defined by the System.Net.HttpStatusCode class, which has properties for each code.

To be clear, there is little need to explicitly return code 204 (No Data) in a real application because using the void
keyword is more elegant and natural, although it can be a useful technique when performing data validation, which I
describe in Chapter 18.

Creating an HttpResponseMessage Object
You can use the ResponseMessage method as an IHttpActionResult wrapper around an HttpResponseMessage
that you have already created or obtained. This isn’t something you will need to do for most web services, but it can
be useful when modifying the Web API request dispatch process, which I describe in Part 3. Listing 11-8 shows the
changes I made in the Delete method in the Products controller to create an HttpResponseMessage object and pass it
to the ResponseMessage method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

228

Listing 11-8. Using the ResponseMessage Method in the ProductsController.cs File

using System.Collections.Generic;
using System.Web.Http;
using ExampleApp.Models;
using System.Net;
using System.Net.Http;

namespace ExampleApp.Controllers {
 public class ProductsController : ApiController {
 IRepository repo;

 public ProductsController(IRepository repoImpl) {
 repo = repoImpl;
 }

 public IEnumerable<Product> GetAll() {
 return repo.Products;
 }

 public IHttpActionResult Delete(int id) {
 repo.DeleteProduct(id);
 return ResponseMessage(new HttpResponseMessage(HttpStatusCode.NoContent));
 }

 [HttpGet]
 [Route("api/products/noop")]
 public IHttpActionResult NoOp() {
 return Ok();
 }
 }
}

The HttpResponseMessage class has a constructor that takes a value from the HttpStatusCode class to specify the
status code. I didn’t need to set the other properties of the HttpResponseMethod because I was not trying to send any
content back to the client. This technique produces the same effect as using the StatusCode method or defining the
action method with the void keyword.

Creating a Custom Action Result
If you frequently need to return a result for which there is no controller convenience method, then you can
define a custom implementation of the IHttpActionResult interface that yields the response you need. I created
a NoContentResult.cs class file in the Infrastructure folder and used it to define the action result shown in
Listing 11-9.

Listing 11-9. The Contents of the NoContentResult.cs File

using System.Net;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

229

namespace ExampleApp.Infrastructure {
 public class NoContentResult : IHttpActionResult {

 public Task<HttpResponseMessage> ExecuteAsync(CancellationToken
 cancellationToken) {
 return Task.FromResult(new HttpResponseMessage(HttpStatusCode.NoContent));
 }
 }
}

The convenience methods defined by the ApiController class are protected, which means they can’t be built
on in custom action results. Instead, my NoContentResult class creates a new HttpResponseMessage object, using the
constructor argument to specify the 204 status code.

Tip ■ notice that i used the static Task.FromResult method to create a Task that yields the HttpResponseMessage
object as the result from the ExecuteAsync method. almost all Web api operations are asynchronous, but the overhead
of creating a new Task and performing work asynchronously isn’t always worthwhile when the work you have to do is
simple. in these cases, the Task.FromResult method allows you to create a Task wrapper that yields the object you
provide as the argument.

I can now use my custom implementation of the IHttpActionResult interface as the result in an action method,
as shown in Listing 11-10.

Listing 11-10. Using a Custom Action Method in the ProductsController.cs File

using System.Collections.Generic;
using System.Web.Http;
using ExampleApp.Models;
using System.Net;
using System.Net.Http;
using ExampleApp.Infrastructure;

namespace ExampleApp.Controllers {
 public class ProductsController : ApiController {
 IRepository repo;

 public ProductsController(IRepository repoImpl) {
 repo = repoImpl;
 }

 public IEnumerable<Product> GetAll() {
 return repo.Products;
 }

 public IHttpActionResult Delete(int id) {
 repo.DeleteProduct(id);
 return new NoContentResult();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

230

 [HttpGet]
 [Route("api/products/noop")]
 public IHttpActionResult NoOp() {
 return Ok();
 }
 }
}

Returning Model Data
One of the headline features of Web API is the ability to return model data objects and have them serialized and sent
the client automatically. In this section, I demonstrate this feature, explain one of the two components responsible for
the process, and show you how to customize it. (The other component, the media formatter, is described in
Chapters 12 and 13.) Table 11-8 puts returning model data into context.

Table 11-8. Putting Returning Model Data in Context

Question Answer

What is it? To make creating web services simple, Web API allows you to return one or more
model objects from action methods, which are then serialized into a format that can
be processed by the client.

When should you use it? You should use this feature whenever you need to return data to a client with a
200 status code. See the “Returning Negotiable Action Results” section if you need to
send data with another status code.

What do you need to know? The data format used to serialize the data is selected based on a process called
content negotiation, which relies on the client sending an HTTP Accept header. This
means different clients can receive the same data in different formats, so make sure
you test thoroughly or limit the formats that your application supports (which
I describe in the “Implementing a Custom Negotiator” section in this chapter and in
Chapter 13).

Understanding the Default Behavior
Understanding the default behavior means making a couple of requests to the Web API web service and studying the
results. First start the application and use Postman to send a GET request to the /api/products URL. You will see that
the following data is returned:

[{"ProductID":1,"Name":"Kayak","Price":275.0},
 {"ProductID":2,"Name":"Lifejacket","Price":48.95},
 {"ProductID":3,"Name":"Soccer Ball","Price":19.50},
 {"ProductID":4,"Name":"Thinking Cap","Price":16.0}]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

231

This request targets the GetAll action method defined by the Products controller, which is defined like this:

...
public IEnumerable<Product> GetAll() {
 return repo.Products;
}
...

The action method returns an enumeration of Product objects, which Web API has serialized as a JSON array.
That’s useful, but there is something else that is happening behind the scenes that requires a second request to
understand. If you request the /api/products URL using Google Chrome, you will see the following data displayed in
the browser tab:

<ArrayOfProduct xmlns:i="http://www.w3.org/2001/XMLSchema-
 instance"xmlns="http://schemas.datacontract.org/2004/07/ExampleApp.Models">
 <Product>
 <Name>Kayak</Name><Price>275</Price><ProductID>1</ProductID>
 </Product>
 <Product>
 <Name>Lifejacket</Name><Price>48.95</Price><ProductID>2</ProductID>
 </Product>
 <Product>
 <Name>Soccer Ball</Name><Price>19.50</Price><ProductID>3</ProductID>
 </Product>
 <Product>
 <Name>Thinking Cap</Name><Price>16</Price><ProductID>4</ProductID>
 </Product>
</ArrayOfProduct>

This time, the enumeration of Product objects has produced XML data, which happens because Google Chrome

sent headers as part of the HTTP request that expressed a preference for XML.
There are two important Web API features at work here. The first is content negotiation, where Web API inspects

the request and uses the information it contains to figure out what data formats the client can process. The second
feature is media formatting, where Web API serializes the data into the format that has been identified—JSON
and XML in these examples—so that it can be sent to the client. I describe basic content negotiation in this chapter
and media formatters and advanced negotiation in Chapters 12 and 13.

Understanding the Content Negotiation Process
Content negotiation is the process by which an appropriate format is selected for serializing the data format. The word
negotiation is misleading because it conjures up a back-and-forth exchange between the client and the web service,
rather like haggling in a back room. The reality is much simpler: the client includes an Accept header in the HTTP
request that describes the data formats that it can handle, expressed as MIME types with information about the order
of preference. The web service works its way down the preference list until it finds a format that it can produce and
then uses that format to serialize the data. (There are other headers that clients use to express preferences—Accept-
Charset, Accept-Encoding and Accept-Language—but I focus on the Accept header in this chapter. See Chapter 12
for details of how Web API supports the Accept-Charset header and how you can use any header for negotiation.)

www.it-ebooks.info

http://www.w3.org/2001/XMLSchema
http://schemas.datacontract.org/2004/07/ExampleApp.Models
http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

232

Here is the Accept header that Google Chrome sent in the previous section, which I obtained using the Network
panel of the F12 tools (I added some spaces to make it easier to read):

Accept: text/html, application/xhtml+xml, application/xml;q=0.9, image/webp, */*;q=0.8

Each content type has a q value, which is a measure of preference, and greater q values indicate more preferable

formats. A value of 1.0—the maximum value—is implied when a q value isn’t expressed. This header is interpreted as
follows:

Chrome prefers the •	 text/html (HTML), application/xhtml+xml (XHTML), and image/webp
formats above all others.

If HTML, XHTML, and •	 image/webp are not available, then XML is the next most preferred
format.

If none of the preferred formats is available, then Chrome will accept any format •	
(expressed as */*).

Web API has built-in support for JSON, BSON, and XML. (JSON and XML are widely used and understood. BSON
is Binary JSON, which isn’t supported by browser-based clients.)

The content negotiation process compares the Chrome preferences with the Web API formats and determines
that Chrome would prefer to receive the model data formatted as XML. If there is no Accept header in the request,
then the web service is allowed to assume that the client will accept any data format. Postman sets the Accept header
to */* by default, so it receives the default Web API data format, which is JSON. The Accept header for jQuery Ajax
requests is controlled through the accept setting (as described in Chapter 3) and is also set to */* by default. This is
why clicking the Refresh button rendered by the Index.cshtml view obtains JSON data, even though requesting the
same URL directly through Chrome produces XML data.

Tip ■ the image/webp MiMe type refers to an image format called Webp that Google has developed. By giving the
format a preference of 1.0, Chrome is expressing a preference to receive images in this format over all others. Webp
doesn’t have any bearing on http web services, but you can learn more about it here:
http://en.wikipedia.org/wiki/WebP.

Implementing a Custom Content Negotiator
The content negotiator is the class responsible for examining requests and identifying the format that best suits the
client. The content negotiator is not responsible for formatting the data; that’s the job of the media formatter, which I
describe in Chapters 12 and 13. Content negotiators implement the IContentNegotiator interface, which is defined
in the System.Net.Http.Formatting namespace. Listing 11-11 shows the definition of the interface.

Listing 11-11. The IContentNegotiator Interface

using System.Collections.Generic;
using System.Net.Http.Headers;

namespace System.Net.Http.Formatting {

www.it-ebooks.info

http://en.wikipedia.org/wiki/WebP
http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

233

 public interface IContentNegotiator {
 ContentNegotiationResult Negotiate(Type type, HttpRequestMessage request,
 IEnumerable<MediaTypeFormatter> formatters);
 }
}

The Negotiate method is called to examine a request and is passed the Type of the data to be serialized, the
HttpRequestMessage that represents the HTTP request from the client, and an enumeration of the available media
formatters, which are responsible for serializing content and are derived from the MediaTypeFormatter class (which I
describe in Chapter 12).

The result from the Negotiate method is an instance of the ContentNegotiationResult class, which defines the
properties shown in Table 11-9.

Table 11-9. The Properties Defined by the ContentNegotiationResult

Name Description

Formatter Returns the instance of the MediaTypeFormatter that will be used to serialize the data. I describe
media formatters in Chapter 12.

MediaType Returns an instance of the MediaTypeHeaderValue class, which details the headers that will be
added to the response to describe the selected format.

Table 11-10. The Members Defined by the MediaTypeHeaderValue

Name Description

CharSet Gets or sets the character set component of the Content-Type header.

MediaType Gets or sets the MIME type that will be used in the Content-Type header.

Parameters Returns a collection that can be used to add properties to the Content-Type header.

Parse(header) A static method that parses a header string and returns a MediaTypeHeaderValue
object. This method is used by the model binding feature, which I described in
Chapters 14–17.

TryParse(header, output) A static method that attempts to parse the header string and populates the output
argument, which is a MediaTypeHeaderValue parameter decorated with the out
keyword. This method is used by the model binding feature, which I described in
Chapters 14–17.

Tip ■ returning null from the Negotiate method in a custom negotiator returns a 406 (unacceptable) response to the
client, indicating that there is no overlap between the data formats that the web service can produce and that the client
can process. however, the default content negotiator class doesn’t return a 406 response by default even where there is
no suitable content type available; see Chapter 13 for details.

The MediaType property returns an instance of the MediaTypeHeaderValue class, which contains the details
required to set the Content-Type header for the HTTP response. The MediaTypeHeaderValue class defines the
members shown in Table 11-10.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

234

Web API includes a default content negotiator class, called DefaultContentNegotiator, that inspects the Accept
header and selects a media formatter based on the preferences expressed by the client. Content negotiation can
take into account any aspect of the request, and I am going to create a custom negotiator that builds on the default
behavior but ensures that requests from Chrome receive JSON responses rather than XML. I added a class file called
CustomNegotiator.cs to the Infrastructure folder and used it to define the class shown in Listing 11-12.

Listing 11-12. The Contents of the CustomNegotiator.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net.Http;
using System.Net.Http.Formatting;
using System.Net.Http.Headers;

namespace ExampleApp.Infrastructure {
 public class CustomNegotiator : DefaultContentNegotiator {

 public override ContentNegotiationResult Negotiate(Type type,
 HttpRequestMessage request, IEnumerable<MediaTypeFormatter> formatters) {

 if (request.Headers.UserAgent.Where(x => x.Product != null
 && x.Product.Name.ToLower().Equals("chrome")).Count() > 0) {

 return new ContentNegotiationResult(new JsonMediaTypeFormatter(),
 new MediaTypeHeaderValue("application/json")
);

 } else {
 return base.Negotiate(type, request, formatters);
 }
 }
 }
}

Rather than implement my custom negotiator directly from the IContentNegotiator interface, I have derived
my CustomNegotiator from the DefaultContentNegotiator class so that I can benefit from the built-in support for
dealing with the Accept header for those requests that don’t come from Chrome. I have overridden the Negotiate
method to inspect the User-Agent header and look for requests that have been made from Chrome; see the “Working
with Request Headers” sidebar for details.

When I identify a Chrome request, I return a new ContentNegotiationResult that specifies one of the built-
in media formatters, JsonMediaTypeFormatter, and the application/json MIME type. I explain how media
formatters work in Chapter 12 (and hard-coding a dependency on a specific class is far from ideal), but it is enough to
demonstrate the role that the content negotiator plays in Web API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

235

WOrKING WIth reQUeSt heaDerS

the headers sent by a client in an http request are available through the HttpRequestMessage.Headers
property, which returns an instance of the System.Net.Http.Headers.HttpRequestHeaders class. the
HttpRequestHeaders class defines properties for each of the headers defined by the http standard, such as
Accept and UserAgent, as well as Contains and GetValues methods that let you check to see whether a header
is present and get the value of an arbitrary header.

the header values are processed to make them easier to work with. in the case of the User-Agent header, for
example, the HttpRequestHeaders.UserAgent property returns an HttpHeaderValueCollection<ProductI
nfoValueHeader>, which is essentially an enumeration of ProductInfoValueHeader objects, each of which
represents part of the User-Agent header. the ProductInfoValueHeader class defines Comment and Product
properties. the Comment property returns a string, and the Product property returns a ProductValueHeader
object, which in turn defines Name and Version properties.

it may seem confusing, but the effect is that headers are parsed into their constituent parts, which makes them
easy to work with. as an example, Google Chrome sends a User-Agent string like this:

User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/35.0.1901.0 Safari/537.36

the header string is broken into its individual components, which are separated by spaces, and each
component is represented by the ProductInfoValueHeader. the components that contains the / character
are represented by a ProductValueHeader object. For example, the Mozilla/5.0 component is represented by a
ProductValueHeader whose Name is Mozilla and Version is 5.0. the components in parentheses are available
through the Comment property of the ProductInfoValueHeader that represents them.

this may seem like a mass of confusing types, but it comes together when you use linQ to process the headers.
in my custom content negotiator, i am looking for requests that come from Chrome, which means that i need to
locate a ProductInfoValueHeader object whose Product property returns a ProductValueHeader whose Name
property is set to Chrome, which i can do like this:

...
request.Headers.UserAgent.Where(x => x.Product != null
 && x.Product.Name.ToLower().Equals("chrome")).Count() > 0
...

the advantage of this approach is it reduces the scope for errors because there is no chance of my matching on
a User-Agent header that has Chrome as part of a comment or part of another browser name. By contrast, here
is how i matched the User-Agent header in one of the examples for my Pro ASP.NET MVC 5 book in order to
demonstrate the url routing feature:

...
httpContext.Request.UserAgent.Contains(requiredUserAgent)
...

Far fewer classes are involved, but there’s a higher chance of misidentifying the client. the way that headers
are processed by the System.Net.Http classes may seem awkward at first but is more flexible and useful than
parsing them manually, especially when combined with linQ.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

236

Configuring the Content Negotiator
I need to tell Web API that I want to use my custom content negotiator. Listing 11-13 shows the changes I made to the
WebApiConfig.cs file to register my CustomNegotiator class.

Listing 11-13. Registering a Custom Content Negotiator in the WebApiConfig.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Net.Http.Formatting;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.Services.Replace(typeof(IContentNegotiator), new CustomNegotiator());

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

I have called the HttpConfig.Services.Replace method to replace the default implementation of the
IContentNegotiator with an instance of my CustomNegotiator class. Web API offers extensibility in different ways,
and this is the approach you should use if you have not set up dependency injection in your application. If you have
set up DI, as I have for the example project, then you can set up the mapping in the DI container because Web API
calls the IDependencyResolver.GetService method before creating the default service classes. Listing 11-14 shows
the mapping I added to the NinjectResolver class.

Note ■ You need to register the custom negotiator using only one of these techniques, so i commented out the
statement in listing 11-13.

Listing 11-14. Registering a Custom Content Negotiator in the NinjectResolver.cs File

using System;
using System.Collections.Generic;
using System.Web.Http.Dependencies;
using ExampleApp.Models;
using Ninject;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

237

using Ninject.Extensions.ChildKernel;
using Ninject.Web.Common;
using System.Net.Http.Formatting;

namespace ExampleApp.Infrastructure {

 public class NinjectResolver : System.Web.Http.Dependencies.IDependencyResolver,
 System.Web.Mvc.IDependencyResolver {
 private IKernel kernel;

 public NinjectResolver() : this(new StandardKernel()) { }

 public NinjectResolver(IKernel ninjectKernel) {
 kernel = ninjectKernel;
 AddBindings(kernel);
 }

 public IDependencyScope BeginScope() {
 return this;
 }

 public object GetService(Type serviceType) {
 return kernel.TryGet(serviceType);
 }

 public IEnumerable<object> GetServices(Type serviceType) {
 return kernel.GetAll(serviceType);
 }

 public void Dispose() {
 // do nothing
 }

 private void AddBindings(IKernel kernel) {
 kernel.Bind<IRepository>().To<Repository>().InSingletonScope();
 kernel.Bind<IContentNegotiator>().To<CustomNegotiator>();
 }
 }
}

Notice that I have not set a scope on the mapping between the IContentNegotiator interface and the
CustomNegotiator class, as described in Chapter 10. Web API will make only one request to the resolver for each of its
service classes, which means I don’t have to worry about dealing with the life cycle of multiple instances.

Testing the Content Negotiator
To test the custom content negotiator, start the application and request the /api/products URL. JSON data will be
displayed instead of the XML response you received earlier, as shown in Figure 11-4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

238

Caution ■ Care is required with custom content negotiators that don’t use the standard http negotiation headers.
they result in web services that may ignore the preferences of the client and send a data format that can’t be processed.
as a general rule, most clients will process Json these days, but you can’t rely on this always being true, especially if you
are supporting legacy clients. test content negotiators thoroughly and stop to check that ignoring the Accept header is
the best solution to the problem you are trying to solve.

Bypassing Content Negotiation
The ApiController class defines a group of methods that allow action methods to override the regular content
negotiation process and specify the data format that should be used, as described in Table 11-11.

Table 11-11. The ApiController Methods That Bypass Content Negotiation

Name Description

Json(data) Returns a JsonResult, which serializes the data as JSON, irrespective of
the preferences expressed by the client.

Content(status, data, formatter) Returns a FormattedContentResult, which bypasses the content
negotiation process and uses the specified formatter to serialize the
data. The specified status code is used in the response. The formatter is
responsible for setting the value of the Content-Type header.

Content(status, data, formatter,
mimeType)

Like the previous method but uses the specified MIME type, expressed
as a MediaTypeHeaderValue object, for the Content-Type header in the
response.

Content(status, data, formatter,
mimeString)

Like the previous method but uses the specified MIME type, expressed as
a string, for the Content-Type header in the response.

Figure 11-4. The data sent by a custom content negotiator

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

239

Implementing a custom content negotiator allows you to select a data format based on the characteristic of the
request from the client. The methods shown in Table 11-11 allow you to select a data format based on all the context
information that is available to an action method. This includes the request, of course, but also the data that is going
to be returned in the response.

Bypassing the content negotiation process is not a decision to make lightly because it exists to ensure that
clients get content they can process, based on the preferences they express. If you need to force the data format your
application uses, then you can change the configuration of the media formatters, which I describe in Chapter 12, or
implement a custom content negotiator that gives precedence to a particular formatter (as I demonstrated in the
“Implementing a Custom Content Negotiator” section earlier in this chapter). Not only do these approaches better
respect the separation of concerns between Web API components, but they also consolidate the decision-making
logic in one place, making it easier to change the formats that are used and to perform unit testing.

Returning Negotiable Action Results
Being able to return model objects and let Web API figure out what to do with them is, without a doubt, a helpful
and elegant feature, but it does assume that you will return the data to the client with a 200 (OK) status code in the
response. A negotiable action result is one that allows you to produce a different HTTP status code but still take
advantage of the content negotiation and data formatting features. Table 11-12 puts negotiable action results in context.

Table 11-12. Putting Negotiable Action Results in Context

Question Answer

What is it? A negotiable action result allows you more control over the HttpResponseMessage
that is sent to the client while still benefitting from the content negotiation and data
formatting features.

When should you use it? Use a negotiable action result whenever you need to send data to the client with a
status code other than 200.

What do you need to know? Most web clients will expect to receive data with a 200 status code, and breaking this
convention—even to increase adherence to the HTTP standard as I describe next—
creates the risk of making the client misbehave, especially when the client predates
the web service or is written by programmers who have a different interpretation
of REST.

Creating Negotiable Action Results
The ApiController class defines a set of methods that return implementations of the IHttpActionResult interface
that let you take more control over the response, providing the benefits of the negotiation and formatting processes
while allowing you to select the status code that will be used. Table 11-13 describes these methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

240

You will rarely need to use these methods, and so far, the only time I have found them useful is when replacing
a legacy web service that made unusual—and entirely nonstandard—use of HTTP status codes to signal service
status to its equally nonstandard clients. That said, make sure you read the “Returning 200 or 201 Results from POST
Requests” sidebar to learn about why the Created and CreatedAtRoute methods are sometimes used. Listing 11-15
shows the use of the Ok method applied to the GetAll action to re-create the same effect achieved by returning model
objects as the method result.

Listing 11-15. Using the Ok Method in the ProductsController.cs File

using System.Collections.Generic;
using System.Web.Http;
using ExampleApp.Models;
using System.Net;
using System.Net.Http;
using ExampleApp.Infrastructure;

namespace ExampleApp.Controllers {
 public class ProductsController : ApiController {
 IRepository repo;

 public ProductsController(IRepository repoImpl) {
 repo = repoImpl;
 }

 public IHttpActionResult GetAll() {
 return Ok(repo.Products);
 }

 public IHttpActionResult Delete(int id) {
 repo.DeleteProduct(id);
 return new NoContentResult();
 }

Table 11-13. The ApiController Methods That Return Negotiable Action Results

Name Description

Ok(data) This method returns an OkNegotiatedContentResult object, which
sets the result status code to 200 and is equivalent to returning the
model objects as the result of the action method.

Created(url, data) This method returns a CreatedNegotiatedContentResult object,
which sets the response status code to 201, indicating that a new
resource has been created as a consequence of the request. The url
argument is used to specify the URL that can be used to request the
new object.

CreatedAtRoute(name, values, data) This method returns a CreatedAtRouteNegotiatedContentResult
object, which uses a 201 status code and generates the URL that
refers to the new object using the named route and route values. See
Chapters 20 and 21 for details of Web API routing.

Content(staus, data) This method creates a NegotiatedContentResult object, which allows
an arbitrary status code to be set for the HTTP response.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ aCtion Method results

241

 [HttpGet]
 [Route("api/products/noop")]
 public IHttpActionResult NoOp() {
 return Ok();
 }
 }
}

retUrNING 200 Or 201 reSULtS FrOM pOSt reQUeStS

the Created and CreatedAtRoute methods are interesting because they touch on a design decision about how
a restful web service responds to post requests. Most web services will return a 200 status code and include
the new data object in the response to the client. the new object will, at least, contain the unique key that can be
used to refer to the object and a set of hateoas links if that pattern is being followed.

this is the most common approach, but it doesn’t follow the http specification that states that the web service
should return a 201 response that contains a Location header with a url that can be requested to get the newly
created resource. the client can then request this url to retrieve the new data item.

the reason that most web services return a 200 response that includes the newly created object is because most
clients will display newly created data items to the user, and including the data in the response preempts the
obvious next task for the client, avoiding an additional request.

adhering to the http specification is generally a good thing, but returning a 201 response that requires another
request to be made immediately is needless pattern purity for most web services, especially since using a 200
response has become the accepted convention. unless you have a compelling need to the contrary, avoid the
complexity (and the additional bandwidth) required for the 201 response and use the 200 status code to response
to post messages with the data that the client is likely to need.

Summary
In this chapter, I showed you the different kinds of results that an action method can return and how these affect the
responses sent to the client. I started by demonstrating how void methods produce responses with the 204 status code
and how action methods can return IHttpActionResult objects to further control the response. One of the headline
features of Web API is the automatic serialization of model data objects, and I explained the first part of this process:
content negotiation. I explained how the client sends the Accept header to detail the data formats that it is willing
to receive and how the IContentNegotiator is used to select a media formatter to serialize the data based on those
preferences. In the next chapter, I explain how media formatters work and show you how to create a custom one.

www.it-ebooks.info

http://www.it-ebooks.info/

243

Chapter 12

Creating Media Type Formatters

Media type formatters are the component responsible for serializing model data so that it can be sent to the client. In
this chapter, I explain how media type formatters work by creating a custom data format and using it to explain the
different ways in which a formatter can be applied. Table 12-1 summarizes this chapter.

Table 12-1. Chapter Summary

Problem Solution Listing

Create a media type formatter. Derive from the MediaTypeFormatter class and
implement the CanReadType, CanWriteType, and
WriteToStreamAsync methods.

1–3

Register a media type formatter. Add an instance of the custom class to the formatter
collection during Web API configuration.

4

Consume a media type formatter in the
client.

Use the dataType and accepts settings to configure
the Ajax request.

5

Add support for content encoding. Use the SupportedEncodings collection to define
character encodings.

6

Set headers on the responses generated
by the media type formatters.

Override the SetDefaultContentHeaders method. 7

Allow a media type formatter to participate
in the content negotiation process.

Create media type mappings or use the media type
mapping extension methods.

8–9, 11

Add headers to client HTTP requests. Use the headers setting to configure the Ajax request. 10

Create a new instance of the media type
formatter class for each request.

Override the GetPerRequestFormatterInstance
method.

12

Note ■ Web API includes built-in media type formatters that generate JSON and XML data; I explain how these work
and how they can be configured in Chapter 13. Media type formatters are also used to deserialize data as part of the
model binding process, which I explain in Chapter 14.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

244

Preparing the Example Project
I am going to continue working with the ExampleApp project I created in Chapter 10 and added to in Chapter 11.
In preparation for this chapter, I am going to tidy up the code in the Product controller to use the conventional
mechanism for producing results. Listing 12-1 shows the revised controller, from which I have removed the NoOp
action method and changed the results of the GetAll and Delete methods.

Listing 12-1. Changes to the ProductsController.cs File

using System.Collections.Generic;
using System.Web.Http;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class ProductsController : ApiController {
 IRepository repo;

 public ProductsController(IRepository repoImpl) {
 repo = repoImpl;
 }

 public IEnumerable<Product> GetAll() {
 return repo.Products;
 }

 public void Delete(int id) {
 repo.DeleteProduct(id);
 }
 }
}

Tip ■ remember that you don’t have to create the example project yourself. you can download the source code for
every chapter for free from Apress.com.

I want to disable the custom content negotiator class I created in Chapter 11 so that I can demonstrate the
interaction between the default implementation and the media type formatter classes. Listing 12-2 shows the change
I made to the AddBindings method of the NinjectResolver class.

Listing 12-2. Disabling a Mapping in the NinjectResolver.cs File

...
private void AddBindings(IKernel kernel) {
 kernel.Bind<IRepository>().To<Repository>().InSingletonScope();
 // kernel.Bind<IContentNegotiator>().To<CustomNegotiator>();
}
...

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

245

To make sure that the default content negotiator is being used, start the application and use the browser to
request the /api/products URL. The default negotiator will return XML content. If you see JSON, then you have
forgotten to comment out the statement in the WebApiConfig.cs file, as described in Chapter 11.

Creating a Media Type Formatter
The best way to understand how media type formatters work is to create one, which is done by deriving from the
abstract MediaTypeFormatter class defined in the System.Net.Http.Formatting namespace. In the sections that
follow, I describe different aspects of implementing a media type formatter that supports a custom data format.
My formatter will serialize Product objects and will do so by generating a set of comma-separated values for the
properties defined by the Product class in the following order: ProductID, Name, Price. The effect will mean that while
a JSON representation of the data in the repository looks like this:

[{"ProductID":1,"Name":"Kayak","Price":275.0},
 {"ProductID":2,"Name":"Lifejacket","Price":48.95},
 {"ProductID":3,"Name":"Soccer Ball","Price":19.50},
 {"ProductID":4,"Name":"Thinking Cap","Price":16.0}]

My custom format will serialize the same data like this:

1,Kayak,275.0,2,Lifejacket,48.95,3,Soccer Ball,19.50,4,Thinking Cap,16.0

My custom data format is can be used only to represent Product objects, which allows me to demonstrate some
important characteristics of media type formatting. I need to pick a MIME type so that I can set the Accept request
header and Content-Type response header. I will use the following:

application/x.product

This MIME type will allow the content negotiator to select my custom media type formatter, as I explained in
Chapter 11.

Tip ■ MIMe types are expressed in the form <type>/<subtype>, and prefixing the subtype with x. indicates a private
content type. the MIMe type specification—rFC 6838—discourages the use of private content types, but they remain
useful for custom data formats and are still widely used. Older versions of the standard allowed a x- prefix, which is no
longer supported. See http://tools.ietf.org/html/rfc6838#section-3.4 for details.

Table 12-2 puts custom media type formatters into context.

www.it-ebooks.info

http://tools.ietf.org/html/rfc6838#section-3.4
http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

246

Implementing a Basic Media Type Formatter
To demonstrate how to create a custom media type formatter, I added a class file called ProductFormatter.cs to the
Infrastructure folder of the example project and used it to define the class shown in Listing 12-3.

Listing 12-3. The Contents of the ProductFormatter.cs File

using System;
using System.Collections.Generic;
using System.IO;
using System.Net;
using System.Net.Http;
using System.Net.Http.Formatting;
using System.Net.Http.Headers;
using System.Threading.Tasks;
using ExampleApp.Models;

namespace ExampleApp.Infrastructure {
 public class ProductFormatter : MediaTypeFormatter {

 public ProductFormatter() {
 SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/x.product"));
 }

 public override bool CanReadType(Type type) {
 return false;
 }

 public override bool CanWriteType(Type type) {
 return type == typeof(Product) || type == typeof(IEnumerable<Product>);
 }

Table 12-2. Putting Custom Media Type Formatters in Context

Question Answer

What are they Media type formatters are responsible for serializing model data so that it can be
sent to the client (and reversing the process as part of the model binding process
that I describe in Chapter 14).

When should you use them? There are built-in formatters for the JSON and XML formats, which I describe in
Chapter 13. Custom formatters are required for other data formats.

What do you need to know? Media type formatters can alter the way that content is serialized based on different
aspects of the request, including request headers and character encodings. Media
type formatters can also take an active role in content negotiation, as described in
the “Participating in the Negotiation Process” section.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

247

 public override async Task WriteToStreamAsync(Type type, object value,
 Stream writeStream, HttpContent content,
 TransportContext transportContext) {

 List<string> productStrings = new List<string>();
 IEnumerable<Product> products = value is Product
 ? new Product[] { (Product)value } : (IEnumerable<Product>)value;

 foreach (Product product in products) {
 productStrings.Add(string.Format("{0},{1},{2}",
 product.ProductID, product.Name, product.Price));
 }

 StreamWriter writer = new StreamWriter(writeStream);
 await writer.WriteAsync(string.Join(",", productStrings));
 writer.Flush();
 }
 }
}

The MediaTypeFormatter class defines a SupportedMediaTypes collection, which is used by the content
negotiator to match MIME types in the client Accept header to a formatter. When creating a custom formatter, you
add instances of the MediaTypeHeaderValue class to the SupportedMediaTypes collection to list the content types that
the formatter can serialize, like this:

...
public ProductFormatter() {
 SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/x.product"));
}
...

The constructor argument for the MediaTypeHeaderValue class is a MIME type, and I have specified the private
content type I will be using.

Indicating Type Support
There are only two methods that custom media type formatters must implement because they are marked as
abstract by the base class: CanReadType and CanWriteType. Media type formatters can use these methods to restrict
the range of data types that they operate on, which makes it easy to create narrowly focused formatters that have
explicit knowledge of the classes they will serialize.

The CanReadType method is used as part of the model binding process, which I describe in Chapter 14. The
CanWriteType method is called by the content negotiator to see whether the formatter is able to serialize a specific type.
It is important that you return true from the CanWriteType for all permutations of data object you want to serialize.
The Web API Product controller in the example application has an action method that returns IEnumerable<Product>,
and I have added support for the Product type on its own (not in an array or enumeration) so I can support action
methods that return a single Product object, as follows:

...
public override bool CanWriteType(Type type) {
 return type == typeof(Product) || type == typeof(IEnumerable<Product>);
}
...

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

248

Serializing Model Data
Setting the supported MIME types and implementing the CanWriteType method provide the content negotiator with
the information it needs to determine whether the formatter is able to deal with a request. The WriteToStreamAsync
method is where the real work happens and is called when the content negotiator has selected the formatter for
serializing the model objects returned by the action method. The WriteToStreamAsync method accepts the argument
types described in Table 12-3.

Table 12-3. The Argument Types Accepted by the WriteToStreamAsync Method

Argument Type Description

Type The type of the model data as returned by the action method.

object The data to serialize.

Stream The stream to which the serialized data should be written. You must not close the stream.

HttpContent A context object that provides access to the response headers. You must not modify
this object.

TransportContext A context object that provides information about the network transport, which can be null.

The WriteToStreamAsync method is asynchronous, and it returns a Task that will serialize the data objects to
the stream, optionally using the HttpContent object to get information about the response that will be sent. The
HttpContent object provides access to the headers for the response through a Headers property, which I use in the
“Supporting Content Encodings” section later in the chapter.

One of the benefits of creating narrowly focused formatters that deal with just a small number of types is that
they are simple to implement. The WriteToStreamAsync method in the ProductFormatter class returns a Task that
creates a string for each Product object it receives, joins them together with commas, and writes the combined result
to the stream.

...
public override async Task WriteToStreamAsync(Type type, object value,
 Stream writeStream, HttpContent content,
 TransportContext transportContext) {

 List<string> productStrings = new List<string>();
 IEnumerable<Product> products = value is Product
 ? new Product[] { (Product)value } : (IEnumerable<Product>)value;

 foreach (Product product in products) {
 productStrings.Add(string.Format("{0},{1},{2}",
 product.ProductID, product.Name, product.Price));
 }

 StreamWriter writer = new StreamWriter(writeStream);
 await writer.WriteAsync(string.Join(",", productStrings));
 writer.Flush();
}
...

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

249

Note ■ Although the WriteToStreamAsync method is asynchronous, there is an alternative base class,
BufferedMediaTypeFormatter, which you can use if you prefer to work synchronously and are willing to accept that
request handling threads may block while the formatter performs its serialization. I recommend you take the time to write
asynchronous implementations because the BufferedMediaTypeFormatter class just provides a synchronous wrapper
around the asynchronous methods defined by the MediaTypeFormatter class anyway.

Registering the Media Type Formatter
The set of media type formatter classes is accessed through the HttpConfiguration.Formatters property, which returns
an instance of the System.Net.Http.MediaTypeFormatterCollection class. The MediaTypeFormatterCollection class
defines the methods I have listed in Table 12-4 for manipulating the collection of formatters, as well as some convenience
properties for working with the built-in formatters that I describe in Chapter 11.

Table 12-4. The Methods Defined by the MediaTypeFormattingCollection for Manipulating the Collection

Name Description

Add(formatter) Adds a new formatter to the collection

Insert(index, formatter) Inserts a formatter at the specified index

Remove(formatter) Removes the specified formatter

RemoveAt(index) Removes the formatter at the specified index

Listing 12-4 shows how I have used the Add method to register my ProductFormatter class with Web API in the
WebApiConfig.cs file.

Listing 12-4. Registering a Media Type Formatter in the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 //config.Services.Replace(typeof(IContentNegotiator),
 // new CustomNegotiator());

 config.MapHttpAttributeRoutes();

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

250

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Formatters.Add(new ProductFormatter());
 }
 }
}

Using the Custom Formatter
Testing the custom formatter is easy with Postman. Click the Headers button and add an Accept header with a value
of application/x.product. (Postman provides a helpful list of HTTP headers to aid your selection.) Set the verb to
GET and set the URL so that it targets the /api/products URL on your local machine, using the port that Visual Studio
assigned to the example project. Start the application and then click the Postman Send button. The content negotiator
will use the Accept header in the request and the type of the object returned by the action method to select the
ProductFormatter media type formatter, producing the result shown in Figure 12-1.

Figure 12-1. Testing the custom formatter with Postman

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

251

As the figure shows, the result from the request matches my target output, shown here:

1,Kayak,275.0,2,Lifejacket,48.95,3,Soccer Ball,19.50,4,Thinking Cap,16.0

Consuming the Formatted Data with jQuery
jQuery makes it easy to target custom formatters by setting the Accept header in Ajax requests, although using
a custom data format means that the data returned by the web service won’t be automatically converted into
JavaScript objects like it is for JSON. Listing 12-5 shows the changes I made to the exampleApp.js file to specify the
application/x.product MIME type and process the data that the formatter generates.

Listing 12-5. Consuming a Custom Data Format in the exampleApp.js File

$(document).ready(function () {

 deleteProduct = function (data) {
 $.ajax("/api/products/" + data.ProductID, {
 type: "DELETE",
 success: function () {
 products.remove(data);
 }
 })
 };

 getProducts = function() {
 $.ajax("/api/products", {
 dataType: "text",
 accepts: {
 text: "application/x.product"
 },
 success: function (data) {
 products.removeAll();
 var arr = data.split(",");
 for (var i = 0; i < arr.length; i += 3) {
 products.push({

 ProductID: arr[i],
 Name: arr[i + 1],
 Price: arr[i + 2]
 });
 }
 }
 })
 };
 ko.applyBindings();
});

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

252

Two jQuery Ajax settings are required to configure the Accept heading. The dataType setting tells jQuery how to
process the data that will be received from the web service. The value of text means that plain text is expected and
should not be processed by jQuery the way that other formats such as JSON are. The accepts (note the plural: accepts
and not accept) setting tells jQuery which MIME type should be used for the data format specified by the dataType
setting. It is a convoluted technique, but it works and has the effect of setting the Accept header in the HTTP request
to application/x.product.

When I receive the data in the success callback function, I use the split method to break up the string into an
array and then process the array items to create JavaScript objects that I add to the Knockout observable array. You
can test the changes by starting the application and clicking the Refresh button, using the browser F12 tools to inspect
the resulting HTTP request and response.

Refining the Custom Formatter
Now that I have the basic functionality in place, I can use some of the more advanced formatter features to refine the
way that the formatter is matched to requests and the serialized data produced by the formatter.

Supporting Content Encodings
The Accept header is the main mechanism by which formatters are selected to serialize data, but clients can express a
preference about the character encodings they want to receive by using the Accept-Charset request header.

Tip ■ If you are not familiar with text encoding, then see the useful Wikipedia article at
http://en.wikipedia.org/wiki/Character_encoding for an introduction.

Testing the Accept-Charset header can be difficult because the standard that describes how Ajax requests are
made prohibits some headers from being set explicitly, including the Accept-Charset header, and this means there is
no way to set this header using jQuery.

In fact, the only reliable way to test the effect of different values for the Accept-Charset header is through the
Interceptor add-on for Postman, which overrides the default behavior enforced by the browser and allows all headers
to be set. I explained how to install Interceptor in Chapter 1, and you will need to follow these instructions before
testing the code in this section.

The MediaTypeFormatter class defines a SupportedEncodings property, which returns a Collection<System.
Text.Encoding> object that custom formatters can populate with details of the encodings they support. By default,
formatters are assumed to support all encodings, but in Listing 12-6, I have added a statement to the constructor of
the ProductFormatter class that restricts the formatter to specific encodings.

Listing 12-6. Supporting a Specific Encoding in the ProductFormatter.cs File

using System;
using System.Collections.Generic;
using System.IO;
using System.Net;
using System.Net.Http;
using System.Net.Http.Formatting;
using System.Net.Http.Headers;
using System.Threading.Tasks;
using ExampleApp.Models;
using System.Text;

www.it-ebooks.info

http://en.wikipedia.org/wiki/Character_encoding
http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

253

namespace ExampleApp.Infrastructure {
 public class ProductFormatter : MediaTypeFormatter {

 public ProductFormatter() {
 SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/x.product"));
 SupportedEncodings.Add(Encoding.Unicode);
 SupportedEncodings.Add(Encoding.UTF8);
 }

 public override bool CanReadType(Type type) {
 return false;
 }

 public override bool CanWriteType(Type type) {
 return type == typeof(Product) || type == typeof(IEnumerable<Product>);
 }

 public override async Task WriteToStreamAsync(Type type, object value,
 Stream writeStream, HttpContent content,
 TransportContext transportContext) {

 List<string> productStrings = new List<string>();
 IEnumerable<Product> products = value is Product
 ? new Product[] { (Product)value } : (IEnumerable<Product>)value;

 foreach (Product product in products) {
 productStrings.Add(string.Format("{0},{1},{2}",
 product.ProductID, product.Name, product.Price));
 }

 Encoding enc = SelectCharacterEncoding(content.Headers);
 StreamWriter writer = new StreamWriter(writeStream, enc ?? Encoding.Unicode);
 await writer.WriteAsync(string.Join(",", productStrings));
 writer.Flush();
 }
 }
}

The System.Text.Encoding class defines static properties for widely used encodings, and the additions
I made to the constructor add the UTF-16 (accessed through the Unicode property) and UTF-8 encodings to the
SupportedEncodings collection.

Tip ■ the htML5 specification recommends using the UtF-8 encoding for all web content.
See https://www.w3.org/International/questions/qa-choosing-encodings for more details.

In the WriteToStreamAsync method, I call the SelectCharacterEncoding methods defined by the base class, pass
in the value of the HttpContent.Headers property, and receive the Encoding that should be used for the content—or
null if there is no content encoding that matches the client preferences. The final step is to set the encoding on the
StreamWriter object that I create to serialize the data.

www.it-ebooks.info

https://www.w3.org/International/questions/qa-choosing-encodings
http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

254

...
StreamWriter writer = new StreamWriter(writeStream, enc ?? Encoding.Unicode);
...

Tip ■ the way that the content encoding is selected is a little odd. the Accept and Accept-Charset request headings
are used to create the Content-Type response header before the formatter is asked to render the content. If there is a
match between the encodings requested by the client and those supported by the formatter, the Content-Type header
will include the encoding, like this: application/x.product; charset=utf-16. the SelectCharacterEncoding method
then parses the Content-Type header to figure out which encoding should be used. this is awkward—and it has the feel
of trying to shoehorn a feature into the formatter without having access to the request context object.

Testing the character encoding support requires the following steps in Postman:

 1. Set the URL so that it targets /api/products on your local machine.

 2. Set the verb to GET.

 3. Click the Interceptor button on the menu bar (the one that looks like a stoplight) so that
it turns green. (If you can’t find the Interceptor button, it is likely that you forgot to install
the extension. See Chapter 1 for instructions.) Click the Header button and add an Accept
header with a value of application/x.product and an Accept-Charset header with a
value of utf-16.

 4. Click the Send button.

Click the Headers tab below the Send button once the request has completed to see the response headers.
The model data in the example application doesn’t contain any characters that require a specific encoding, but you
can see the effect of the changes I made by looking at the Content-Length and Content-Type headers, which are
as follows:

Content-Length: 138
Content-Type: application/x.product; charset=utf-16

The Content-Length headers reports that the response is 138 bytes, and the Content-Type header reports that
the data the response contains is of the application/x.product type, encoded with utf-16.

Next, change the value of the Accept-Charset request header to utf-8 and click the Send button again. You will
see the following headers in the response:

Content-Length: 71
Content-Type: application/x.product; charset=utf-8

The size of the response is smaller because the UTF-8 encoding uses fewer bits to encode each character. Finally,
set the Accept-Charset request header to utf-32, and click the Send button again to produce the following response
headers:

Content-Length: 138
Content-Type: application/x.product; charset=utf-16

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

255

The specification for the Accept-Charset header allows two outcomes when there is no overlap between the
encodings requested by the client and those supported by the web service. The first option is to send a 406 (Not
Acceptable) response. The second option—which is the one that Web API uses—is to use any encoding and hope that
the client can make some sense of it. The encoding that is used is the first one in the SupportedEncodings collection,
which is utf-16 for the ProductFormatter class.

Setting the HTTP Response Headers
Web API sets the HTTP response headers based on the media type and character encoding that have been selected.
You can change the headers that are added to the response by overriding the SetDefaultContentHeaders method and
either set different headers or supplement the ones defined by the base class. Listing 12-7 shows how I have added a
new header to the HTTP responses for which the ProductFormatter class serializes data.

Listing 12-7. Setting the HTTP Response Headers in the ProductFormatter.cs File

using System;
using System.Collections.Generic;
using System.IO;
using System.Net;
using System.Net.Http;
using System.Net.Http.Formatting;
using System.Net.Http.Headers;
using System.Threading.Tasks;
using ExampleApp.Models;
using System.Text;

namespace ExampleApp.Infrastructure {
 public class ProductFormatter : MediaTypeFormatter {

 public ProductFormatter() {
 SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/x.product"));
 SupportedEncodings.Add(Encoding.Unicode);
 SupportedEncodings.Add(Encoding.UTF8);
 }

 public override bool CanReadType(Type type) {
 return false;
 }

 public override bool CanWriteType(Type type) {
 return type == typeof(Product) || type == typeof(IEnumerable<Product>);
 }

 public override void SetDefaultContentHeaders(Type type,
 HttpContentHeaders headers, MediaTypeHeaderValue mediaType) {
 base.SetDefaultContentHeaders(type, headers, mediaType);
 headers.Add("X-ModelType",
 type == typeof(IEnumerable<Product>)
 ? "IEnumerable<Product>" : "Product");
 headers.Add("X-MediaType", mediaType.MediaType);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

256

 public override async Task WriteToStreamAsync(Type type, object value,
 Stream writeStream, HttpContent content,
 TransportContext transportContext) {

 List<string> productStrings = new List<string>();
 IEnumerable<Product> products = value is Product
 ? new Product[] { (Product)value } : (IEnumerable<Product>)value;

 foreach (Product product in products) {
 productStrings.Add(string.Format("{0},{1},{2}",
 product.ProductID, product.Name, product.Price));
 }

 Encoding enc = SelectCharacterEncoding(content.Headers);
 StreamWriter writer = new StreamWriter(writeStream, enc ?? Encoding.Unicode);
 await writer.WriteAsync(string.Join(",", productStrings));
 writer.Flush();
 }
 }
}

The SetDefaultContentHeaders method is passed the type that will be serialized, an HttpContentHeaders object
that is used to create new headers, and a MediaTypeHeaderValue object that contains details of the MIME type and
character encoding that have been selected by the content negotiator.

I have called the base implementation of the method to set the Content-Type header and used the method
arguments to add two nonstandard headers to the response (headers whose names start with X- are nonstandard).
The HttpContentHeaders class defines methods that allow headers to be defined, as described in Table 12-5.

Table 12-5. The Methods Defined by the HttpContentHeaders Class

Name Description

Add(header, value) Adds a new header to the response with the specified value

Remove(header) Removes a header from the response

Tip ■ the HttpContentHeaders class also defines a number of convenience properties that get common header
values. I have not listed them in the table because they are not used by media type formatters, which are focused on
setting, rather than reading, header values.

I call the Add method to define the X-ModelType header, which I set to a human-readable representation of the
model type that the formatter will serialize, as follows:

...
headers.Add("X-ModelType", type == typeof(IEnumerable<Product>)
 ? "IEnumerable<Product>" : "Product");
...

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

257

The other header I added relies on the MediaTypeHeaderValue object, which provides details of the media
type and encoding that the negotiator selected through the properties shown in Table 12-6. (This is the same
MediaTypeHeaderValue class that I used to express the MIME types that the formatter supports in Listing 12-3.)

Table 12-6. The Methods Defined by the MediaTypeHeaderValue Class

Name Description

CharSet Gets or sets the character encoding, expressed as a string

MediaType Gets or sets the MIME type, expressed as a string

I used the MediaType property to set the value of the X-MediaType header, as follows:

...
headers.Add("X-MediaType", mediaType.MediaType);
...

These nonstandard response headers don’t affect the way that the client processed the data, but they can be
useful for debugging. To test the changes that I made in Listing 12-7, start the application and use Postman to send
a GET request to the /api/products URL with an Accept header of application/x.product. The headers shown by
Postman will include the X-ModelType and X-MediaType headers, like this:

Cache-Control: no-cache
Content-Length: 138
Content-Type: application/x.product; charset=utf-16
Date: Thu, 27 Mar 2014 17:41:15 GMT
Expires: -1
Pragma: no-cache
Server: Microsoft-IIS/8.0
X-AspNet-Version: 4.0.30319
X-MediaType: application/x.product
X-ModelType: IEnumerable<Product>
X-Powered-By: ASP.NET
X-SourceFiles=?UTF-8?B?QzpcVXNlcnN...

Notice that my nonstandard headers are not the only ones in the response: ASP.NET adds several headers for
diagnostics purposes.

Participating in the Negotiation Process
The basic negotiation process I described in Chapter 11 relies on the content negotiator doing all of the work,
examining the Accept header sent by the client and matching it to one of the MIME types that the formatters have
declared support for.

Formatters can take a more active role in the negotiation process by defining one or more implementations of the
abstract MediaTypeMapping class, which is used to decide how the MIME types supported by the formatter fit into the
client preferences for each request. Table 12-7 puts media type mappings into context.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

258

Creating a Media Type Mapping
As a demonstration, I added a class file called ProductMediaMapping.cs to the Infrastructure folder and used it to
define the class shown in Listing 12-8.

Listing 12-8. The Contents of the ProductMediaMapping.cs File

using System.Collections.Generic;
using System.Linq;
using System.Net.Http;
using System.Net.Http.Formatting;

namespace ExampleApp.Infrastructure {

 public class ProductMediaMapping : MediaTypeMapping {

 public ProductMediaMapping()
 : base("application/x.product") {
 }

 public override double TryMatchMediaType(HttpRequestMessage request) {
 IEnumerable<string> values;
 return request.Headers.TryGetValues("X-UseProductFormat", out values)
 && values.Where(x => x == "true").Count() > 0 ? 1 : 0;
 }
 }
}

The MediaTypeMapping class defines a constructor that accepts the MIME type that the mapping relates to.
The TryMatchMediaType method is passed the HttpRequestMessage object that represents the current request and is
responsible for returning a double value that indicates the client preference for the specified MIME type.

The double has the same effect as the q values in the Accept header sent by the client. The MediaTypeMapping
class provides a mechanism by which formatters can override the preferences expressed by the client and promote or
demote their formats in the list of matches. There are no constraints on which details of the request are used to make
the decision. My example looks for an X-UseProductFormat header in the request. If the header is true, then I return a
value of 1, indicating that the client has a strong preference for the application/x.product format. If the header isn’t
included in the request or isn’t set to true, then I return 0 to indicate that the client does not want to accept the data
format. Listing 12-9 shows how I have applied the ProductMediaMapping to the constructor of the custom formatter.

Table 12-7. Putting Media Type Mappings in Context

Question Answer

What is it? Media type formatters can participate in the content negotiation process by
inspecting the request and overriding the Accept header sent by the client.

When should you use it? Use this feature to extend the negotiation process beyond the Accept header,
which can be useful when working with widely used but badly implementing
clients (such as legacy browsers).

What do you need to know? Use this feature sparingly so that you don’t send a format to the client that it
can’t understand.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

259

Listing 12-9. Using a MediaTypeMapping in the ProductFormatter.cs File

...
public ProductFormatter() {
 //SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/x.product"));
 SupportedEncodings.Add(Encoding.Unicode);
 SupportedEncodings.Add(Encoding.UTF8);
 MediaTypeMappings.Add(new ProductMediaMapping());
}
...

Caution ■ Use this feature sparingly. Clients expect their format preferences to be managed through the Accept
header, and you can create problems by overriding this behavior.

I have commented out the call to the SupportedMediaTypes.Add method to prevent the formatter from
participating passively in the negotiation process and added a call to the MediaTypeMappings.Add method to
register an instance of the ProductMediaMapping class. The MediaTypeMappings property returns a collection of
MediaTypeMapping objects, and a formatter can register as many mappings as it requires.

Testing the Negotiation Process
The best way to test the effect of the mapping is with Postman because it makes it easy to control the headers. Send a
GET request to the /api/products URL with the headers and values shown in Table 12-8.

Table 12-8. The Request Headers and Values Required to Test the MediaTypeMapping Implementation

Header Value

Accept application/json;q=0.9

X-UseProductFormat true

The Accept header is set so that the client expresses a 0.9 preference for the application/json format, which will
be overridden by the 1.0 preference that the ProductMediaMapping class will report for the application/x.product
format because the request contains the X-UseProductFormat header, as shown in Figure 12-2. If you remove the
X-UseProductFormat header and send another request, the web service will honor the Accept header and send JSON data.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

260

Figure 12-2. Overriding client format preferences

Adding Headers to jQuery Ajax Requests
Adding headers to jQuery Ajax requests is simple, as shown in Listing 12-10.

Listing 12-10. Adding a Nonstandard Request Header in the exampleApp.js File

$(document).ready(function () {

 deleteProduct = function (data) {
 $.ajax("/api/products/" + data.ProductID, {
 type: "DELETE",
 success: function () {
 products.remove(data);
 }
 })
 };

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

261

 getProducts = function() {
 $.ajax("/api/products", {
 headers: { "X-UseProductFormat": "true" },
 dataType: "text",
 accepts: {
 text: "application/x.product"
 },
 success: function (data) {
 products.removeAll();
 var arr = data.split(",");
 for (var i = 0; i < arr.length; i += 3) {
 products.push({
 ProductID: arr[i],
 Name: arr[i + 1],
 Price: arr[i + 2]
 });
 }
 }
 })
 };
 ko.applyBindings();
});

Caution ■ the code in the listing assumes that you live in a locale that doesn’t use commas to represent fractional amounts.

The headers setting is set to an object whose properties correspond to the headers that will be added to the
request. This change allows the client to continue to receive the application/x.product format, even though there is
no longer a static mapping for the media type formatter.

Using the Mapping Extension Methods
Deriving from the MediaTypeMapping class allows you to dig right into the details of the request as part of the negotiation
process, but Web API also provides some convenient extension methods that make it easy to set up the most common
mappings. Table 12-9 describes the extension methods, all of which are applied to MediaTypeFormatter objects.

Table 12-9. The Extension Methods for Mapping Media Types to Requests

Method Description

AddQueryStringMapping(name, value,
mimeType)

Selects the specified mimeType when the request query string
contains the name property with the specified value.

AddRequestHeaderMapping(name, value,
comparison, substring, mimeType)

Selects the specified mimeType when the request contains a name
header with the specified value. The comparison argument is a
System.StringComparison value used to compare the request value,
which will accept substrings is the substring argument is true.

AddUriPathExtensionMapping(extension,
mimeType)

Selects the specified mimeType if the request URL has the specified
extension.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

262

These extension methods can be used during the registration of a media type formatter, as shown in
Listing 12-11.

Listing 12-11. Using Media Type Formatter Mapping Methods in the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Net.Http.Formatting;
using System;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 //config.Services.Replace(typeof(IContentNegotiator),
 // new CustomNegotiator());

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "Api with extension",
 routeTemplate: "api/{controller}.{ext}/{id}",
 defaults: new { id = RouteParameter.Optional,
 ext = RouteParameter.Optional }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 MediaTypeFormatter prodFormatter = new ProductFormatter();
 prodFormatter.AddQueryStringMapping("format", "product",
 "application/x.product");
 prodFormatter.AddRequestHeaderMapping("X-UseProductFormat", "true",
 StringComparison.InvariantCultureIgnoreCase, false,
 "application/x.product");
 prodFormatter.AddUriPathExtensionMapping("custom", "application/x.product");
 config.Formatters.Add(prodFormatter);
 }
 }
}

The AddQueryStringMapping extension method gives preference to a media type formatter when a query string
contains a specific property and value. I used this method in the listing so that the ProductFormatter class will be
selected when the request contains a query string property called format that is set to product, like this:

...
prodFormatter.AddQueryStringMapping("format", "product", "application/x.product");
...

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

263

You can test the effect by using Postman to send a GET request to the /api/products?format=product URL.
A URL that doesn’t include the format property or that has a different value won’t be affected.

I used the AddRequestHeaderMapping extension method to achieve the same effect I created with the
ProductMediaMapping class (although defining your own mapping classes provides a wider range of customization
options).

...
prodFormatter.AddRequestHeaderMapping("X-UseProductFormat", "true",
 StringComparison.InvariantCultureIgnoreCase, false, "application/x.product");
...

Requests that contain the X-UseProductFormat header with a case-insensitive value of true will select the
ProductFormatter class. This statement is redundant in the example because the ProductFormatter class is already
configured to support this header.

The AddUriPathExtensionMapping method is a little more complex than the others and requires a URL route
to be defined. This method registers a mapping that looks for a routing segment variable called ext, which is the
convention for capturing file extensions but which can be used to match any URL segment. I explain how Web API
routes work in Chapters 20 and 21, but here is the route that I defined that captures the ext segment:

...
config.Routes.MapHttpRoute(
 name: "Api with extension",
 routeTemplate: "api/{controller}.{ext}/{id}",
 defaults: new { id = RouteParameter.Optional, ext = RouteParameter.Optional }
);
...

I used the AddUriPathExtensionMapping method so that the ProductFormatter class will be selected when the
value of the ext segment variable is custom. You can test this mapping by using Postman to send a GET request to
/api/products.custom.

Creating Per-Request Media Type Formatters
A single instance of a media type formatter class is usually used to serialize data for multiple requests,
but an alternative approach is to override the GetPerRequestFormatterInstance method defined by the
MediaTypeFormatter class. Table 12-10 puts per-request media type formatters into context.

Table 12-10. Putting Per-Request Media Type Formatters in Context

Question Answer

What is it? Per-request formatters allow the nature of individual requests to be used to influence
the way that data is serialized and allow code that it not thread-safe to be integrated
into Web API.

When should you use it? You don’t often have to tailor serialized data based on the request, and this feature
is most often used to integrate legacy serialization code into Web API so that the
application can support clients from older applications.

What do you need
to know?

This feature is simple to use, but remember that a new instance of the formatter class is
created for each request for which the formatter is selected by the negotiation process.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

264

Creating the Formatter Instance
The GetPerRequestFormatterInstance method is passed the Type of the data that is to be serialized, the HttpRequestMessage
that represents the current request, and a MediaTypeHeaderValue that provides details of the required MIME type and
character set encoding. The result of the GetPerRequestFormatterInstance method is a MediaTypeFormatter object that
will be used for a single request. This feature is useful when you need to adapt the data serialization based on the individual
requests or when dealing with code that is not thread-safe and that cannot afford to have its WriteToStreamAsync method
called concurrently. Listing 12-12 shows how I have overridden the GetPerRequestFormatterInstance method in the
ProductFormatter class to include details from the request in the serialized data.

Listing 12-12. Creating Per-Request Media Type Formatters in the ProductFormatter.cs File

using System;
using System.Collections.Generic;
using System.IO;
using System.Net;
using System.Net.Http;
using System.Net.Http.Formatting;
using System.Net.Http.Headers;
using System.Threading.Tasks;
using ExampleApp.Models;
using System.Text;

namespace ExampleApp.Infrastructure {
 public class ProductFormatter : MediaTypeFormatter {
 private string controllerName;

 public ProductFormatter() {
 //SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/x.product"));s
 SupportedEncodings.Add(Encoding.Unicode);
 SupportedEncodings.Add(Encoding.UTF8);
 MediaTypeMappings.Add(new ProductMediaMapping());
 }

 public ProductFormatter(string controllerArg) : this() {
 controllerName = controllerArg;
 }

 public override bool CanReadType(Type type) {
 return false;
 }

 public override bool CanWriteType(Type type) {
 return type == typeof(Product) || type == typeof(IEnumerable<Product>);
 }

 public override void SetDefaultContentHeaders(Type type,
 HttpContentHeaders headers, MediaTypeHeaderValue mediaType) {
 base.SetDefaultContentHeaders(type, headers, mediaType);
 headers.Add("X-ModelType",
 type == typeof(IEnumerable<Product>)
 ? "IEnumerable<Product>" : "Product");
 headers.Add("X-MediaType", mediaType.MediaType);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

265

 public override MediaTypeFormatter GetPerRequestFormatterInstance(Type type,
 HttpRequestMessage request, MediaTypeHeaderValue mediaType) {
 return new ProductFormatter(
 request.GetRouteData().Values["controller"].ToString());
 }

 public override async Task WriteToStreamAsync(Type type, object value,
 Stream writeStream, HttpContent content,
 TransportContext transportContext) {

 List<string> productStrings = new List<string>();
 IEnumerable<Product> products = value is Product
 ? new Product[] { (Product)value } : (IEnumerable<Product>)value;

 foreach (Product product in products) {
 productStrings.Add(string.Format("{0},{1},{2}",
 product.ProductID,
 controllerName == null ? product.Name :
 string.Format("{0} ({1})", product.Name, controllerName),
 product.Price));
 }

 Encoding enc = SelectCharacterEncoding(content.Headers);
 StreamWriter writer = new StreamWriter(writeStream, enc ?? Encoding.Unicode);
 await writer.WriteAsync(string.Join(",", productStrings));
 writer.Flush();
 }
 }
}

I have modified the ProductFormatter class so that it includes the name of the controller to which the routing system
has matched the request. I explain how Web API routing works in Chapters 20 and 21, but the key point for this chapter
is that each request may be handled by a different controller, so I need to use the GetPerRequestFormatterInstance
method so that I have access to the HttpRequestMessage object to get the information about the request that I need.

Testing the Per-Request Formatter
To test the changes, start the application and click the Refresh button in the browser window that Visual Studio opens.
The jQuery client code sends the nonstandard request header required to match the request to the ProductFormatter
class, which adds products to the name of the serialized data since that is the name of the controller that handles the
request (and, of course, the only Web API controller in the application, but you get the idea). Figure 12-3 shows the effect.

www.it-ebooks.info

http://www.it-ebooks.info/

ChAPter 12 ■ CreAtINg MedIA tyPe FOrMAtterS

266

Tip ■ If you don’t get the expected result, then right-click the Chrome refresh button and select empty Cache and hard
reload from the pop-up window. this option is available only when the F12 developer tools window is opened, and it
ensures that Chrome requests the most recent version of the JavaScript file from the server.

Summary
In this chapter, I showed you how to create and use media type formatters to serialize model data so that it can be sent
to the web service client. I explained how formatters fit within Web API, demonstrated how to support different media
types and character encodings, and demonstrated how to create formatters that are able to participate in the content
negotiation process. In the next chapter, I show you how to work with the built-in media type formatters, which are
responsible for producing JSON and XML data.

Figure 12-3. Including per-request information in serialized data

www.it-ebooks.info

http://www.it-ebooks.info/

267

Chapter 13

Using the Built-in Media Formatters

In this chapter, I focus on the built-in media type formatter classes, which are used to serialize data model objects
into JSON and XML. I start by showing you how to control the way that the default media type formatters are used
when there is no match between the formats they support and the request Accept header and then show you how to
manage the serialized data that the formatters produce.

My emphasis in this chapter is on the JSON format, rather than XML. JSON has become the dominant data
format for HTTP web services because it is relatively concise, easy to work with (especially in JavaScript code), and
supported by all the major programming languages and web application development platforms. As you will learn,
JSON serialization is performed by the latest versions of a popular and well-maintained open source .NET package,
while XML serialization is performed using classes that have been around since .NET 1.1 and .NET 3.0. Table 13-1
summarizes this chapter.

Table 13-1. Chapter Summary

Problem Solution Listing

List the built-in type formatters. Enumerate the collection returned by the HttpConfiguration.
Formatters property.

1–4

Change the order in which
formatters are queried to serialize a
type by the match-on-type feature.

Manipulate the collection returned by the HttpConfiguration.
Formatters property.

5

Enable or disable the match-on-
type feature.

Use the bool constructor argument defined by the
DefaultContentNegotiator class.

6–9

Indent JSON data. Set the JsonMediaTypeFormatter.Indent property to true. 10

Select a format for date values. Set the SerializerSettings.DateFormatHandling property. 11–16

Escape dangerous characters in
serialized JSON data.

Set the SerializerSettings.StringEscapeHandling property. 17

Include or exclude null and default
values in serialized JSON data.

Set the SerializerSettings.DefaultValueHandling property. 18, 19

Process XML at the client. Use jQuery to locate elements contained in an XMLDocument object. 20, 21

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

268

Preparing the Example Project
I am going to continue working with the ExampleApp project from the previous chapter, but I need to disable the
custom media formatter that I created so I can focus on the built-in ones instead. Listing 13-1 shows the simplified
WebApiConfig.cs file.

Listing 13-1. Disabling a Custom Media Formatter in the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Net.Http.Formatting;
using System;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 //config.Services.Replace(typeof(IContentNegotiator),
 // new CustomNegotiator());

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "Api with extension",
 routeTemplate: "api/{controller}.{ext}/{id}",
 defaults: new {
 id = RouteParameter.Optional,
 ext = RouteParameter.Optional
 }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 //MediaTypeFormatter prodFormatter = new ProductFormatter();
 //prodFormatter.AddQueryStringMapping("format", "product",
 // "application/x.product");
 //prodFormatter.AddRequestHeaderMapping("X-UseProductFormat", "true",
 // StringComparison.InvariantCultureIgnoreCase, false,
 // "application/x.product");
 //prodFormatter.AddUriPathExtensionMapping("custom",
 // "application/x.product");
 //config.Formatters.Add(prodFormatter);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

269

Tip ■ remember that you don’t have to create the example project yourself. You can download the source code for
every chapter for free from apress.com.

I have commented out the statements that configure and register the ProductFormatter media formatter class,
which means that only the built-in formatters will be used.

Working with the Built-in Media Type Formatters
Web API includes a set of four built-in media formatters. All of the built-in media type formatters participate in the
model binding process I describe in Chapters 14–17, but there are two that are interesting in this chapter because they
are used to serialize object to generate JSON or XML data so it can be sent to the client. In the sections that follow,
I show you how to manage and configure the built-in formatters. Table 13-2 puts the built-in formatters in context.

Table 13-2. Putting the Built-in Media Type Formatters in Context

Question Answer

What are they? The built-in media type formatters are responsible for serializing data into the
JSON and XML formats.

When should you use them? These media type formatters are configured for use by default and will be
selected by the content negotiation process, which I explained in Chapter 12, to
produce data in a format that can be consumed by the client.

What do you need to know? The default content negotiator class will select the first media type formatter
that is able to serialize the data model type if there is no match between the
Accept header sent by the client and the formats available through the media
type formatter classes. See the “Dealing with Type Matching During Negotiation”
section for details.

Listing the Built-in Media Type Formatters
As I explained in Chapter 12, Web API maintains a collection of media type formatters that is accessed through
the HttpConfiguration.Formatters property. In addition to the Add, Insert, Remove, and RemoveAt methods that
I described in Chapter 12, the MediaTypeFormatterCollection class that is returned by the Formatters property
defines convenience properties that provide direct access to three of the four built-in media type formatters, as
described in Table 13-3.

Table 13-3. The Convenience Properties Defined by the MediaTypeFormattingCollection Class

Name Description

FormUrlEncodedFormatter Returns an instance of the FormUrlEncodedMediaTypeFormatter class, which is used
to parse form data in the model binding process

JsonFormatter Returns an instance of the JsonMediaTypeFormatter class, which serializes data into
the JSON format

XmlFormatter Returns an instance of the XmlMediaTypeFormatter class, which serializes data into
the XML format

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

270

The MediaTypeFormattingCollection class is enumerable, which makes it easy to list the available formatters
and establish their relative order in the collection. As you’ll learn, ordering the formatters can change the data format
that is used to serialize data for a response.

I am going to display details of the built-in media type using the MVC framework, which allows me to
demonstrate the technique required to render Razor views that use classes from the System.Net.Http namespace.
I started by adding a class file called FormattersController.cs to the Controllers folder and using it to define the
MVC framework controller shown in Listing 13-2.

Listing 13-2. The Contents of the FormattersController.cs File

using System.Web.Http;
using System.Web.Mvc;

namespace ExampleApp.Controllers {
 public class FormattersController : Controller {

 public ActionResult Index() {
 return View(GlobalConfiguration.Configuration.Formatters);
 }
 }
}

This is an MVC framework controller with an Index action method that renders the default view, passing in the
collection of media type formatters obtained through the static GlobalConfiguration.Configuration property.
To create the view, I right-clicked the Index method in the code editor, selected Add View, and accepted the default
settings. Visual Studio created the Views/Formatters/Index.cshtml file, which I used to define the view shown in
Listing 13-3.

Listing 13-3. The Contents of the Index.cshtml File in the Views/Formatters Folder

@model IEnumerable<System.Net.Http.Formatting.MediaTypeFormatter>
@{ ViewBag.Title = "Formatters";}

<div class="panel panel-primary">
 <div class="panel-heading">Media Type Formatters</div>
 <table class="table table-striped">
 <thead>
 <tr><th>Name</th><th>MIME Types</th></tr>
 </thead>
 <tbody>
 @foreach (var formatter in Model) {
 <tr>
 <td>@formatter.GetType().Name</td>
 <td>
 @((string)string.Join(", ",
 formatter.SupportedMediaTypes.Select(x => x.MediaType)))
 </td>
 </tr>
 }
 </tbody>
 </table>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

271

The view contains a table element that I populate using Razor and the view model data to display the name of
each media type formatter and the MIME types it supports. If you start the application and request the /formatters
URL, you will see an error message like this:

Compiler Error Message: CS0012: The type 'System.Net.Http.Headers.MediaTypeHeaderValue' is defined
in an assembly that is not referenced. You must add a reference to assembly 'System.Net.Http,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a'.

This problem is caused because Razor doesn’t automatically pick up the reference to the System.Net.Http
assembly, which is obtained from the global assembly cache and not from one of the NuGet packages I installed in
Chapter 10. To resolve this problem, I need to add an assembly reference in to the compilation configuration section
in the Web.config file (the one in the root of the folder, not the one in the Views folder), as shown in Listing 13-4.

Listing 13-4. Adding a Reference to the System.Net.Http Assembly in the Web.config File

...
<system.web>
 <compilation debug="true" targetFramework="4.5.1">
 <assemblies>
 <add assembly="System.Net.Http, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"/>
 </assemblies>
 </compilation>
 <httpRuntime targetFramework="4.5.1" />
 <pages>
 <namespaces>
 <add namespace="System.Web.Helpers" />
 <add namespace="System.Web.Mvc" />
 <add namespace="System.Web.Mvc.Ajax" />
 <add namespace="System.Web.Mvc.Html" />
 <add namespace="System.Web.Routing" />
 <add namespace="System.Web.WebPages" />
 </namespaces>
 </pages>
</system.web>
<system.webServer>
...

I have changed the compilation element so that it contains the assemblies element, which is used to manage
the collection of explicit references to runtime assemblies. I define a new reference using an add element to create a
reference to the System.Net.Http assembly, using the version and public key from the error message.

Tip ■ remember that Web api doesn’t use the Web.config file and that the changes i made in the listing are required
only by the MVC framework. see my Pro ASP.NET MVC 5 Platform book for details of the asp.net configuration system,
how it works, and how it can be customized.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

272

This change allows you to access the Web API configuration information—and other components—from MVC
controllers and views. Start the application and request the /formatters URL to see the contents of the media type
formatters collection, as shown in Figure 13-1.

Figure 13-1. The collection of Web API media type formatters

What aBOUt BSON?

Bson is binary JSON and is, as its name suggests, a binary variation on the Json specification. Bson is used most
widely by the MongodB database but has been proposed as a more efficient and expressive alternative to Json—a
proposal that has not been universally welcomed, and, as i write this, there are active and heated discussions about
the efficiency benefits. You can learn more about the Bson specification at http://bsonspec.org.

Bson may find a wider role in the future, but the limiting factor at the moment is that there is little support for Bson
in clients, and no Javascript implementations are available for clients running in browsers. this means that it is not
possible to receive Bson data and have it automatically parsed to Javascript objects the way that Json data is.

Web api includes a Bson media formatter (the BsonMediaTypeFormatter class in the System.
Net.Http.Formatting namespace), but it is disabled by default. i don’t describe Bson or cover the
BsonMediaTypeFormatter in this book because the Bson specification is not usable in clients developed using
the MVC framework.

Dealing with Type Matching During Negotiation
I showed you the contents of the media type formatter collection because there is a confusing quirk in the content
negotiation process that relies on the order in which the formatters appear in the list shown in Figure 13-1.

Most of the time, the order of the formatters doesn’t matter because clients will send an Accept header that
specifies a format that Web API can support. You saw this in Chapter 12 when I used Chrome to send a GET request
to the /api/products URL. Chrome sends an Accept header that gives preference to XML, and that’s the format that
was sent back. You can see in Figure 13-1 that the XmlMediaTypeFormatter class is the formatter responsible for the
application/xml and text/xml MIME types, and this is the formatter that is selected for the Chrome request. In this
situation, the order of the formatters does not have any impact on the format of the data sent to the client.

www.it-ebooks.info

http://bsonspec.org/
http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

273

You can test this process explicitly by using Postman to send a GET request to the /api/products URL with the
following Accept header:

application/x.product;q=1.0, application/xml;q=0.9, application/json;q=0.5

The Accept header specifies a first preference for the application/x.product format that I created in Chapter 12.
I disabled the media type formatter for the custom MIME type in Listing 13-1, so the content negotiator won’t be able
to find a formatter to produce this format, even though it is the one that the client would prefer to receive.

The next most preferred format is application/xml, which has a higher q value than the only other format that
the client is willing to accept, which is application/json. The content negotiator selects the XmlMediaTypeFormatter
class to serialize the data returned by the GetAll action method in the Products controller, even though it is second
in the collection of media type formatters illustrated in Figure 13-1. Figure 13-2 shows the XML data that is returned
by the web service.

This is the behavior that I described in Chapter 11, but it bears repetition for two reasons. The first is that it is how
the data format for most requests will be selected for web browser clients, because both the browser and jQuery will
sent an Accept header that specifies either XML or JSON directly.

The other reason I have emphasized the default behavior is because the default content negotiator does
something odd when there is no match between the data formats that the web service can use to serialize data and
the formats that the client is willing to accept. To see what happens, change the value of the Postman Accept header
to the following:

application/x.product;q=1.0

Figure 13-2. Selecting a data format during normal negotiation

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

274

This header specifies that the client will accept only the application/x.product format, for which there is no media
type formatter available in the application. When you send the request, Web API responds with the following data:

[{"ProductID":1,"Name":"Kayak","Price":275.0},
 {"ProductID":2,"Name":"Lifejacket","Price":48.95},
 {"ProductID":3,"Name":"Soccer Ball","Price":19.50},
 {"ProductID":4,"Name":"Thinking Cap","Price":16.0}]

The default content negotiator class has responded with JSON data, which is unexpected since the client has
indicated that it can’t process JSON data.

The DefaultContentNegotiator class, which I described in Chapter 11, has a feature called match-on-type that
is enabled by default and is used to select a formatter when there the Accept header doesn’t specify a format that Web
API can work with.

The content negotiator calls the CanWriteType method of each of the available formatters and will use the first
one that returns true for the data type that is to be serialized. As Figure 13-1 shows, the JSON media type formatter
is first on the list, and that’s why the request for the application/x.product MIME type produced JSON data, even
though it isn’t a format that the client would accept. In the following sections, I’ll describe how you can take control of
this process and demonstrate how to disable it entirely.

Changing the Media Formatter Order
You can change the data format that is selected by the match-on-type feature by re-ordering the media formatters in
the MediaTypeFormatterCollection collection, using the methods described in Table 13-4.

Table 13-4. The Methods Defined by the MediaTypeFormattingCollection for Manipulating the Collection

Name Description

Add(formatter) Adds a new formatter to the collection

Insert(index, formatter) Inserts a formatter at the specified index

Remove(formatter) Removes the specified formatter

RemoveAt(index) Removes the formatter at the specified index

The easiest way to change the order is to use the convenience properties I described in Table 13-3 to obtain
a reference to the formatter object that you want to move and use it as an argument to the methods in Table 13-4.
Listing 13-5 shows how I have promoted the XML formatter in the collection using the WebApiConfig.cs file.
(I have removed the commented out statements from previous examples.)

Listing 13-5. Changing the Order of the Media Type Formatters in the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Net.Http.Formatting;
using System;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

275

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 MediaTypeFormatter xmlFormatter = config.Formatters.XmlFormatter;
 config.Formatters.Remove(xmlFormatter);
 config.Formatters.Insert(0, xmlFormatter);
 }
 }
}

I removed the XML formatter from the collection and inserted it back at position 0, making it the first formatter
that will be asked whether it can serialize the data type when there are no matching formats from the Accept header.

Tip ■ Working with the MediaTypeFormatterCollection object is awkward. the convenience properties return the
instances of the formatters that are created automatically during the Web api configuration process. if you remove or
replace a formatter, the corresponding convenience property will return null.

Start the application and use the browser to request the /formatters URL; you will see that the
XmlMediaTypeFormatter class appears first in the collection. If you use Postman to send a GET request to the
/api/products URL with an Accept header that specifies just the application/x.product format, you will receive
XML data rather than JSON.

Disabling the Match-on-Type Feature
Changing the order of the formatters doesn’t address the underlying problem with the match-on-type feature, which
is sending a format to the client that it may not be able to process. The best outcome will be that the client misstated
its Accept preferences and is able to process the format after all—but isn’t a solid foundation for making data format
choices. A more common outcome is that the client will assume that it is dealing with the format it asked for, which
either generates an error or almost—but not quite—works.

You can see an example of a data format almost working by starting the application and using the browser to
request the /Home/Index URL. Click the Refresh link to send an Ajax request that targets the /api/products URL with
a GET request whose Accept header contains only the application/x.product MIME type (because the request is
being created by the jQuery code that I set up in Chapter 12 to process the custom data format).

The custom format negotiator uses the match-on-type feature to select the XML formatter, which has the effect
shown in Figure 13-3.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

276

Few web service clients check to see whether the format they received is the one that they asked for. In this case,
the jQuery code I wrote in Chapter 12 assumes that it has received the expected format and tries to break it up for
processing but does so using separators that are not present in the XML data. The result is a single row in the table that
contains the complete XML data response in the first column.

One of the reasons that web services don’t check the received data format is that the match-on-type feature
doesn’t follow the HTTP specification, which states that the web service should send the client a 406 (Not Acceptable)
response if there is no match between the data formats in the Accept header and the ones supported by the
application. This is a much better outcome because it doesn’t assume that the client is mistaken about the data
formats that it is able to process.

The DefaultContentNegotiator class defines a constructor argument that disables the match-on-type feature.
Listing 13-6 shows how to set this option when using the NinjectResolver class that I created in Chapter 10 for
dependency injection.

Listing 13-6. Disabling the Match-on-Type Feature in the NinjectResolver.cs File

...
private void AddBindings(IKernel kernel) {
 kernel.Bind<IRepository>().To<Repository>().InSingletonScope();
 kernel.Bind<IContentNegotiator>().To<DefaultContentNegotiator>()
 .WithConstructorArgument("excludeMatchOnTypeOnly", true);
}
...

Figure 13-3. The effect of sending a client an unknown format

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

277

I have defined a mapping between the IContentNegotiator interface and the DefaultContentNegotiator class
and used the Ninject WithConstructorArgument method to set a value for the excludeMatchOnTypeOnly constructor
argument. When Web API asks Ninject to provide an implementation of the IContentNegotiator interface, an instance
of the DefaultContentNegotiator class will be created with the constructor argument of true, equivalent to calling this:

new DefaultContentNegotiator(true)

A true value for the constructor argument disables the match-on-type feature and causes the web service to send
a 406 (Not Acceptable) message to the client, as shown in Figure 13-4.

Figure 13-4. Getting a 406 (Not Acceptable) response from the web service

Tip ■ if you don’t receive a 406 (not acceptable) response, you may have forgotten to add the Accept header to
the request. You must specify the application/x.product MiMe type so that no media type formatter can be selected
based on content type.

You will need to take a more direct approach if you are not using dependency injection in your application.
Listing 13-7 shows how to disable match-on-type in the WebApiConfig.cs file.

Listing 13-7. Disabling the Match-on-Type Feature in the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Net.Http.Formatting;
using System;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

278

 MediaTypeFormatter xmlFormatter = config.Formatters.XmlFormatter;
 config.Formatters.Remove(xmlFormatter);
 config.Formatters.Insert(0, xmlFormatter);

 config.Services.Replace(typeof(IContentNegotiator),
 new DefaultContentNegotiator(true));
 }
 }
}

I use the HttpConfiguration.Services property to get the ServicesContainer object that contains the Web
API service objects. I create a new instance of the DefaultContentNegotiator class, using the constructor
argument to disable the match-on-type feature, and tell Web API to use this class as the implementation of the
IContentNegotiator interface with the Replace method.

Handling a Not Acceptable Response in the Client
To deal with 406 (Not Acceptable) responses, I need to add support for displaying errors to the user. First, I have
defined a Knockout observable array that will contain the errors that are to be displayed along with some HTML
elements that will present the errors to the user. Listing 13-8 shows the changes I made to the Index.cshtml file in the
Views/Home folder.

Listing 13-8. Preparing to Display Errors in the Views/Home/Index.cshtml File

@model IEnumerable<ExampleApp.Models.Product>
@{ ViewBag.Title = "Index";}

@section Scripts {
 <script>
 var products = ko.observableArray(
 @Html.Raw(Newtonsoft.Json.JsonConvert.SerializeObject(Model)));
 var errors = ko.observableArray();
 </script>
 <script src="~/Scripts/exampleApp.js"></script>
}

<div class="alert alert-danger" data-bind="visible: errors().length">
 <p>Something has gone wrong:</p>
 <ul data-bind="foreach: errors">
 <li data-bind="text: $data">

</div>

<div class="panel panel-primary">
 <div class="panel-heading">RSVPs</div>
 <table id="rsvpTable" class="table table-striped">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Price</th></tr>
 </thead>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

279

 <tbody data-bind="foreach: products">
 <tr>
 <td data-bind="text: ProductID"></td>
 <td data-bind="text: Name"></td>
 <td data-bind="text: Price"></td>
 <td>
 <button class="deleteBtn btn btn-danger btn-xs"
 data-bind="click: deleteProduct">
 Delete
 </button>
 </td>
 </tr>
 </tbody>
 </table>
</div>
<button data-bind="click: getProducts" class="btn btn-primary">Refresh</button>

The new observable array is called errors, and the HTML elements I have added are displayed when the
observable array contains one or more items. I have styled the new elements using the Bootstrap alert style, and I
enumerate the contents of the errors array to generate an li element for each of them using the Knockout foreach
binding. Listing 13-9 shows the changes that I have made to the exampleApp.js file in the Scripts folder to respond to
the 406 (Not Accepted) status code using the errors observable array.

Listing 13-9. Responding to a Not Acceptable Response in the exampleApp.js File

$(document).ready(function () {

 deleteProduct = function (data) {
 $.ajax("/api/products/" + data.ProductID, {
 type: "DELETE",
 success: function () {
 products.remove(data);
 }
 })
 };

 getProducts = function () {
 errors.removeAll();
 $.ajax("/api/products", {
 headers: { "X-UseProductFormat": "true" },
 //dataType: "text",
 accepts: {
 "*": "application/x.product"
 },
 success: function (data) {
 products.removeAll();
 var arr = data.split(",");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

280

 for (var i = 0; i < arr.length; i += 3) {
 products.push({
 ProductID: arr[i],
 Name: arr[i + 1],
 Price: arr[i + 2]
 });
 }
 },
 error: function (jqXHR) {
 switch (jqXHR.status) {
 case 406:
 errors.push("Request not accepted by server");
 break;
 }
 }
 })
 };
 ko.applyBindings();
});

To handle the response from the server, I have used the error setting to specify a callback function. The argument
passed to the callback function is a jqXHR object, and I check to see kind of error I am dealing with by checking the
status property. For the 406 (Not Acceptable) status code, I add a new item to the errors observable array. (I remove
any items in the errors array when the getProducts function is invoked so that errors don’t accumulate through
several attempts.)

In addition to the callback function, I have changed the way I use the dataType and accepts settings. By default,
jQuery adds */* to the Accept header for Ajax requests, which indicates that any data type is acceptable—and that’s
not what I require for this example. To disable the default header, I have commented out the statement that sets the
dataType setting and change the accepts setting to override the default value that jQuery adds to all requests, which
is associated with a property called "*", like this:

...
accepts: {
 "*": "application/x.product"
},
...

This isn’t a technique that you will need to use in many situations, other than when including */* in the Accept
header results in a data format that you can’t process—and this rarely happens since JSON has become the de facto
standard for web services.

To test the changes, start the application, navigate to the /Home/Index URL, and click the Refresh button. jQuery
will make an Ajax request to the Web API web service that contains the following Accept header:

Accept: application/x.product

The web service is unable to produce serialized data in that format and sends back the 406 status code, which
results in the error display shown in Figure 13-5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

281

Working with the JSON Media Type Formatter
The JsonMediaTypeFormatter class is responsible for producing JSON data. Behind the scenes, the JSON data is
generated by the Json.Net package, which is an open source library that has become the most popular JSON package
for .NET applications. Table 13-5 puts the JsonMediaTypeFormatter in context.

Figure 13-5. Displaying an error to the user

Table 13-5. Putting the JsonMediaTypeFormatter in Context

Question Answer

What is it? The JSON media type formatter is responsible for serializing objects into the JSON
data format.

When should you use it? The formatter will be selected automatically during the content negotiation process.

What do you need to know? The serialization work is done by an open source library called Json.Net. There
are a number of options that can be specified to control the JSON that the Json.
Net package produces, which can be useful for ensuring compatibility with clients
that expect JSON to be structured in a specific way. See the “Configuring Json.Net”
section for details.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

282

Configuring the JSON Media Type Formatter
Configuring the JsonMediaTypeFormatter class is really about configuring Json.Net. The default settings are fine most of
the time, but you will find that some older clients can be picky about the data they process, and it can be useful to tweak
the output, especially if you are using Web API to re-implement a legacy web service and are unable to update the clients
at the same time. Table 13-6 shows the configuration members that the JsonMediaTypeFormatter class defines.

Changing the Underlying JSON Serializer
You can replace the Json.Net package with the Microsoft DataContractJsonSerializer class by setting the
UseDataContractJsonSerializer property to true. The DataContractJsonSerializer class is slower and less
fully featured than Json.Net, but it can be useful if you are re-implementing a legacy web service that used the
DataContractJsonSerializer class and you want to preserve the quirks of its JSON formatting so that you don’t
have to make changes in the clients. For all other situations, the Json.Net package should be used—it is faster, is more
flexible, and produces JSON that is easily consumed by clients.

Indenting the JSON Data
The easiest way to configure the JSONMediaTypeFormatter is through the convenience property defined by the
MediaTypeFormatterCollection class. Listing 13-10 shows how I have used this property to set the value of the
Indent property in the WebApiConfig.cs file.

Listing 13-10. Configuring the JSON Media Type Formatter in the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Net.Http.Formatting;
using System;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

Table 13-6. The JsonMediaTypeFormatter Configuration Methods

Name Description

Indent When set to true, the JSON will be indented, making it easier to read.

MaxDepth Sets the maximum depth of object allowed when reading JSON data
during the model binding process.

UseDataContractJsonSerializer When set to true, the DataContractJsonSerializer, rather than the
Json.Net package, will be used to produce JSON data.

SerializerSettings Gets or sets the JsonSerializerSettings object used to configure
serialization.

CreateDefaultSerializerSettings() Creates a JsonSerializerSettings object configured with the defaults
used by the media type formatter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

283

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 MediaTypeFormatter xmlFormatter = config.Formatters.XmlFormatter;
 config.Formatters.Remove(xmlFormatter);
 config.Formatters.Insert(0, xmlFormatter);

 config.Services.Replace(typeof(IContentNegotiator),
 new DefaultContentNegotiator(true));

 JsonMediaTypeFormatter jsonFormatter = config.Formatters.JsonFormatter;
 jsonFormatter.Indent = true;
 }
 }
}

Setting the Indent property causes the JsonMediaTypeFormatter class to indent the JSON so that each object and
property is defined on its own line, indented so that it is easier to read. Start the application and use Postman to send
a GET request to /api/products with an Accept header of application/json; you will receive data like this:

[
 {
 "ProductID": 1,
 "Name": "Kayak",
 "Price": 275.0
 },
 {
 "ProductID": 2,
 "Name": "Lifejacket",
 "Price": 48.95
 },
...

I have shown only the first two Product objects because the indented JSON takes up a lot of space. Setting the
Indent property to true makes it easier to read the JSON that the media type formatter produces, but it creates larger
HTTP responses, and the extra characters added to indent the data can cause problems with poorly written client
JSON parsers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

284

Configuring Json.Net
The design of the JsonMediaTypeFormatter class doesn’t hide the fact that it usually depends on the Json.Net
package. In fact, the SerializerSettings property and the CreateDefaultSerializerSettings method operate
directly on the Json.Net.JsonSerializerSettings class, which is part of the Json.Net package and not part of Web
API at all. The Json.Net classes are defined in the Newtonsoft.Json namespace.

The CreateDefaultSerializerSettings method creates a new instance of the JsonSerializerSettings
class with the default settings used by Web API. The SerializerSettings property is used to get or set the
JsonSerializerSettings object that is used to configure Json.Net when the JsonMediaTypeFormatter class reads
and writes JSON data. (I explain how JSON is read in Chapter 17 when I describe the model binding process.)

In Table 13-7, I have listed the properties defined by the JsonSerializerSettings class that you may want to
change in a Web API project and the default values that JsonMediaTypeFormatter uses. They largely relate to data
types for which the JSON specification doesn’t contain a definition and some kind of agreement between the client
and the web service about how they are expressed.

Table 13-7. The Most Useful SerializerSettings Properties

Name Description

DateFormatHandling Specifies how dates are written in JSON, expressed as a value from the
DateFormatHandling enumeration. The values are IsoDateFormat (the default),
which writes dates as 2015-01-20T09:20Z, and MicrosoftDateFormat, which
preserves compatibility with earlier Microsoft web services. See the “Handling JSON
Dates” section for details.

DateFormatString Overrides the DateFormatHandling property and sets a custom format for dates.
The value used when DateFormatHandling is IsoDateFormat is
yyyy'-'MM'-'dd'T'HH':'mm':'ss.FFFFFFFK.

DefaultValueHandling Specifies how default values are handled, expressed using the
DefaultValueHandling enumeration. The default value is Include, but see the
“Handling Default Values” section for further details.

NullValueHandling Specifies whether properties that are null are included in JSON data, using a value
from the NullValueHandling enumeration. The default value is Include, meaning
that the properties are included. The other value available is Ignore, which omits
such properties from the JSON data.

StringEscapeHandling Specifies how string values are escaped in the JSON data, using a value from the
StringEscapeHandling enumeration. The default value is Default, but see the
“Handling String Escaping” section for more details.

Tip ■ see http://james.newtonking.com/json/help/index.html for full details of the properties defined by the
JsonSerializerSettings class, including the ones that i have not included in this chapter.

Creating the Example Controller and Client
Some of the JSON serializer options are worth further explanation. I get into the details in the sections that follow, but
first I need to enhance the example project so that I can demonstrate the formatting features. First I added a class file
called FormatsController.cs to the Controllers and used it to define the controller shown in Listing 13-11.

www.it-ebooks.info

http://james.newtonking.com/json/help/index.html
http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

285

Listing 13-11. The Contents of the FormatsController.cs File

using System;
using System.Web.Http;

namespace ExampleApp.Controllers {
 public class FormatsController : ApiController {

 public object GetData() {
 return new {
 Time = DateTime.Now,
 Text = "Joe Smith",
 Count = 0
 };
 }
 }
}

The Web API controller defines a single action method that returns a dynamic object containing Time, Text, and
Count properties. I’ll use these properties to demonstrate different formatting options shortly.

I need to have some way to target the Web API controller, so I added an action method to the MVC Home
controller, as shown in Listing 13-12.

Listing 13-12. Adding an Action Method in the HomeController.cs File

using System.Web.Mvc;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class HomeController : Controller {
 IRepository repo;

 public HomeController(IRepository repoImpl) {
 repo = repoImpl;
 }

 public ActionResult Index() {
 return View(repo.Products);
 }

 public ActionResult Formats() {
 return View();
 }
 }
}

The new action method, Formats, calls the View method to render the default view. There is no view model
data required because I use Ajax to send an HTTP request to the web service. Listing 13-13 shows the contents of the
Views/Home/Formats.cshtml file, which I created to be rendered by the Formats action method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

286

Listing 13-13. The Contents of the Formats.cshtml File

@{ ViewBag.Title = "Formats"; }

@section Scripts {
 <script>
 $(document).ready(function () {
 $.ajax("/api/formats", {
 success: function (data) {
 dataObject = ko.observable(data);
 ko.applyBindings();
 }
 });
 });
 </script>
}

<div class="panel panel-primary">
 <div class="panel-heading">RSVPs</div>
 <table id="rsvpTable" class="table table-striped">
 <thead><tr><th>Property</th><th>Value</th></tr></thead>
 <tbody>
 <tr><td>Time</td><td data-bind="text: dataObject().Time"></td></tr>
 <tr><td>Text</td><td data-bind="text: dataObject().Text"></td></tr>
 <tr><td>Count</td><td data-bind="text: dataObject().Count"></td>
 </tr>
 </tbody>
 </table>
</div>

The JavaScript code in this view uses jQuery to make an Ajax request as soon as the document is ready.
The success callback for the Ajax request assigns the JavaScript object that has been parsed from the JSON data to a
variable called dataObject and calls the Knockout applyBindings method so that the properties of the data object are
displayed in the HTML table element via the Knockout text bindings I added to the td elements. To see the effect of
these additions, start the application and request the /Home/Formats URL. The result is shown in Figure 13-6.

Figure 13-6. Displaying JSON data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

287

The three properties sent in the JSON from the web service as displayed just as they are received. In the following
sections, I’ll show you how to control the JSON output produced by the web service to get different effects.

Handling JSON Dates
Dates are a source of difficulty in any environment because of the multitude of ways that they can be expressed and
the endless permutations of regional calendars and time zones. The situation is made worse only when using JSON
because the format acts as a neutral interchange between two different programming languages and has no definitive
definition for how dates should be expressed.

The best approach—and the one most widely used in web services—is to express dates so they are easily
processed in JavaScript. This is the default option used by the Json.Net package, so no changes are required within
Web API. In Listing 13-14, you can see the changes that I made to the script element in the Formats.cshtml file to
process the date value in JavaScript.

Listing 13-14. Processing a Date Value in the Formats.cshtml File

...
<script>
 $(document).ready(function () {
 $.ajax("/api/formats", {
 success: function (data) {
 dataObject = ko.observable(data);
 var date = new Date(data.Time);
 dataObject().Time = date.toLocaleTimeString();
 ko.applyBindings();
 }
 });
 });
</script>
...

JavaScript has a built-in Date type, and instances are created by calling new Date and using the string generated
by the JsonMediaTypeFormatter as the constructor argument. Once you have a Date object, there are a range of
methods you can use to get information about the date and time specified. I used the toLocateTimeString method to
obtain a time string, as shown in Figure 13-7.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

288

The SerializerSettings.DateFormatHandling setting can be set to the DateFormatHandling.MicrosoftDateFormat
value if you need to generate dates for compatibility with clients that rely on an older format that Microsoft used to
promote, where dates are expressed like this:

{ "Time": "\/Date(1396385762063+0100)\/", "Text": "Joe Smith", "Count": 0}

Listing 13-15 shows how I have enabled the Microsoft date format in the WebApiConfig.cs file.

Listing 13-15. Enabling the Microsoft Date Format in the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Net.Http.Formatting;
using System;
using Newtonsoft.Json;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

Figure 13-7. Processing a date value

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

289

 MediaTypeFormatter xmlFormatter = config.Formatters.XmlFormatter;
 config.Formatters.Remove(xmlFormatter);
 config.Formatters.Insert(0, xmlFormatter);

 config.Services.Replace(typeof(IContentNegotiator),
 new DefaultContentNegotiator(true));

 JsonMediaTypeFormatter jsonFormatter = config.Formatters.JsonFormatter;
 jsonFormatter.Indent = true;
 jsonFormatter.SerializerSettings.DateFormatHandling
 = DateFormatHandling.MicrosoftDateFormat;
 }
 }
}

The JavaScript Date object can’t process this kind of format, so some additional manipulation is required.
Listing 13-16 shows the changes I made to the script element in the Formats.cshtml view to process the Microsoft
date format. This incantation extracts the numerical value from the date string and uses it to create a Date object and
can be used verbatim when you are working with the legacy format.

Listing 13-16. Processing a Microsoft Date Value in the Formats.cshtml File

...
<script>
 $(document).ready(function () {
 $.ajax("/api/formats", {
 success: function (data) {
 dataObject = ko.observable(data);
 var date = new Date(parseInt(data.Time.replace("/Date(", "")
 .replace(")/", ""), 10));
 dataObject().Time = date.toLocaleTimeString();
 ko.applyBindings();
 }
 });
 });
</script>
...

Handling String Escaping
By default, only control characters are escaped in string values when generating JSON data. The StringEscapeHandling
setting allows you to change this behavior by specifying a value from the StringEscapeHandling enumeration, which
defines the values shown in Table 13-8.

Table 13-8. The Values Defined by the StringEscapeHandling Enumeration

Value Description

Default Only control characters are escaped.

EscapeNonAscii Control characters and non-ASCII characters are escaped.

EscapeHtml HTML characters and control characters are escaped.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

290

In any web application, it is important to guard against interpreting text as HTML if it has not been escaped. This
prevents script injection, where data values are crafted to include script elements that contain JavaScript that attacks
the application or the user. The data that I return from the web service contains some benign HTML, as follows:

{ "Time": "\/Date(1396385762063+0100)\/", "Text": "Joe Smith", "Count": 0}

I have used the b element to add emphasis to part of the value for the Text property. The Knockout text binding
automatically escapes dangerous HTML characters, which is why the word Smith isn’t shown in bold in Figure 13-7.

Relying on the client to escape dangerous HTML characters isn’t enough when working with web services. You
should also escape dangerous characters in the web service itself because the set of clients—or the developers who
write the client—may change, presenting the risk that your web service may be used as an attack vector to undermine
them. Listing 13-17 shows how I have enabled the EscapeHtml option from Table 13-8 in the WebApiConfig.cs file.

Listing 13-17. Enabling HTML Character Escaping in the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Net.Http.Formatting;
using System;
using Newtonsoft.Json;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 // ...other statements omitted for brevity...

 JsonMediaTypeFormatter jsonFormatter = config.Formatters.JsonFormatter;
 jsonFormatter.Indent = true;
 jsonFormatter.SerializerSettings.DateFormatHandling
 = DateFormatHandling.MicrosoftDateFormat;
 jsonFormatter.SerializerSettings.StringEscapeHandling
 = StringEscapeHandling.EscapeHtml;
 }
 }
}

There is no change in the content rendered by the MVC controller, but if you use Postman to send a GET request
to the /api/formats URL with an Accept header of application/json, you will see that the dangerous HTML
characters have been escaped, like this:

{ "Time": "\/Date(1396421325274+0100)\/",
 "Text": "Joe \u003cb\u003eSmith\u003c/b\u003e", "Count": 0 }

Tip ■ postman formats htMl content in the pretty view of the result data. Be sure to select the raw view to see the
characters sent by the web service.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

291

Handling Default Values
The DefaultValueHandling setting specifies how default values for properties are handled in Json data. Default
values are null for object and nullable properties, zero for numeric properties, and false for bool properties. The
DefaultValueHandling setting is defined using a value from the DefaultValueHandling enumeration, which defines
the values shown in Table 13-9.

Table 13-9. The Values Defined by the DefaultValueHandling Enumeration

Value Description

Include This is the default value, and it includes properties with default values in the JSON data.

Ignore This setting excludes properties with default values from the JSON data.

Populate This setting is used when deserializing JSON data. It sets the default value for properties in
C# objects when there is no corresponding property in the JSON data. Deserialization is part
of the model binding process, which I describe in Chapter 14.

IgnoreAndPopulate This setting combines the Ignore and Populate values.

Tip ■ there is also a NullValueHandling setting that applies only to null values.

The Include value is the default, which means that the Count property in my example data object is included in
the JSON that the web service generates, even though its value is zero.

{ "Time": "\/Date(1396421325274+0100)\/",
 "Text": "Joe \u003cb\u003eSmith\u003c/b\u003e", "Count": 0 }

Listing 13-18 shows how I have set DefaultValueHandling to exclude any property that has the default value in
the WebApiConfig.cs file.

Listing 13-18. Ignoring Default Values in the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Net.Http.Formatting;
using System;
using Newtonsoft.Json;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 // ...other statements omitted for brevity...

 JsonMediaTypeFormatter jsonFormatter = config.Formatters.JsonFormatter;
 jsonFormatter.Indent = true;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

292

 jsonFormatter.SerializerSettings.DateFormatHandling
 = DateFormatHandling.MicrosoftDateFormat;
 jsonFormatter.SerializerSettings.StringEscapeHandling
 = StringEscapeHandling.EscapeHtml;
 jsonFormatter.SerializerSettings.DefaultValueHandling
 = DefaultValueHandling.Ignore;
 }
 }
}

The effect is that the Count property is omitted from the JSON data:

{ "Time": "\/Date(1396421578038+0100)\/",
 "Text": "Joe \u003cb\u003eSmith\u003c/b\u003e"}

Omitting properties with default values means that the client has to be able to work without the missing
properties or be able to reconstruct them with default values. Listing 13-19 shows how I updated the JavaScript code
in the Formats.cshtml file to add the Count property if it is missing.

Listing 13-19. Re-creating Missing Properties in the Formats.cshtml File

...
<script>
 $(document).ready(function () {
 $.ajax("/api/formats", {
 success: function (data) {
 if (!("Count" in data)) {
 data.Count = 0;
 }
 dataObject = ko.observable(data);
 var date =
 new Date(parseInt(data.Time.replace("/Date(", "")
 .replace(")/", ""), 10));
 dataObject().Time = date.toLocaleTimeString();
 ko.applyBindings();
 }
 });
 });
</script>
...

Tip ■ i prefer to include properties that have default values because it means that the client always works on a
 consistent representation of the data objects and doesn’t require any prior knowledge about properties that may
be missing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

293

Using the XML Media Type Formatter
The XmlMediaTypeFormatter class is responsible for serializing model objects into XML data, and like the
JSON media type formatter, it relies on other classes to generate the serialized data. In this case, the
System.Runtime.DataContractSerializer class is used by default. XML used to be the predominant data format
for web services but has been all but replaced by JSON, which is compact and easier to work with. There are JSON
libraries available for just about every combination of platform and programming language, so the only reason to use
XML is for compatibility with legacy clients. Table 13-10 puts the XmlMediaTypeFormatter class into context.

Table 13-10. Putting the XmlMediaTypeFormatter Class in Context

Question Answer

What is it? The XML media type formatter is responsible for serializing objects into the XML
data format.

When should you use it? The formatter will be selected automatically during the content negotiation process.

What do you need to know? The classes that are used to produce XML data are old, slow, and inflexible. They
don’t support recent .NET and C# features, such as dynamic objects. XML support
in Web API is largely so that web services can support clients originally developed
to consume web services created with legacy Microsoft web service tools.

Tip ■ in real projects, i use the HttpConfiguration.Configuration.Formatters.Remove method to take the
XmlMediaTypeFormatter out of the media type formatter collection for applications that don’t need to support legacy
clients. not only is Json widely supported and easier to work with, but supporting only one data format reduces the
amount of unit and integration testing required for the project.

What happeNeD tO XML WeB SerVICeS?

the term XML web services was used in the early 2000s to describe heavily structured web services that were
carefully described by different XMl documents and standards, including the simple object access protocol
(soap) and the Web service description language (Wsdl). these standards were used to create loosely coupled
clients and services but required complex XMl documents that were difficult to work with. these days, those web
services that still use XMl use the format only to describe fragments of data without the overhead of precise type
and service descriptions—rather like the Json strings that you have seen in other examples but expressed using
XMl elements and attributes instead of Javascript-style objects and properties.

Configuring the XML Media Type Formatter
Table 13-11 shows the configuration members defined by the XmlMediaTypeFormatter class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

294

Table 13-11. The XmlMediaTypeFormatter Configuration Methods

Name Description

Indent When set to true, the XML will be indented, making it easier to read (but more verbose).

MaxDepth Sets the maximum depth of object allowed when reading XML data during the model
binding process.

UseXmlSerializer When set to true, the XmlSerializer class will be used to produce XML data.

WriterSettings Gets the XmlWriterSettings object used to configure serialization.

I am not going to go into any detail about configuring the XmlMediaTypeFormatter class because XML is the
lesser data format in Web API applications and because the default configuration works fine for most applications.

The DataContractSerializer class was introduced in .NET 3.0 and is the default serializer used by the
XmlMediaTypeFormatter class to create XML. You can configure the serializer by changing the property values of the
XmlWriterSettings object returned by the WriterSettings property—although most of the properties have little
impact beyond basic formatting. You can find a complete list of the properties defined by the XmlWriterSettings
class at http://goo.gl/iMDEFZ.

If you set the WriterSettings property to true, the XmlMediaTypeFormatter will use the XmlSerializer class,
which has been around since .NET 1.1. Both classes are rather poor, and it is a measure of how little XML is used in
web services that the choice available is a class from 2006 or a class from 2003 and that no non-Microsoft alternative
package has entered the mainstream as a replacement. The only reason to use XML in Web API applications is to
preserve compatibility with legacy clients, and you should use JSON for projects where this is not a requirement.
There is an old, but still useful, comparison of the two XML serializer classes at http://goo.gl/gz0lyH that can help
you understand the strengths and (many) weaknesses of each class.

Getting the Xml Media Type Formatter Working
The first task is to get the XmlMediaTypeFormatter class working because at the moment it isn’t able to serialize the
data returned by the GetData action method in the Formats controller and the client-side code doesn’t support XML
at the moment.

Updating the Web API Controller
The problem with the Web API controller is that you can’t return dynamic objects from action methods. This means
you need to create the equivalent of view model classes in the MVC framework to return results from action methods.
The only time I find this frustrating is when I can’t return an enumeration of dynamically created objects from a
LINQ select clause. Listing 13-20 shows how I have replaced the dynamic object I used for the JSON formatter with a
simple class that defines the same properties.

Listing 13-20. Defining a Model Object in the FormatsController.cs File

using System;
using System.Web.Http;

namespace ExampleApp.Controllers {
 public class FormatsController : ApiController {

www.it-ebooks.info

http://goo.gl/iMDEFZ
http://goo.gl/gz0lyH
http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

295

 public DataObject GetData() {
 return new DataObject {
 Time = DateTime.Now,
 Text = "Joe Smith",
 Count = 0
 };
 }
 }

 public class DataObject {
 public DateTime Time { get; set; }
 public string Text { get; set; }
 public int Count { get; set; }
 }
}

The DataObject class defines the DateTime, string, and int properties that I need to represent the data. To test
the XML serialization, start the application and use Postman to send a GET request to the /api/formats API. (There
is no need to specify an Accept header because the WebApiConfig.cs file sets up the XmlMediaTypeFormatter class as
the first in the formatter collection and Postman sends an Accept header of */* if one isn’t explicitly specified.)
You will receive the following output:

<DataObject xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://schemas.datacontract.org/2004/07/ExampleApp.Controllers">
<Count>0</Count>
<Text>Joe Smith</Text>
<Time>2014-04-02T19:27:30.8006076+01:00</Time>
</DataObject>

Updating the Client JavaScript Code
jQuery automatically parses XML data received from Ajax to create an XMLDocument object, which—as the name
suggests—is a representation of an XML document, provided by the browser. The API for XMLDocument is awkward to
work with, and the simplest way to create JavaScript objects from XML data is to use jQuery methods that are usually
used to handle HTML. Listing 13-21 shows how I have updated the script element in the Formats.cshtml file to
process the XML data that is returned by the Web API controller.

Listing 13-21. Processing XML Data in the Formats.cshtml File

...
<script>
 $(document).ready(function () {
 $.ajax("/api/formats", {
 dataType: "xml",
 success: function (data) {
 var props = ["Time", "Text", "Count"];
 var jsObject = {};
 for (var i = 0; i < props.length; i++) {
 jsObject[props[i]] = $(data).find(props[i]).text();
 }

www.it-ebooks.info

http://www.w3.org/2001/XMLSchema-instance
http://schemas.datacontract.org/2004/07/ExampleApp.Controllers
http://www.it-ebooks.info/

Chapter 13 ■ Using the BUilt-in Media ForMatters

296

 dataObject = ko.observable(jsObject);
 ko.applyBindings();
 }
 });
 });
</script>
...

Setting dataType to xml when making the Ajax requests tells jQuery to treat the data as XML and pass the
XMLDocument object to the success callback function. Within the callback, I created an array of the properties that
I need to extract from the XML and use jQuery to get values for each of them.

...
jsObject[props[i]] = $(data).find(props[i]).text();
...

There are three parts to the jQuery statement. The $(data) part creates a jQuery wrapper around the
XMLDocument object, which means that the jQuery methods can be used. The find method locates all of the elements
of a specific type, and the text method returns the combined text content of the matching elements. The effect of this
JavaScript and jQuery code is that I create an object with the properties for which I have defined Knockout bindings,
populated with the values from the XML data.

Summary
In this chapter, I explained how to work with the built-in media type formatters. I explained how the default content
negotiator matches media type formatters based on data types and how you can override this behavior to create
a response that is more in keeping with the HTTP standard. I described how to work with the JSON media type
formatter, showing you the configuration options defined by the media type formatter itself and the JSON serializer
that it depends on. I finished the chapter by showing you how to work with the XML media type formatter and
explained that XML has taken a back seat to JSON in web services and that the classes that the media type formatter
can use to generate XML are old and mostly available for backward compatibility with legacy clients. In the next
chapter, I describe the parameter and model binding features in which media type formatters play a part.

www.it-ebooks.info

http://www.it-ebooks.info/

297

Chapter 14

Understanding Parameter and
Model Binding

In the MVC framework, model binding is the process used to extract values from the HTTP request to provide values
for the arguments needed to invoke action methods. In Web API, there are two processes that do this work: parameter
binding and model binding. They work in loosely the same way model binding in the MVC framework works, but
they are optimized to improve the performance of request handling for web services—and this means there are some
important differences to the approach you are used to using.

In any complex Web API project, you will spend a lot of time dealing with the parameter and model binding
processes. There is a lot of detail in how these work, and this is the first in a set of chapters that dig into that detail,
explain how everything fits together, and demonstrate how to address common binding problems.

In this chapter, I explain the difference between the parameter and model binding processes and demonstrate
how they work by default. In Chapter 15, I dig into the detail of how simple types—such as int and string values—are
handled. In Chapter 16 and Chapter 17, I do the same for complex types. Along the way, I describe the different ways in
which you can customize the parameter and model binding processes, and at the end of Chapter 17, I demonstrate how
you can completely replace them with ones of your own design (although, as I explain, there is little reason to do so).
Table 14-1 summarizes this chapter.

Table 14-1. Chapter Summary

Problem Solution Listing

Use parameter or model binding to find data values
in the request.

Define an action method with simple or complex
type arguments.

1–5, 8–13

Find values for simple data types in POST requests. Ensure that the client includes the values for the
parameters in the URL, either in the URL so that
the values are accessible through the query string
or in routing data.

6–7

Read a complex type value from the request URL. Apply the FromUri attribute to the parameter. 14, 15

Read a simple type value from the request body. Apply the FromBody attribute to the parameter. 16–17

Apply the effect of the FromUri or FromBody attribute
for all parameters of a given type.

Create a parameter binding rule with the
BindWithAttribute extension method.

18–20

Obtain data values directly from the HTTP request
without using the parameter and model binding
features.

Use the properties and extension methods to
access the URL and request body.

21–25

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

298

Preparing the Example Project
I am going to continue working with the ExampleApp project I have been developing in previous chapters. I am using
the project to get the benefit from some of the existing functionality I defined, such as the shared Razor layout that
references all of the JavaScript and CSS files I need, but I won’t be working with the part of the application that deals
with the Product model and the Web API Products controller for a while.

Creating the Controller
I need to define a new web service that doesn’t follow the RESTful convention so that I can separate the parameter
and model binding processes from other Web API features. I added a class file called BindingsController.cs to the
Controllers folder and used it to define the Web API controller shown in Listing 14-1.

Listing 14-1. The Contents of the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public int SumNumbers(int first, int second) {
 return first + second;
 }
 }
}

The Bindings controller defines an action method called SumNumbers, which takes two int arguments, which
are added together to create the result. Since this is a simple—rather than RESTful—web service, I have to apply
the HttpGet and HttpPost attributes so that the action method can be targeted by HTTP GET and POST requests.
(I explain how these attributes work in Web API and why RESTful web services don’t need to use the attributes in
Chapter 22.)

Creating the Client
I need a client to consume the new web service. I started by adding an action method to the Home controller, as shown
in Listing 14-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

299

Listing 14-2. Adding an Action Method in the HomeController.cs File

using System.Web.Mvc;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class HomeController : Controller {
 IRepository repo;

 public HomeController(IRepository repoImpl) {
 repo = repoImpl;
 }

 // ...other action methods omitted for brevity...

 public ActionResult Bindings() {
 return View();
 }
 }
}

The Bindings action method renders the default Razor view. Listing 14-3 shows the contents of the
Bindings.cshtml view file that I created in the Views/Home folder.

Listing 14-3. The Contents of the Bindings.cshtml File in the Views/Home Folder

@{ ViewBag.Title = "Bindings"; }

@section Scripts { <script src="~/Scripts/bindings.js"></script> }

<div class="alert alert-success" data-bind="css: { 'alert-danger': gotError }">

</div>
<div class="form-group">
 <label>First Number</label>
 <input class="form-control" data-bind="value: viewModel().first" />
</div>
<div class="form-group">
 <label>Second Number</label>
 <input class="form-control" data-bind="value: viewModel().second" />
</div>
<button class="btn btn-primary" data-bind="click: sendRequest">Send Request</button>

The view contains HTML form elements that collect the values to be sent to the web service and a button that
triggers a function called sendRequest through a Knockout click binding.

I have included a div element styled with the Bootstrap alert class that will display the results from the request,
using a Knockout css binding to change color when an error occurs. I defined the bindings (and the view model they
apply to) in the bindings.js JavaScript file, which I added to the Scripts folder. Listing 14-4 shows the contents of the
JavaScript file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

300

Listing 14-4. The Contents of the bindings.js File in the Scripts Folder

var viewModel = ko.observable({ first: 2, second: 5 });
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function () {
 $.ajax("/api/bindings/sumnumbers", {
 type: "GET",
 data: viewModel(),
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

Tip ■ For variety, i have included only the call to the Knockout applyBindings method in the jQuery ready function.
i usually put all jQuery code inside the ready function out of habit, but when working with Knockout, only the
applyBindings method cannot be called until the browser has finished processing the html document.

The JavaScript file defines the observable items needed for the Knockout bindings shown in Listing 14-3, along
with the sendRequest function that will be invoked by the click binding on the button element.

Tip ■ i have to specify the action method as part of the Url, since i did not follow the restful convention in the
Bindings controller. i explain how this convention is managed through the Web api routing system in Chapters 20 and 21,
but for the purposes of this chapter, it is enough to know that i have to use /api/bindings/sumnumbers as the Url for
the ajax request.

Adding a New Route
For some of the examples in this chapter, I need to define a new URL route that will let me target the SumNumbers
action method in the Bindings controller with a URL like this one:

http://localhost:29844/api/bindings/sumnumbers/10/12

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

301

To enable this, I have added a new route to the WebApiConfig.cs file, as shown in Listing 14-5. I explain how
Web API URL routing works in Chapters 20 and 21, but for now you can see from the listing that capturing values
from segment variables works just as it does in the MVC framework. In addition to defining the new URL route, I have
removed the code from the previous chapter that configured the media type formatters.

Listing 14-5. Tidying Up the WebApiConfig.cs File and Defining a New URL Route

using System.Web.Http;
using ExampleApp.Infrastructure;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "Api with extension",
 routeTemplate: "api/{controller}.{ext}/{id}",
 defaults: new {
 id = RouteParameter.Optional,
 ext = RouteParameter.Optional
 }
);

 config.Routes.MapHttpRoute(
 name: "Binding Example Route",
 routeTemplate: "api/{controller}/{action}/{first}/{second}"
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

Testing the Example Application
To test the new web service, start the application and navigate to the /Home/Bindings URL. Enter two numbers into
the input elements and click the Send Request button. jQuery will send an Ajax request that targets the SumNumbers
action method in the Bindings controller and will display the result when it arrives, as shown in Figure 14-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

302

Understanding the Default Binding Behavior
Parameter binding and model binding both extract data from the request so that it can be used as arguments to invoke
action methods. The result is that you can define action methods that accept .NET types as parameters and let Web
API worry about how to get values for them behind the scenes.

Using parameter and model binding ensures that values for action method parameters are extracted from
requests consistently, using code that can be applied throughout an application, but Web API doesn’t make you
use either kind of binding in your web services. The alternative is to get the data values you need directly from the
HttpRequestMessage object, but this can be awkward, duplicative, and error-prone and prevents you from benefitting
from features such as model validation, which I describe in Chapter 18. I show you how to get data values from the
request without using binding in the “Manually Obtaining Request Values” section later in this chapter.

Note ■ strictly speaking, the term parameter describes the definition of a variable that a method or function accepts,
and an argument is the value of that variable when the method or function is invoked. in practice, these terms are used
interchangeably.

In the sections that follow, I describe the default behavior for parameter and model binding. I explain the
relationship between the two binding processes, explain when each is used, and show you the most common cause of
binding problems. Table 14-2 puts the default binding behavior in context.

Figure 14-1. Testing the example application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

303

Note ■ i explain the default binding behavior in some detail, and i focus on the two most common pitfalls that you
will encounter. my focus on the common problems may give you the impression that parameter and model binding are
of limited use, but that’s not the case. in fact, you can control and customize the way that both processes work to
address almost any situation, but doing that effectively requires a solid understanding of how the binding processes work
by default and the traps that changing the behavior helps to avoid. i dig into the details of how both processes work in
Chapters 15, 16, and 17.

Understanding Parameter Binding
Parameter binding is used when an parameter is a simple type, which means it is a TimeSpan, DateTime, or Guid object
or one of the .NET primitive types: string, char, bool, int, uint, byte, sbyte, short, ushort, long, ulong, float,
double, and decimal.

By default, parameter binding obtains values only from the request URL, which means there are two sources of
data values: the routing segments in the URL that has been requested and the query string. Consider the SumNumbers
method in the BindingsController class.

...
[HttpGet]
public int SumNumbers(int first, int second) {
 return first + second;
}
...

The two parameters for the action method are both int values, so Web API will use parameter binding to extract
values from the response. There are two different styles of URL that can be used to target the SumNumbers method and
specify a value for the first and second arguments, as shown in Table 14-3.

Table 14-2. Putting the Default Binding Behavior in Context

Question Answer

What is it? Parameter and model binding locates values for action method parameters from
requests, simplifying the process of working with the data sent by a client.

When should you use it? Bindings are used automatically when you define an action method that has
parameters.

What do you need to know? Parameter binding is used to locate values for simple .NET types but will do so only
using the request URL. Model binding is used to create complex .NET types but will
do so only using the request body. This is the default behavior—see the “Performing
Binding Customizations” section for details of how to change the source of data
used for binding.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

304

The first URL in Table 14-3 requires the URL route I defined in Listing 14-5, and the easiest way to test it is to use
Postman. Send a GET request to the /api/bindings/sumnumbers/10/12 URL, and the parameter binding process will
assign 10 and 12 as the values for the action method arguments, returning a result of 22.

JSON aND XML FOrMattING OF SIMpLe VaLUeS

if you use postman to send a get request to the /api/bindings/sumnumbers/10/12 Url, you will see that the
result returned by the web service is just 22. this result has been through the standard media type formatting
process that i described in Chapter 13 and been formatted as Json. it just looks like the unaltered result from the
action method because Json expresses simple values concisely, with no additional packaging required.

if you request the same Url using google Chrome, the Xml media type formatter will be used because Chrome
prefers to receive Xml over Json. here is the result that you will receive:

<int xmlns="http://schemas.microsoft.com/2003/10/Serialization/">
 22
</int>

the more you work with Json, you more you will come to see why it has displaced the more verbose Xml for
web applications: Json is simpler, more concise, and easier to work with.

The first URL is the format you will be familiar with from MVC applications, where it is good practice to create a
URL schema that is easy for users to understand and manipulate directly. Not all users want to enter URLs directly,
but those that do can start with a URL like this one:

/api/bindings/sumnumbers/10/12

and with a little experimentation work out that changing the last two URL segments allows calculations to be
performed directly.

Supporting simple and editable URLs is important in Web API, too, because it allows users to work directly
with the web service, but when you are implementing a browser-based client, it is usually the second kind of URL
from Table 14-3 that you will rely on because jQuery makes it simple to translate JavaScript objects and Knockout
observables into query strings. Consider the sendRequest method that I defined in the bindings.js file.

...
var sendRequest = function () {
 $.ajax("/api/bindings/sumnumbers", {
 type: "GET",
 data: viewModel(),

Table 14-3. The URLs That Will Target the Action Method

URL Description

/api/bindings/sumnumbers/10/12 The values for the arguments are obtained from the URL
routing information (which I describe in Chapters 20 and 21).

/api/bindings/sumnumbers?first=10&second=12 The values for the arguments are obtained from the query string.

www.it-ebooks.info

http://schemas.microsoft.com/2003/10/Serialization/
http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

305

 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};
...

jQuery takes the object assigned to the data setting property and generates a string that contains the name and value of
each property it defines. The viewModel object I used in the bindings.js file is a Knockout observable. To get an object
that jQuery can process through the data setting, I call the observable name with parentheses: viewModel(). This
returns an object with first and second properties, which is then encoded by jQuery to produce a string like this:

first=10&second=20

jQuery uses the HTTP verb being used in the request to decide how to use the encoded string. For GET requests, the
encoded string is used as the URL query string, creating a request URL like this:

/api/bindings/sumnumbers?first=10&second=20

Understanding the Parameter Binding Pitfall
By default, parameter binding will only extract values from the URL, which leads to the most common binding
problem: trying to bind simple types from the request body. This problem usually occurs because jQuery adapts
the way it uses the string generated from the data setting based on the HTTP verb. For GET requests, the string is
appended to the URL as the query string, which matches the way that parameter binding works. For other HTTP
verbs, jQuery puts the data string in the request body. To demonstrate the problem, I have changed the HTTP verb
used by the client in the sendRequest function, as shown in Listing 14-6.

Listing 14-6. Using a Different HTTP Verb in the bindings.js File

...
var sendRequest = function () {
 $.ajax("/api/bindings/sumnumbers", {
 type: "POST",
 data: viewModel(),
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

306

 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};
...

When you submit a request using the code shown in the listing, jQuery sends the request to the
/api/bindings/sumnumbers URL without any query string and includes the encoded string in the request body.
Here is a snapshot of the request that jQuery sends:

POST http://localhost:29844/api/bindings/sumnumbers HTTP/1.1
Host: localhost:29844
Connection: keep-alive
Content-Length: 16
Accept: */*
Origin: http://localhost:29844
X-Requested-With: XMLHttpRequest
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) ...(truncated)...
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Referer: http://localhost:29844/Home/Bindings
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-GB,en-US;q=0.8,en;q=0.6
Cookie: __RequestVerificationToken=XuxQqvAa36- ...(truncated)...

first=2&second=5

I have highlighted the data string, which is in the same format used for the query string. But, since parameter
binding works only on data contained in the URL, values for the first and second arguments required by the
SumNumbers action method won’t be located, producing the response shown in Figure 14-2.

Figure 14-2. Parameter binding works only on the request URL

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

307

Tip ■ i captured the details of the request using Fiddler, which is an excellent web debugging proxy, available free
from www.telerik.com/fiddler. the google Chrome F12 tools provide details of the request but won’t let you see
the raw content.

The web service returns a 404 (Not Found) response because the sole action method defined by the Bindings
controller has a signature that can’t be matched to the request. I touch on the process of Web API action method
selection in Chapter 19 and describe it in depth in Chapter 22, but for this chapter it is enough to know that the
request won’t target the action method if the data required by the parameter binding process is in the request body.

This problem comes up at some point in most complex Web API projects, either because you need to change
the verb used for a particular kind of request or because you want to make a POST or DELETE request that targets an
action method that receives simple data types. There are two ways to solve this problem. The first is to explicitly add
values that correspond to simple data type action method parameters to the query string, rather than allowing jQuery
to handle the data for you. Listing 14-7 shows the changes required to use this technique in the sendRequest function.

Listing 14-7. Explicitly Setting the Query String in the bindings.js File

...
var sendRequest = function () {
 $.ajax("/api/bindings/sumnumbers?" + $.param(viewModel()), {
 type: "POST",
 //data: viewModel(),
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};
...

I have commented out the data setting and changed the URL to which the request will be sent to include a
question mark and the encoded string. I have to encode the string explicitly using the jQuery $.param method, which
takes an object as its argument and returns a string suitable for use in the query string (this is the same method that
jQuery uses for the data setting).

The second technique is to let jQuery put the data in the body and use model binding to extract the values for
the action method arguments, overriding the default behavior. I describe how this works in the “Performing Binding
Customizations” section.

Understanding Model Binding
Model binding is the counterpart to parameter binding and is used for complex types—which means it is used for any
type not in the list I gave in the previous section. Whereas parameter binding works only on the URL by default, model
binding works only on the request body.

www.it-ebooks.info

http://www.telerik.com/fiddler
http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

308

Since model binding works only on complex types, I need to add a model class to the example application.
Listing 14-8 shows the contents of the BindingModels.cs class file that I added to the Models folder.

Listing 14-8. The Contents of the BindingModels.cs File

namespace ExampleApp.Models {

 public class Numbers {
 public int First { get; set; }
 public int Second { get; set; }
 }
}

The Numbers class I defined has First and Second properties that correspond to the simple type parameters from
the previous section. Listing 14-9 shows how I updated the SumNumbers action method to use the Numbers class.

Listing 14-9. Using a Model Class in the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public int SumNumbers(Numbers calc) {
 return calc.First + calc.Second;
 }
 }
}

I also updated the sendRequest method in the bindings.js file so that the client sends a request that can be
processed by model binding, as shown in Listing 14-10.

Listing 14-10. Sending a Complex Type in the bindings.js File

...
var sendRequest = function () {
 $.ajax("/api/bindings/sumnumbers", {
 type: "POST",
 data: viewModel(),
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

309

 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};
...

Tip ■ notice that this is the same request configuration that caused problems for parameter binding in listing 14-6, and
if you look at the request that jQuery sends to the web service, you will see that it is identical to the one i showed you in the
previous section. there are a few basic patterns of http request that you will see throughout web service development.

Model binding doesn’t require the client to have any knowledge about the data type that the action method
requires. Instead, all of the work to create an object of the type required by the action method is performed at the web
service. In this case, the client sends a request that contains values for first and second properties, like this:

first=2&second=5

Web API looks at the URL routing information and determines that the request is intended to target the SumNumbers
action method, which requires a Numbers object. Since Numbers is a complex type, the model binding process is applied
to transform the first and second values into a Numbers instance. For such a simple object, the transformation process
is simple. You create a new instance of the Numbers class and assign values to the properties it defines, but the model
binding process can be used to deal with more complex situations, as I describe in Chapter 16 and 17.

Understanding the Model Binding Pitfall
The obvious pitfall with model binding is that it can create objects only from data in the request body, which is
the mirror of the most common parameter binding problem. This means that, by default, you can’t use a complex
type parameter to receive data from a GET request, but I’ll show you how to resolve this in the “Performing Binding
Customizations” section, albeit with some limitations.

The second pitfall is that model binding can extract only one object from the request body. In the MVC
framework, the entire request body is processed and stored in memory before request processing starts. The data in
the request is available as a collection of name-value pairs that can be used to create as many objects as you need,
even to the extent that different objects can be created from the same data items.

The body of Web API requests isn’t read into memory before the model binding process. Instead, the data is
available as a stream, and once a model binder has read the data from the stream, it is no longer available for further
use. I show you many different ways of customizing and controlling the model binding process in this chapter and the
ones that follow, but there is no neat way to step around the one-object-per-request limit.

This problem usually appears when you need to extend the functionality of an action method. To demonstrate,
I have defined a new model class in the BindingModels.cs file, as shown in Listing 14-11.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

310

Listing 14-11. Adding a New Class to the BindingModels.cs File

namespace ExampleApp.Models {

 public class Numbers {
 public int First { get; set; }
 public int Second { get; set; }
 }

 public class Operation {
 public bool Add { get; set; }
 public bool Double { get; set; }
 }
}

In Listing 14-12, I have used the new Operation class to extend the SumNumbers action method.

Listing 14-12. Adding an Action Method Parameter in the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public int SumNumbers(Numbers calc, Operation op) {
 int result = op.Add ? calc.First + calc.Second :
 calc.First - calc.Second;
 return op.Double ? result * 2 : result;
 }
 }
}

I have defined a new Operation class and changed the signature of the SumNumbers action method so that it
defines Numbers and Operation parameters. I use the Operation class properties to perform different calculations
within the action method, but the important part of this change is that calling the action method now requires two
complex type arguments.

In Listing 14-13, you can see the corresponding changes that I made to the bindings.js file. The values for the
Operation properties don’t affect the model binding process, so I have assigned values to the Knockout observable
object without giving the user any way to change those values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

311

Listing 14-13. Adding Data in the bindings.js File

var viewModel = ko.observable({ first: 2, second: 5, add: true, double: false });
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function () {
 $.ajax("/api/bindings/sumnumbers", {
 type: "POST",
 data: viewModel(),
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

Although the client will now send all of the data values required to create a Numbers object and an Operation
object, the limitation of one object per request body will stop that from happening. Start the application, navigate to
the /Home/Bindings URL, and click the Send Request button; you will see the response illustrated by Figure 14-3.

Figure 14-3. Sending a request to an action method with two complex type arguments

The values that I added for the Operation object don’t matter because Web API will throw an exception before
the SumNumbers method is invoked. I explain how exceptions are handled by Web API in Chapter 25, but if you use the
Chrome F12 tools to look at the response sent back by the web service, you will see the following message:

Can't bind multiple parameters ('calc' and 'op') to the request's content.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

312

The only way to resolve this problem with the default binding behavior is to create a single complex type that
contains all the data values that the action method requires—in this case, a combination of the numeric values and
details of the operation that should be performed on them. This is an awful solution because it undermines the
benefit of being able to work with complex types in action methods by adopting classes that are just buckets of the
name-value pairs; you might as well work directly from the HttpRequestMessage object.

That said, most Web API action methods don’t take multiple complex type arguments, and the more RESTful the
web service, the more likely it is to require a single complex argument. The argument is the data object to be created or
modified and all of the other information required to process the request—such as the user’s identity, for example—is
handled through request headers that are exposed through different parts of Web API and not received as an action
method argument. (I explain how user authentication and authorization are performed in Chapters 23 and 24.)

Performing Binding Customizations
Now that you have seen how parameter and model binding work, I can show you how to customize the binding
processes and work around the limitations that I described in the previous section. Binding data values to action
method parameters in Web API is flexible and fully featured, but it requires more work than the MVC framework to get
control of the process. In the sections that follow, I show you the day-to-day customizations that you use to alter the
way that parameter and model binding work. These are the simple customizations that tweak the existing behavior.
In Chapters 16 and 17, I show you how to perform advanced customizations that alter the binding processes in more
profound ways. Table 14-4 puts the simple binding customizations in context.

Table 14-4. Putting the Simple Binding Customizations in Context

Question Answer

What are they? The FromUri and FromBody attributes can be used to override the default
parameter and model binding behavior and specify a location for the binding
data. A binding rule can be used to create the same effect for all Web API
controllers in the application.

When should you use them? Use these attributes when the default behavior does not match the location of the
data in the requests that you receive from clients.

What do you need to know? There are limitations with both attributes. In particular, the FromBody attribute
requires the request body to be in a specific format that contains only one data
value. The FromUri attribute is more useful but should be used with caution
because it can create a tight coupling between the client and the web service.

Binding Complex Types from the Request URL
The first kind of customization is to override the default behavior for model binding so that values are taken from
the request URL rather than the body. This customization is performed by applying the FromUri attribute, defined
in the System.Web.Http namespace, to the parameters you created from the data in the URL. Listing 14-14 shows
how I have applied the FromUri attribute to the parameters defined by the SumNumbers action method in the
Bindings controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

313

Listing 14-14. Getting Values for a Complex Type from the Request URL in the BindingsController.cs File

...
[HttpGet]
[HttpPost]
public int SumNumbers([FromUri] Numbers calc, [FromUri] Operation op) {
 int result = op.Add ? calc.First + calc.Second :
 calc.First - calc.Second;
 return op.Double ? result * 2 : result;
}
...

I have applied the FromUri attribute to both parameters, which means that the data extracted from the URL
segments by the routing configuration or from the query string will be used to set the properties of the Numbers
and Operation objects that will be passed to the SumNumbers method. Listing 14-15 shows the client-side code that
includes the data in the query string for a POST request.

Listing 14-15. Making a POST Request with Query String Data in the bindings.js File

var viewModel = ko.observable({ first: 2, second: 5, add: true, double: false });
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function () {
 $.ajax("/api/bindings/sumnumbers", {
 type: "GET",
 data: viewModel(),
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

Tip ■ You may notice that microsoft uses the term URI in the name of the FromUri attribute but that i use URL. all Urls
are Uris, as defined by rFC 3986, and both terms are correct when talking about web applications and web services, but
Url is more widely used and understood. microsoft is being a little pedantic by sticking with the more general term.

You don’t have to use the FromUri attribute on all of the complex type parameters defined by an action method,
but it is usually a sign of a problem if you are mixing and matching the locations for the data used for different
parameters. See the “Using the FromUri Attribute” sidebar for details.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

314

USING the FrOMUrI attrIBUte

For get requests, the FromUri attribute should be applied to all of the complex data type parameters because the
client expects to put its data into the query string, and, as you have seen, this is what jQuery will do automatically.

For other http verbs, the FromUri attribute should not be used at all. the client will put its data into the request
body by default, and applying the FromUri attribute to some parameters and not others means that the client
has to know where the web service is going to look for different pieces of information, which causes the tight-
coupling problem i described in Chapter 4.

one common reason for using the FromUri attribute for non-get requests is to create objects from the Url
that can be validated using the model binding process, which i describe in Chapter 18. the problem with this
approach is that the client is then required to differentiate between model errors that relate to the data item
contained in the body and model errors that relate to some opaque aspect of the Url.

i see this most frequently for pUt requests, where the modified object is contained in the body but a complex
type is pulled from the Url routing data and used to validate the format of the Url and to make sure that the
request relates to a data object that exists. the end result is a client that requires detailed knowledge of the web
service implementation or that displays validation errors to the user about the structure of the Url, which is just
confusing.

Use Url routing (as described in Chapters 20 and 21) to enforce Url structure and use standard http status
codes to tell the client when a request can’t be processed (as described in Chapter 11).

Binding Simple Types from the Request Body
The FromBody attribute allows simple types to be obtained from the request body, rather than the URL. The FromBody
attribute doesn’t work around the one-object-per-request limit, which means you can get one simple type or one
complex type from the request body—and that means you can apply the attribute only to a single action method
parameter. If you apply the FromBody attribute more than once or use the attribute in method that also has a complex
type parameters, then you will receive a Can't bind multiple parameters error.

The FromBody attribute is almost useless for reading simple types because it is so limited in the way that it reads
values from the request body. The body must contain only a single value, and it must be encoded in a particular way.
The attribute is more useful when used for complex types, as I describe in Chapter 16 and Chapter 17. In Listing 14-16,
you can see that I have revised the SumNumbers action method so that it defines one simple type parameter, decorated
with the FromBody attribute.

Listing 14-16. Using the FromBody Attribute in the BindingsController.cs File

...
[HttpGet]
[HttpPost]
public int SumNumbers([FromBody] int number) {
 return number * 2;
}
...

The SumNumbers method has an int parameter called number that is decorated with the FromBody attribute.
Listing 14-17 shows the changes I have made to the sendRequest function in the bindings.js file to create a request
that will target the new version of the SumNumbers method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

315

Listing 14-17. Targetting an Action Method with the FromBody Attribute in the bindings.js File

...
var sendRequest = function () {
 $.ajax("/api/bindings/sumnumbers", {
 type: "POST",
 data: {'': viewModel().first },
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};
...

I use the data setting to encode an object that has a single property and value. I set the name of the property to
the empty string (''), and the value is obtained from the first property of the view model (I am going to ignore the
other view model properties for this example).

This awkward hack causes jQuery to create a request body like this, assuming that the first property has a
value of 50:

=50

This is the format that the FromBody attribute requires. There can be only one value, it cannot be assigned a name,
and it must be prefixed with the equal sign (=). To test the use of the attribute, start the application and navigate to
/Home/Bindings in the browser. Enter 50—or any other numeric value that you like—and click the SendRequest button.

When the SumNumbers action method is invoked, the FromBody attribute will have caused the value for the number
attribute to be obtained from the body, producing the result shown in Figure 14-4.

Figure 14-4. Using the FromBody attribute to get a simple type value from a request body

The FromBody attribute isn’t quite as useless as it appears. The problem is that the default Web API classes that
support the attribute are not adept at dealing with this kind of request. I’ll show you how to increase the flexibility of
the FromBody attribute in Chapter 17.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

316

Defining a Binding Rule
The FromUri and FromBody attributes let you specify the source of the data for a binding, but they need to be applied
to every action method parameter, which is just the sort of thing you can easily forget to do consistently across an
application. An alternative is to define a binding rule, which tells Web API how to bind parameters of a specific type
throughout an application.

The binding rule system allows for a lot of configuration, and in this chapter I will describe two simple rules
that you can create that have the same effect as using the FromUri and FromBody attributes but apply to all of the
parameters of a specific type throughout the Web API controllers in an application.

The HttpConfiguration.ParameterBindingRules property returns a collection of parameter binding rules.
Binding rules are added to the collection during the configuration stage and then used to figure out how values for
parameters are going to be obtained. (I am simplifying this process; I explain it in more detail in Chapter 15.)

When you define a new rule, you need to define a method that receives a description of an action method
parameter and returns an object that will be able to bind a value for it. The description is provided by an
HttpParameterDescriptor object, and the binding is performed by an HttpParameterBinding object. I describe
HttpParameterDescriptor and HttpParameterBinding in detail in Chapter 16, but for the simple rules you can use
an extension method defined in the System.Web.Http.Controllers namespace, which operates on an instance of
the HttpParameterDescriptor class and creates an HttpParameterBinding object that applies either the FromUri or
FromBody attribute throughout the application.

Listing 14-18 shows the use of the extension method to define the binding rule in the WebApiConfig.cs file.

Listing 14-18. Defining a Binding Rule in the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Web.Http.Controllers;
using ExampleApp.Models;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 // ...other configuration statements omitted for brevity...

 config.ParameterBindingRules.Insert(0, typeof(Numbers),
 x => x.BindWithAttribute(new FromUriAttribute()));
 }
 }
}

The new statement in the listing creates a binding rule that tells Web API that all Numbers parameters should be
treated as though they have the FromUri attribute applied directly. To create a simple binding rule, use the Insert
method on the collection returned by the HtppConfiguration.ParameterBindingRules property, like this:

...
config.ParameterBindingRules.Insert(0, typeof(Numbers),
 x => x.BindWithAttribute(new FromUriAttribute()));
...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

317

The rules in the collection are evaluated in order, and using the Insert method allows control over how binding
is performed. Complex binding rules can match parameters using fine-grained detail about the action method and
controller that contain them, but for simple rules it is best to insert them at position zero to be sure that no other rules
take precedence.

The Insert method takes three arguments: the position in the collection into which the new rule
should be inserted, the type to which the rule will apply (Numbers in this case), and a function that takes an
HttpParameterDescriptor object and returns an HttpParameterBinding object. The BindWithAttribute extension
method sidesteps the need to write the function. It takes an instance of the attribute that you want to apply in the rule
and uses it to create an HttpParameterBinding object for you.

...
config.ParameterBindingRules.Insert(0, typeof(Numbers),
 x => x.BindWithAttribute(new FromUriAttribute()));
...

In this example, I have used an instance of the FromUriAttribute class. The convention in C# is that attributes
are implemented by classes whose names combine the name of the attribute and Attribute so that the FromUri
attribute is implemented by the FromUriAttribute class and the FromBody attribute is implemented by the
FromBodyAttribute class.

Updating the Controller and Client
Having defined a binding rule, I no longer need to apply an attribute directly to the parameter defined by the
SumNumbers action method, as shown in Listing 14-19.

Listing 14-19. Removing the Binding Attribute in the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public int SumNumbers(Numbers calc) {
 return calc.First + calc.Second;
 }
 }
}

Tip ■ applying the FromUri or FromBody attribute to a parameter overrides the binding rules. You can use a binding
rule to define a default behavior and then change it for specific parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

318

Since my binding rule uses the FromUri attribute, I have updated the sendRequest function in the bindings.js
file to make a GET request so that jQuery will use the data object values to create a query string, as shown in
Listing 14-20. I have also change the data property so that all of the properties of the viewModel object are included,
rather than just the single value I sent in the previous section to satisfy the FromBody attribute.

Listing 14-20. Using a GET Request in the bindings.js File

...
var sendRequest = function () {
 $.ajax("/api/bindings/sumnumbers", {
 type: "GET",
 data: viewModel(),
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};
...

The result is that the Numbers parameter defined by the SumNumbers action method—and any other Numbers
parameter defined by an action method in a Web API controller—will be obtained from the URL, either from the
query string or from the routing data.

Manually Obtaining Request Values
Now that you have seen how the basic parameter and mode binding features work, I am going to finish this chapter by
demonstrating how you can bypass both processes and get the data you need directly from the request data.

My advice is to use the binding features wherever you can, but working directly with the request can be useful
if you have multiple generations of clients targeting the same action method with different data—and, potentially,
different expectations of what the web service will do with that data.

This isn’t something you should need to do often, not least because it is easy to create a web service that doesn’t
get the data it requires or that breaks when some aspect of the request changes. But I want to demonstrate that
binding values to parameters is entirely optional and is intended only to make web service development simpler and
more natural. If you find yourself getting bogged down by the quirks and oddities of the binding features, it can be
helpful to know that there is an alternative approach available.

To prepare for this example, I am going to modify the client I have been using in this chapter so that it sends
different requests to the same action method so that I can demonstrate how to work directly with the request data in
the Web API action method to work out what kind of request has been received and deal with it appropriately.

In Listing 14-21, you can see the changes that I have made to the Bindings.cshtml file in the Views/Home folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

319

Listing 14-21. Extending the Client in the Bindings.cshtm File

@{ ViewBag.Title = "Bindings"; }

@section Scripts { <script src="~/Scripts/bindings.js"></script> }

<div class="alert alert-success" data-bind="css: { 'alert-danger': gotError }">

</div>

<button class="btn btn-primary" data-bind="click: sendRequest.bind($data, 'sum')">
 Send Sum Request
</button>
<button class="btn btn-primary" data-bind="click: sendRequest.bind($data, 'difference')">
 Send Difference Request
</button>

I removed the input elements that allow the user to change the view model values and defined two buttons
that call the sendRequest method with an argument indicating the kind of request that is required, either sum or
difference. You can see how I use the argument to alter the data sent in the request in Listing 14-22, which shows the
changes I made to the bindings.js file.

Listing 14-22. Sending Different Request Data in the bindings.js File

var viewModel = ko.observable({ first: 2, second: 5});
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "GET",
 data: requestType == "sum"
 ? viewModel() : {value1: viewModel().first, value2: viewModel().second },
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

320

If the argument received by the sendRequest function is sum, then I send a request that contains properties called
first and second. Otherwise, I send a request that contains value1 and value2 properties. The values assigned to
these properties are not important—just the fact that different data properties will be sent. In Listing 14-23, you can
see how I have updated the SumNumbers action method to receive these requests.

Listing 14-23. Getting Request Data Directly in the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;
using System.Linq;
using System.Net.Http;
using System.Collections.Generic;
using System.Net;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public IHttpActionResult SumNumbers() {
 Dictionary<string, string> jqData
 = Request.GetQueryNameValuePairs().ToDictionary(x => x.Key,
 x => x.Value);
 int firstValue, secondValue;
 if (TryGetValues(jqData, "first", "second", out firstValue,
 out secondValue)) {
 return Ok(firstValue + secondValue);
 } else if (TryGetValues(jqData, "value1", "value2", out firstValue,
 out secondValue)) {
 return Ok(firstValue - secondValue);
 } else {
 return StatusCode(HttpStatusCode.BadRequest);
 }
 }

 private bool TryGetValues(Dictionary<string, string> data, string key1,
 string key2, out int val1, out int val2) {
 val1 = val2 = 0;
 return data.ContainsKey(key1) && data.ContainsKey(key2)
 && int.TryParse(data[key1], out val1) && int.TryParse(data[key2],
 out val2);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

321

In this example, I am dealing with a GET request that contains the data I require in the query string (I show you
how to deal with a POST request in the next section). The easiest way to get the query string data is to use one of the
extension methods that Web API adds to the System.Net namespace that operate on the HttpRequestMessage object
that represents the request, like this:

...
Dictionary<string, string> jqData
 = Request.GetQueryNameValuePairs().ToDictionary(x => x.Key, x => x.Value);
...

The Request property is defined by the ApiController class and returns the HttpRequestMessage object. The
GetQueryNameValuePairs method is an extension that returns a IEnumerable<KeyValuePair<string, string>>
object, which is an entirely useless way to present the data unless you want to enumerate it with a foreach loop.
I use the LINQ ToDictionary method to process the data and create a Dictionary<string, string>, which maps
the query string properties to their values. This gives me a more useful data collection to work with.

Tip ■ You might be concerned that the query string is supposed to be enumerated for performance reasons, rather like
the request body (which i demonstrate in the next section). in fact, the use of IEnumerable is just poor design because the
data objects have already been read into memory and stored in an array in the GetQueryNameValuePairs method anyway.

When dealing with the request data directly, you take responsibility for ensuring that the values you require are
part of the request and can be parsed into the required data type. I defined the TryGetValues method to check that
pairs of properties are contained in the request and can be parsed into int values. (This relies on the use of the out
keyword, which I always regard as an indicator of gnarly, twisted code in web services and keep an eye out for when
taking over a project.)

Within the SumNumbers method itself, I try to get the pairs of data properties that define the different requests
and perform operations on them. I have changed the result to IHttpActionResult, which I described in Chapter 11
and which allows me to use the Ok method to return data to the client for successful requests and use the StatusCode
method to return 400 (Bad Request) responses when the request doesn’t contain the data I am expecting.

To test the changes, start the application, navigate the browser to /Home/Bindings, and click each button in turn.
As shown in Figure 14-5, clicking the Send Sum Request button will generate a response of 7 (having added 2 and 5
together), while clicking the Send Difference Request button will generate a request of -3 (having subtracted 5 from 2).

Figure 14-5. Obtaining data directly from the request

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

322

Handling POST Requests
The key to working with the request body is the HttpContent class, which is defined in the System.Net.Http
namespace. An instance of the HttpContent class is returned by the HttpRequestMessage.Content property and can
be used to determine the nature of the content and access it. The methods and properties of the HttpContent class are
supplemented by Web API extension methods that make it easier to work with different types of request. Table 14-5
describes the property and methods that provide information about the content represented an instance of the
HttpContent class. (I have not differentiated between extension methods and those defined directly by HttpContent
because there is no reason not to use the extension methods when writing a Web API application.)

Table 14-5. The Descriptive Members Defined by HttpContent

Name Description

Headers Returns an HttpContentHeaders object that contains the headers in the request

IsFormData() Returns true if the Content-Type header is application/x-www-form-urlencoded

IsMimeMultipartContent() Returns true if the Content-Type header indicates that MIME multipart encoding
has been used for the request body

Table 14-6. The Methods Defined by HttpContent for Reading the Request Body

Name Description

ReadAsStreamAsync() Returns a Stream that can be used to read the raw contents of the request body

ReadAsStringAsync() Returns the contents of the request body as a string

ReadAsFormDataAsync() Returns a NameValueCollection containing name-value pairs parsed from
x-www-form-urlencoded data

ReadAsMultipartAsync() Returns a MultipartMemoryStreamProvider that parses the contents of a MIME
multipart encoded body

The methods described in Table 14-5 operate on the request headers. The request body isn’t read until it is
required—which is why there is a limit of one value when using the binding features. Table 14-6 lists the most useful
methods for reading the message body.

The HttpContent class defines additional methods, including some that provide access to the parameter
and model binding features. For this example, I know that jQuery will set the Content-Type header to
application/x-www-form-encoded, which is normal for web applications sending form data, and that means I am
interested in the IsFormData method to check the request content and the ReadAsFormDataAsync method to parse the
data contained in the request body. Listing 14-24 shows the changes I made to the BindingsController to read data
from the request body.

Listing 14-24. Reading Data from the Request Body in the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;
using System.Linq;
using System.Net.Http;
using System.Collections.Generic;
using System.Net;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

323

using System.Collections.Specialized;
using System.Threading.Tasks;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public async Task<IHttpActionResult> SumNumbers() {
 if (Request.Content.IsFormData()) {
 NameValueCollection jqData = await Request.Content.ReadAsFormDataAsync();
 int firstValue, secondValue;
 if (TryGetValues(jqData, "first", "second", out firstValue,
 out secondValue)) {
 return Ok(firstValue + secondValue);
 } else if (TryGetValues(jqData, "value1", "value2", out firstValue,
 out secondValue)) {
 return Ok(firstValue - secondValue);
 }
 }
 return StatusCode(HttpStatusCode.BadRequest);
 }

 private bool TryGetValues(NameValueCollection data, string key1,
 string key2, out int val1, out int val2) {
 string val1string, val2string;
 val1 = val2 = 0;
 return (val1string = data[key1]) != null
 && int.TryParse(val1string, out val1)
 && (val2string = data[key2]) != null
 && int.TryParse(val2string, out val2);
 }
 }
}

Most of the changes relate to getting values from the collection that holds the parsed request data. The
ReadAsFormDataAsync method returns an instance of the System.Collections.Specialized.NameValueCollection
class, which presents a different API than the Dictionary I used in the previous example.

Tip ■ notice that the methods that read the request body are asynchronous. i used the async keyword on the
SumNumbers method and changed the result to Task<IHttpActionResult>. Within the method body i used the await
keyword when calling the ReadAsFormDataAsync method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Understanding parameter and model Binding

324

I need to change the client-side code to send a POST request with the data in the request body to test the new
implementation of the SumNumbers method. Listing 14-25 shows the changes that I made to the bindings.js file.

Listing 14-25. Sending a POST Request in the bindings.js File

...
var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "POST",
 data: requestType == "sum"
 ? viewModel() : {value1: viewModel().first, value2: viewModel().second },
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};
...

There is no visible change to the way that the client works, but you can use the browser F12 tools to check that a
POST request is being sent and processed by the web service. This example demonstrates that it is possible to get data
directly from the request, but at the cost of having to check that the required values exist and can be parsed into the
required types.

Summary
In this chapter, I introduced you to the Web API parameter and model binding features and explained how they
work by default. I demonstrated how you can change the behavior by using the FromUri and FromBody attributes
and how you can define a simple binding rule that has the same effect throughout a Web API application. I finished
this chapter by showing you how to sidestep the parameter and model binding processes and work directly with the
HttpRequestMessage object. There are occasions when this can be useful, but you should use the binding features
whenever possible because it frees you from the tedious and error-prone tasks of finding and parsing data values.
In Chapter 15, I dig into the details of parameter binding and explain what happens behind the scenes—and how you
can take control of the process.

www.it-ebooks.info

http://www.it-ebooks.info/

325

Chapter 15

Binding Simple Data Types

In this chapter, I describe the parameter binding system in depth, showing you different ways to obtain values for
simple type parameters and explaining how Web API uses a range of different components to get the data values
needed to invoke an action method. The features I describe in this chapter are also used to bind complex types using
data from the URL, which I explain in Chapter 16. Table 15-1 summarizes this chapter.

Table 15-1. Chapter Summary

Problem Solution Listing

Add a new source of data for binding simple
action method parameter types.

Implement a custom value provider and value
provider factory.

1–9

Apply a value provider to a single action
method argument.

Use the ValueProvider attribute or derive a new
attribute from the ModelBindingAttribute or
ParameterBindingAttribute class.

10–15

Integrate a custom value provider into the
default Web API behavior so that it is used
without the need for attributes.

Register the value provider factory with the services
collection. Ensure that the custom factory implements
the IUriValueProviderFactory interface and that the
action method parameter is optional.

16–19

Integrate a custom value provider so that it is
used based on the name of the action method
parameter.

Define a parameter binding rule. 20

Integrate a custom value provider so that it
is used only if there are no values from other
providers.

Define a parameter binding that queries all of the value
providers that have been registered.

21–24

Preparing the Example Project
I am going to continue working with the ExampleApp project from earlier chapters, but I am going to clean it up from
the previous chapter to remove the code that manually obtains data from the HttpRequestMessage object. Listing 15-1
shows the revised BindingsController class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

326

Listing 15-1. Tidying Up the Code in the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public int SumNumbers(Numbers numbers) {
 return numbers.First + numbers.Second;
 }
 }
}

Tip ■ remember that you don’t have to create the example project yourself. you can download the source code for
every chapter for free from Apress.com.

I have returned to using the Numbers model class as the parameter of the SumNumbers action method. Listing 15-2
shows the corresponding changes to the Bindings.cshtml file that allow the user to change the data values that are
used to target the action method.

Listing 15-2. Resetting the Contents of the Bindings.cshtml File

@{ ViewBag.Title = "Bindings"; }

@section Scripts { <script src="~/Scripts/bindings.js"></script> }

<div class="alert alert-success" data-bind="css: { 'alert-danger': gotError }">

</div>
<div class="form-group">
 <label>First Number</label>
 <input class="form-control" data-bind="value: viewModel().first" />
</div>
<div class="form-group">
 <label>Second Number</label>
 <input class="form-control" data-bind="value: viewModel().second" />
</div>
<button class="btn btn-primary" data-bind="click: sendRequest">Send Request</button>

Listing 15-3 shows the contents of the bindings.js file, in which I have returned to using a POST request that
includes the properties defined by the client-side view model.

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

327

Listing 15-3. Resetting the Contents of the bindings.js File

var viewModel = ko.observable({ first: 2, second: 5 });
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "POST",
 data: viewModel(),
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

The final preparatory change is to remove the binding rule from the WebApiConfig.cs file, as shown in Listing 15-4,
and tidy up the routing configuration statements to remove the ones I no longer require.

Listing 15-4. Resetting the Contents of the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "Binding Example Route",
 routeTemplate: "api/{controller}/{action}/{first}/{second}"
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

328

Preparing the Common Code
For the first part of this chapter, I focus on customizing the way that simple data types are bound through the
parameter binding process. Web API comes with a complete set of classes that can bind the built-in simple types so
that a string or int parameter is matched to a value in the request URL or body, as I demonstrated in Chapter 14.

Rather than duplicate this functionality, I am going to show you how to bind parameters to request headers. This
isn’t something that is overwhelmingly useful in a real project, but it provides a suitable foundation for demonstrating
the customization techniques available.

I am going to show you how to bind headers in different ways in the sections that follow, and to reduce
duplication, I have put the code that processes the headers into its own class file. Listing 15-5 shows the contents of
the HeadersMap.cs class file that I added to the Infrastructure folder.

Listing 15-5. The Contents of the HeadersMap.cs File

using System.Collections.Generic;
using System.Linq;
using System.Net.Http.Headers;

namespace ExampleApp.Infrastructure {
 public class HeadersMap {
 private Dictionary<string, string> headersCollection;

 public HeadersMap(HttpHeaders headers) {
 headersCollection = headers.ToDictionary(
 x => x.Key.ToLower().Replace("-", string.Empty),
 x => string.Join(",", x.Value));
 }

 public string this[string header] {
 get {
 string key = header.ToLower();
 return headersCollection.ContainsKey(key) ?
 headersCollection[key] : null;
 }
 }

 public bool ContainsHeader(string header) {
 return this[header] != null;
 }
 }
}

The HeadersMap class maintains a dictionary that is populated with header names and values from an
HttpHeaders object. To make it easier to use header names as action method parameters, I remove hyphens and
convert the names to lowercase so that User-Agent is stored as useragent.

The HttpHeaders class is defined in the System.Net.Http namespace, and I will be obtaining instances
through the HttpRequestMessage.Headers property when I start to build the binding code. The HttpHeader
class is a collection, and for each header in the request, it maps a string containing the header name to an
IEnumerable<string> containing one or more values. The individual headers can be accessed through the methods
described in Table 15-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

329

Note ■ Some of the methods in table 15-2 can be used to modify the headers because the HttpHeader class is also
used by HttpResponseMessage to define the headers that will be sent in an http response.

I can’t work directly with the HttpHeaders object because I want to allow a parameter such as userAgent to
match the User-Agent header, which means I need to extract the header data and process it so that it becomes easier
to work with. The HttpHeader class implements the IEnumerable<KeyValuePair<string, IEnumerable<string>>>
interface, which can be used to enumerate all of the collected headers. This is the same interface I encountered in
Chapter 14 when working with the query string parameters, and I deal with it same way: using the LINQ ToDictionary
method to create a data structure that it easier to work with, like this:

...
headersCollection = headers.ToDictionary(
 x => x.Key.ToLower().Replace("-", string.Empty), x => string.Join(",", x.Value));
...

I process each header name so that it will match the format I will use for parameter names and use the
string.Join method to concatenate multiple header values into a single string.

Tip ■ i have omitted some detail in this section. in fact, there are two subclasses of the HttpHeaders
class—HttpRequestHeaders and HttpResponseHeaders—that provide additional members that make it easy
to get and set the set of headers that the http specification allows in request and response messages. i use the
HttpRequestHeaders class in the “Creating a parameter Binding rule” section later in this chapter, but i prefer to work
with the HttpHeaders class directly.

Working with Value Providers and Value Provider Factories
Value providers are responsible for getting a single simple data value. Value providers are given the name of the data
item that is required and return its value. The value usually comes from the request, but any source of data can be
used including the data model. The name of the data item depends on the context in which the value provider is being
used. For parameter binding it will be the name of the action method parameter, and for model binding it will be the
name of a property from the class that is being instantiated.

Table 15-2. The Methods Defined by the HttpHeaders Class

Name Description

Add(header, IEnumerable<value>) Adds the specified header with the enumeration of values to the collection

Add(header, value) Adds the specified header and value to the collection

Clear() Removes all the headers from the collection

Contains(header) Returns true if there is a header with the specified name in the collection

GetValues(header) Returns an IEnumerable<string> containing the values for the specified
header

Remove(header) Removes the specified header from the collection

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

330

Value provider factories are responsible for creating instances of value providers based on the description of an
action method parameter. It is the factory that tends to do most of the work in processing a request to prepare a source
of multiple data values—like the headers of a request—and the value provider then returns a single value when a
request arrives. Table 15-3 puts value providers and their factories in context.

Understanding Value Providers and Value Provider Factories
Value providers implement the IValueProvider interface, which is defined in the System.Web.Http.ValueProviders
namespace. Listing 15-6 shows the definition of the IValueProvider interface.

Listing 15-6. The IValueProvider Interface

namespace System.Web.Http.ValueProviders {

 public interface IValueProvider {

 bool ContainsPrefix(string prefix);

 ValueProviderResult GetValue(string key);
 }
}

I describe the role of the ContainsPrefix method in Chapters 16 and 17, but for the moment it is the GetValue
method that is of interest. This method is called when a value is needed, and the result is expressed using an instance
of the ValueProviderResult class, which defines the properties and method shown in Table 15-4.

Table 15-3. Putting Value Providers and Value Provider Factories in Context

Question Answer

What are they? Value providers are responsible for providing a value for a single parameter before
an action method is processed. A value provider factory is responsible for deciding
whether the value provider is able to provide a value and provide an instance of it to
Web API.

When should you use it? Use value providers and value provider factories when you want to bind parameter
values from parts of the request other than the URL or the body or from some other
data source entirely.

What do you need to know? Value providers and value provider factories are also used in the model binding
process. See Chapters 16 and 17 for details.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

331

The RawValue and AttemptedValue properties cause confusion, but you simply set both properties to the value
extracted from the request and let Web API change the AttempedValue if there are model validation problems. You
can’t set the properties in Table 15-4 directly, but the ValueProviderResult class provides a constructor that accepts
arguments for all three properties, which you can see used in Listing 15-8.

Notice that the methods defined by the IValueProvider interface do not provide access to details of the request.
This is because instances of IValueProvider are created by ValueProviderFactory classes, which are responsible for
giving a value provider access to the context information it requires. Listing 15-7 shows the definition of the abstract
ValueProviderFactory class.

Listing 15-7. The Abstract ValueProviderFactory Class

using System.Web.Http.Controllers;

namespace System.Web.Http.ValueProviders {

 public abstract class ValueProviderFactory {
 public abstract IValueProvider GetValueProvider(HttpActionContext context);
 }
}

Caution ■ don’t be tempted to use value providers used to perform data operations. as an example, for the
SumNumbers action method in the BindingsController, a value provider might locate the first and second values
in the request and add them together to provide a sum argument to the action method. this breaks the separation of
concerns that helps make applications easy to understand and maintain. Use value providers only to—as their name
suggests—provide data values and leave the operations where they belong.

The ValueProviderFactory class defines a single abstract method called GetValueProvider, which is
called when a value is required for an action method parameter. An HttpActionContext object is passed to the
GetValueProvider, which allows classes derived from ValueProviderFactory to inspect the request and decide
whether the IValueProvider implementations for which they are responsible for may be able to provide values for the
request. (Don’t worry if this doesn’t make immediate sense; I show you how to create a custom factory and provider
shortly.) Table 15-5 describes the properties defined by the HttpActionContext class.

Table 15-4. The Properties and Method Defined by the ValueProviderResult Class

Name Description

RawValue This property is used to store the value obtained by the value provider from the request.

AttemptedValue This property is initially set to be the same as RawValue but will be used to contain an error
message if there is a model validation error. See Chapter 18 for details of Web API model
validation.

Culture Gets the culture for the value. This is used when converting the object returned by the
RawValue property and should be set to CultureInfo.InvariantCulture if there are no
cultural considerations for a value.

ConvertTo(T) Attempts to convert the value to the specified type. See Chapter 16 for details.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

332

The HttpActionContext class provides a lot of context information, but most ValueProviderFactory
implementations will either always create and return a value provider or do so based on some aspect of the
HttpRequestMessage object, such as the HTTP verb that has been used for the request.

Creating a Custom Value Provider and Factory
The GetValue method defined by a value provider can be called multiple times to obtain values for different
parameters, and this means it is sensible to perform any parsing of request data in the value provider
constructor inside the GetValueProvider method of the factory class. To demonstrate, I added a class file called
HeaderValueProvider.cs to the Infrastructure folder and used it to define the value provider shown in Listing 15-8.

Listing 15-8. The Contents of the HeaderValueProvider.cs File

using System.Globalization;
using System.Web.Http.ValueProviders;

namespace ExampleApp.Infrastructure {
 public class HeaderValueProvider : IValueProvider {
 private HeadersMap headers;

 public HeaderValueProvider(HeadersMap map) {
 headers = map;
 }

 public ValueProviderResult GetValue(string key) {
 string value = headers[key];
 return value == null
 ? null
 : new ValueProviderResult(value, value, CultureInfo.InvariantCulture);
 }

Table 15-5. The Properties Defined by the HttpActionContext Class

Name Description

ActionArguments Returns a Dictionary<string, object> that maps the names of the action method
arguments to their types.

ActionDescriptor Returns an HttpActionDescriptor object that describes the action method that is going
to be invoked. See Chapter 22.

ControllerContext Returns an HttpControllerContext object that describes the controller in which the
action method is defined. See Chapter 19 for details of this class.

ModelState Returns a ModelStateDictionary object used in the model validation process, which I
describe in Chapter 18.

Request Returns the HttpRequestMessage object that describes the current request.

RequestContext Returns the HttpRequestContext object that provides supplementary information about
the request.

Response Returns the HttpResponseMessage object that will be used to produce the response to the
client.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

333

 public bool ContainsPrefix(string prefix) {
 return false;
 }
 }
}

Caution ■ the Web api interfaces and classes have the same names as those defined by the mVC framework. Both
frameworks have an IValueProvider interface and a ValueProviderFactory class (and if you take a look at the
sources, you will see that there is a lot of common code behind the scenes). When using Visual Studio to resolve class
names, it is easy to select the wrong namespaces and end up with a class that won’t compile. the Web api value provider
types are defined in the System.Web.Http.ValueProviders namespace.

The HeaderValueProvider class defines a constructor that receives an instance of the HeadersMap class, and the
GetValue method checks to see whether the HeadersMap contains a header that matches the name of the property. If it
has, it creates and returns an instance of the ValueProviderResult class that contains the header value.

The GetValue method is not required to return a value, and I return null if there is no corresponding header,
indicating that the data that the value provider represents can’t be used to bind to the parameter. Web API will
generally use multiple value provider factories and value providers when trying to perform parameter binding, and
when one value provider returns null, Web API moves on to the next one and tries again.

To define the value provider factory, I added a class file called HeaderValueProviderFactory.cs to the
Infrastructure folder and used it to define the class shown in Listing 15-9.

Listing 15-9. The Contents of the HeaderValueProviderFactory.cs File

using System.Net.Http;
using System.Web.Http.Controllers;
using System.Web.Http.ValueProviders;

namespace ExampleApp.Infrastructure {

 public class HeaderValueProviderFactory : ValueProviderFactory {
 public override IValueProvider GetValueProvider(HttpActionContext context) {
 if (context.Request.Method == HttpMethod.Post) {
 return new HeaderValueProvider(new HeadersMap(context.Request.Headers));
 } else {
 return null;
 }
 }
 }
}

When you start working with value providers, it is easy to believe that the factory is a passive participant in the
binding process, but that isn’t the case. The job of the factory is to examine the HttpActionContext object and decide
whether the value provider it is responsible for can be used to bind values for the current request.

That doesn’t mean the factory has to figure out whether the value provider will be able to produce a value for a
specific parameter—just whether this is a request that the provider will be able to work with at all. This allows a value
provider factory to return different value providers to cope with a range of request types or to decide not to create a
value provider at all.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

334

To demonstrate how this works, I made the GetValueProvider method a little more complex than it needed to
be in the HeaderValueProviderFactory class. I use the Request.Method property defined by the HttpActionContext
class to determine whether the request has been made using the POST verb. If it has, then I create and return an
instance of the HeaderValueProvider. If not, I return null, indicating that the factory is unwilling to contribute a
value provider to bind parameters for this request. When this happens, Web API will try to bind through another value
provider factory or, if none are available, generate a binding error.

Applying a Custom Value Provider and Factory
Creating a custom value provider and factory is only part of the process; you must also apply it so that Web API uses
it to obtain parameter values. There are several different ways of configuring the way that the value provider and its
factory are used, which I describe in the following sections. Some of the techniques I describe are less useful and
convenient than others, but they allow me to demonstrate how some of the most important Web API components fit
together and how you can customize or replace their behavior.

Understanding How Web API Looks for Values
When Web API needs a value for a simple type parameter, it tries to find one in three different ways. In the sections
that follow, I’ll show you each of them and demonstrate how they can be used to set up the value provider factory so
that values for parameters are obtained from the value provider.

First, Web API checks to see whether a model binding attribute has been applied directly to the attribute.
You saw an example of this in Chapter 14 when I used the FromBody attribute to direct Web API to find a value in the
request body.

If there is no such attribute, Web API looks for a parameter binding rule. I demonstrated these in Chapter 14 as
well when I showed you how to apply an attribute across the application. That was a basic rule; as you will learn, the
binding rules system can do a lot more.

Finally, if there is no directly applied attribute and no parameter binding rule, then Web API acts as though the
parameter has been decorated with the FromUri attribute. This is the default behavior and means values are obtained
from the request routing or query string if an alternative source for values hasn’t been specified.

The source of a value for a specific parameter can be worked out statically during the configuration stage of
the application. Web API can look at the parameter to see whether there is an attribute, check the set of parameter
binding rules to see whether there is one for a specific parameter, or decide to use the default behavior, all before the
application starts processing requests.

Working out how specific parameters will be bound during the configuration stage allows values to be obtained
faster when processing requests because the analysis has already been performed and the results cached, avoiding
the need to perform reflection on action methods every time one is invoked.

Caching binding information requires Web API to define a class that describes what the source of a value
will be for each parameter, and that is the job of the HttpParameterBinding class, which is defined in the
System.Web.Http.Controllers namespace and which defines the properties and methods described in Table 15-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

335

The HttpParameterBinding class is abstract and is derived to provide binding implementation classes that
override the ExecuteBindingAsync method to provide values from different data sources, including the request URL
and body.

Don’t worry too much about the HttpParameterBinding class at the moment, other than to keep in mind that
each of the techniques that I show you in the sections that follow produces an instance of the HttpParameterBinding
class that Web API will cache and then use when it needs a value for a parameter. I show you how to create a custom
HttpParameterBinding implementation in the “Creating a Custom Attribute Based on the ParameterBindingAttribute
Class” section.

Applying a Value Provider Factory with an Attribute
The first place that Web API looks when it needs a value is at the attributes that have been applied to the
parameter in the action method. In particular, Web API looks for attributes that are derived from the abstract
ParameterBindingAttribute class, which is defined in the System.Web.Http.Controllers namespace. Listing 15-10
shows the definition of the ParameterBindingAttribute class.

Listing 15-10. The Definition of the ParameterBindingAttribute Class

using System.Web.Http.Controllers;

namespace System.Web.Http

 [AttributeUsage(AttributeTargets.Class | AttributeTargets.Parameter,
 Inherited = true, AllowMultiple = false)]
 public abstract class ParameterBindingAttribute : Attribute {

 public abstract HttpParameterBinding GetBinding(HttpParameterDescriptor
 parameter);
 }
}

Table 15-6. The Properties and Method Defined by the HttpParameterBinding Class

Name Description

Descriptor Returns the HttpParameterDescriptor object associated with this binding
(and which is passed to the constructor).

ErrorMessage Returns a string that is used as an error message if the binding fails. If not
overridden, this property will return null.

IsValid Returns true if the binding was successful. If not overridden, this property
returns true if the ErrorMessage property returns null.

WillReadBody Returns true if the value for the parameter will be read from the request body.
This property is used to detect when more than one parameter value is going
to be read from the body so that an error can be reported (as demonstrated in
Chapter 14).

ExecuteBindingAsync(metadata,
context, cancelToken)

This method is called to perform the binding and get a value for the
parameter. See the following text for details.

SetValue(context, value) This protected method is used to set the parameter value. The arguments are
the HttpActionContext object passed to the ExecuteBindingAsyncMethod
and the parameter value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

336

The definition of the attribute is simple once you know that Web API is trying to find an HttpParameterBinding
object for each parameter. The ParameterBindingAttribute defines an abstract GetBinding method, which takes
an HttpParameterDescriptor object and returns an HttpParameterBinding that can be cached and then used when
Web API handles a request that targets the action method that defines the parameter.

The HttpParameterDescriptor class is used to describe the parameter for which Web API is looking for a
binding. It defines the properties shown in Table 15-7. Some of these properties are used only when binding and
validating complex types, which I describe in Chapter 18.

Table 15-7. The Properties Defined by the HttpParameterDescriptor Class

Name Description

ActionName Returns the name of the action method.

Configuration Returns the HttpConfiguration object.

DefaultValue Returns the default value for the parameter type.

IsOptional Returns true if the parameter is optional. (See the “Extending the Default
Behavior” section for an interesting aspect of using optional parameters.)

ParameterBindingAttribute Returns the attribute, if any, applied to the parameter to control binding.

ParameterName Returns the name of the parameter.

ParameterType Returns the type of the parameter.

Prefix Returns the prefix of the parameter. I explain prefixes in Chapters 16 and 17.

The job of the ParameterBindingAttribute.GetBinding method is to process an HttpParameterDescriptor
object that describes a parameter and produce an HttpParameterBinding object that will be able to produce
a value for that parameter at runtime. This pattern—producing an HttpParameterBinding in exchange for an
HttpParameterDescriptor—recurs through this part of the chapter because it is the fundamental mechanism that
Web API uses to handle parameter binding.

Using the Built-in Parameter Binding Attribute
Web API includes a ValueProvider attribute that can be applied to attributes so that values are obtained through
a value provider factory. In Listing 15-11, you can see how I have updated the SumNumbers action method in the
Bindings controller to define a new parameter and used the ValueProvider attribute to tell Web API that the value
should be obtained from the value provider factory that I defined in the previous section.

Listing 15-11. Adding a Parameter Bound by a Value Provider Factory in the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

337

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public string SumNumbers(Numbers numbers,
 [ValueProvider(typeof(HeaderValueProviderFactory))] string accept) {
 return string.Format("{0} (Accept: {1})",
 numbers.First + numbers.Second, accept);
 }
 }
}

I have defined a new parameter called accept, to which I have applied the ValueProvider attribute. In addition
to defining the new parameter and applying the attribute, I have changed the return type of the method to string so
that I can include the value of the accept parameter in the response sent to the client.

The accept parameter is a simple type for which the default behavior would not be able to find a value without
the ValueProvider attribute. (Without the attribute, the default behavior would be to act as though the FromUri
attribute had been applied and try to find a value for accept in the routing data or query string.)

To override the default behavior, I have used the ValueProvider attribute, which takes an argument that specifies
the type of the value provider factory that should be used to get a value for the parameter, like this:

...
 [ValueProvider(typeof(HeaderValueProviderFactory))] string accept
...

To test the parameter binding attribute, start the application, navigate to /Home/Bindings using the browser, and
click the Send Request button. The data that is displayed includes the Accept header. For jQuery, the Accept header
defaults to */*, as shown in Figure 15-1.

Figure 15-1. Displaying a value obtained from a request header via parameter binding

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

338

Creating a Custom Attribute Based on the ModelBindingAttribute Class
Using the ValueProvider attribute works, but including the name of the value provider factory alongside every
parameter leads to code that is hard to read. Fortunately, it is a simple matter to create a custom attribute class that
is tailored to a specific value provider factory by deriving from the ModelBinderAttribute class. (It isn’t possible to
derive from the ValueProviderAttribute class because it is sealed.)

The ModelBindingAttribute class is derived from ParameterBindingAttribute, and it is used to specify the means
by which a complex type parameter is created—a process that I describe in detail in Chapter 16. For the purposes of this
chapter, the ModelBindingAttribute class is interesting because it defines a GetValueProviderFactories method that
can be overridden to return an enumeration of ValueProviderFactory classes that should be used to obtain a value for a
simple type parameter.

Listing 15-12 shows the contents of the FromHeaderAttribute.cs class file that I added to the Infrastructure
folder and used to define a custom attribute from the ModelBindingAttribute class.

Listing 15-12. The Contents of the FromHeaderAttribute.cs File

using System.Collections.Generic;
using System.Web.Http;
using System.Web.Http.ModelBinding;
using System.Web.Http.ValueProviders;

namespace ExampleApp.Infrastructure {
 public class FromHeaderAttribute : ModelBinderAttribute {

 public override IEnumerable<ValueProviderFactory>
 GetValueProviderFactories(HttpConfiguration configuration) {
 return new ValueProviderFactory[] { new HeaderValueProviderFactory() };
 }
 }
}

I have overridden the GetValueProviderFactories method so that it returns an instance of the
HeaderValueProviderFactory class, and in Listing 15-13 you can see how I have applied the FromHeader attribute to
the Bindings controller.

Listing 15-13. Applying a Custom Binding Attribute in the BindingsController.cs File

...
[HttpGet]
[HttpPost]
public string SumNumbers(Numbers numbers, [FromHeader] string accept) {
 return string.Format("{0} (Accept: {1})", numbers.First + numbers.Second, accept);
}
...

My custom attribute allows me to bind parameters to header values without having to specify the type of the
value provider factory in the action method signature.

Creating a Custom Attribute Based on the ParameterBindingAttribute Class
Creating a custom attribute using the ModelBindingAttribute is the simplest technique, but I am also going to
demonstrate how to create an attribute based on the ParameterBindingAttribute class, without the use of any
intermediary classes that have other roles within Web API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

339

The first step is to derive from the HttpParameterBinding class to create an implementation whose
ExecuteBindingAsync method gets its values via my custom value provider factory. Listing 15-14 shows the contents
of the HeaderValueParameterBinding.cs class file that I added to the Infrastructure folder.

Listing 15-14. The Contents of the HeaderValueParameterBinding.cs File

using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Controllers;
using System.Web.Http.Metadata;
using System.Web.Http.ValueProviders;

namespace ExampleApp.Infrastructure {
 public class HeaderValueParameterBinding : HttpParameterBinding {
 private HeaderValueProviderFactory factory;

 public HeaderValueParameterBinding(HttpParameterDescriptor descriptor)
 : base(descriptor) {
 factory = new HeaderValueProviderFactory();
 }

 public override Task ExecuteBindingAsync(ModelMetadataProvider metadataProvider,
 HttpActionContext context, CancellationToken cancellationToken) {

 IValueProvider valueProvider = factory.GetValueProvider(context);
 if (valueProvider != null) {
 ValueProviderResult result
 = valueProvider.GetValue(Descriptor.ParameterName);
 if (result != null) {
 SetValue(context, result.RawValue);
 }
 }
 return Task.FromResult<object>(null);
 }
 }
}

Remember that the goal of a parameter binding is to call the SetValue method to provide the value that will be
used for the parameter when its action method is invoked. The ExecuteBindingAsync method is asynchronous, but all
of the classes that I rely on are synchronous, so I satisfy the return type of the method by using the Task.FromResult
method, which returns a Task that completes immediately, like this:

...
return Task.FromResult<object>(null);
...

This technique is perfectly acceptable for short, simple methods where the cost of creating and starting a Task is
likely to require more work and time than performing the work synchronously.

Now that I have a custom derivation of the HttpParameterBinding class, I can update the custom binding
attribute, as shown in Listing 15-15.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

340

Listing 15-15. Deriving from the ParameterBindingAttribute Class in the FromHeaderAttribute.cs File

using System.Collections.Generic;
using System.Web.Http;
using System.Web.Http.ModelBinding;
using System.Web.Http.ValueProviders;
using System.Web.Http.Controllers;

namespace ExampleApp.Infrastructure {
 public class FromHeaderAttribute : ParameterBindingAttribute {
 public override HttpParameterBinding GetBinding(HttpParameterDescriptor param) {
 return new HeaderValueParameterBinding(param);
 }
 }
}

The FromHeaderAttribute class directly follows the pattern I described earlier: processing an
HttpParameterDescriptor object in order to create an HttpParameterBinding object that Web API will cache and use
to get values for a parameter when requests target its action method.

Extending the Default Behavior
I am going to jump ahead to the third place that Web API looks for a value during parameter binding. If there is no
directly applied parameter binding attribute and no binding rule (which I describe in the “Creating a Parameter
Binding Rule” section), then binding proceeds as though the parameter had been decorated with the FromUri
attribute, even if it has not.

Tip ■ this applies only to simple type parameters. the default behavior for complex type parameters is to proceed as
though the FromBody attribute has been applied. i explain how this works in Chapters 16 and 17.

Listing 15-16 shows the definition of the FromUriAttribute class, tidied up and with some error handling
statements removed. You can see that this attribute is derived from ModelBinderAttribute and overrides the
GetValueProviderFactories method to produce an enumeration of value provider factories.

Listing 15-16. The Definition of the FromUriAttribute Class

using System.Collections.Generic;
using System.Web.Http.ModelBinding;
using System.Web.Http.ValueProviders;

namespace System.Web.Http {

 [AttributeUsage(AttributeTargets.Class | AttributeTargets.Parameter,
 Inherited = true, AllowMultiple = false)]
 public sealed class FromUriAttribute : ModelBinderAttribute {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

341

 public override IEnumerable<ValueProviderFactory>
 GetValueProviderFactories(HttpConfiguration configuration) {

 foreach (ValueProviderFactory f
 in base.GetValueProviderFactories(configuration)) {
 if (f is IUriValueProviderFactory) {
 yield return f;
 }
 }
 }
 }
}

The attribute class is simple, but there are two aspects of it that bear explanation, one of which is a trap for the
unwary. First, notice that the FromUriAttribute.GetValueProviderFactories implementation gets its data from the
base class implementation of the same method.

...
foreach (ValueProviderFactory f in base.GetValueProviderFactories(configuration)) {
...

This is important because I want to add my value provider factory to the set used by the FromUri attribute so that
it becomes part of the default behavior. Here is the implementation of the GetValueProviderFactories method in the
ModelBinderAttribute class:

...
public virtual IEnumerable<ValueProviderFactory>
 GetValueProviderFactories(HttpConfiguration configuration) {
 return configuration.Services.GetValueProviderFactories();
}
...

The value provider factories used by the FromUri attribute are obtained from the configuration services
collection, which I described in Chapter 9.

The second aspect of the way that the FromUri attribute works is the one to watch out for. Not all of the value
provider factory classes are used to locate values.

...
foreach (ValueProviderFactory f in base.GetValueProviderFactories(configuration)) {
 if (f is IUriValueProviderFactory) {
 yield return f;
 }
}
...

Only those value provider factory classes that implement the IUriValueProviderFactory interface are returned
from the FromUriAttribute.GetValueProviderFactories method. The IUriValueProviderFactory interface defines
no methods, and no error will be reported if you don’t declare the interface in a custom factory class; it just won’t be
used to get simple type values as part of the default behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

342

Registering the Value Provider Factory
Knowing how the FromUri attribute works allows me to easily integrate header values into my application. First I have
to update the HeaderValueProviderFactory class to implement the IUriValueProviderFactory interface, as shown
in Listing 15-17.

Listing 15-17. Implementing IUriValueProviderFactory in the HeaderValueProviderFactory.cs File

using System.Net.Http;
using System.Web.Http.Controllers;
using System.Web.Http.ValueProviders;

namespace ExampleApp.Infrastructure {

 public class HeaderValueProviderFactory : ValueProviderFactory,
 IUriValueProviderFactory {
 public override IValueProvider GetValueProvider(HttpActionContext context) {
 if (context.Request.Method == HttpMethod.Post) {
 return new HeaderValueProvider(new HeadersMap(context.Request.Headers));
 } else {
 return null;
 }
 }
 }
}

Now I can register my value provider factory as part of the services collection, either through the dependency
injection system or directly during application configuration. Listing 15-18 shows the changes I made to the
WebApiConfig.cs file to register the provider factory.

Listing 15-18. Registering a Value Provider Factory in the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Web.Http.ValueProviders;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "Binding Example Route",
 routeTemplate: "api/{controller}/{action}/{first}/{second}"
);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

343

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Services.Add(typeof(ValueProviderFactory),
 new HeaderValueProviderFactory());
 }
 }
}

I have used the Add method that I described in Chapter 9 to register an instance of the
HeaderValueProviderFactory class.

reGISterING a FaCtOrY USING DepeNDeNCY INJeCtION

you can also register value provider factories through the dependency resolver class, which is asked for instances
of the ValueProviderFactory class during application startup. here is the change that would be required to the
NinjectResolver.cs file:

...
private void AddBindings(IKernel kernel) {
 kernel.Bind<IRepository>().To<Repository>().InSingletonScope();
 kernel.Bind<ValueProviderFactory>().To<HeaderValueProviderFactory>();
}
...

you need register the value provider factory only once, either directly as in listing 15-18 or in the resolver.

Updating the Controller
The final step in extending the default behavior is to update the parameter in the action method signature. There are
two required changes: removing the FromHeader attribute that I added in Listing 15-12 and making the parameter
optional by assigning a default value, as shown in Listing 15-19.

Listing 15-19. Updating the Action Method Parameter in the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

344

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public string SumNumbers(Numbers numbers, string accept = null) {
 return string.Format("{0} (Accept: {1})",
 numbers.First + numbers.Second, accept);
 }
 }
}

I need to remove the attribute so that Web API will fall back to using the default behavior, as explained at the start
of this section. The need to make the parameter optional is a little more complicated, and it arises because I am doing
something that runs counter to an optimization in the way that Web API selection action methods handle requests.

For each request that it receives, Web API needs to select an action method. I describe the selection process in
Chapter 22, but for the purposes of this chapter, the important part is an optimization that Web API uses to reduce the
pool of possible candidates. For action methods that have one or more parameters, Web API checks to see that there
is a mapping between each parameter name and a value in the combined set of properties obtained from the routing
data and query string. Knowing that there are different sources of data—including the request body, which has yet to
be read—the optimization checks only the parameters that are the following:

Not optional (a default value is not assigned in the parameter definition)•	

Is one of the simple types I listed in Chapter 14•	

Has a binding that will obtain a value from provider factory that implements the •	
IUriValueProviderFactory interface

There are other checks that happen as part of the selection process, but if a parameter meets all three of these
conditions, Web API assumes that there must be a value in the query string or routing data in order for the action
method to be able to receive the request. This is a problem for my accept header, which meets all three of the
conditions but doesn’t get its value from the URL. The effect is that the request sent by the client no longer selects the
SumNumbers action method and generates a 404 (Not Found) response.

To get around this problem, I must ensure that my accept parameter doesn’t meet all three conditions. I can’t
remove the implementation of the IUriValueProviderFactory interface from the value provider factory because the
FromUriAttribute class would ignore the factory as a potential source of parameter values.

I could change the parameter so that it isn’t a simple type, but that would take me into the model binding
process, which I describe in Chapters 16 and 17. I want to remain focused on simple type parameters in this chapter.

That leaves the first condition that is checked: whether the parameter is optional. By assigning a default value
to the accept parameter, I allow Web API to match the action method to requests that don’t have a routing or query
string property called accept, solving the problem.

Creating a Parameter Binding Rule
Parameter binding rules are functions that receive an HttpParameterDescriptor object and return an
HttpParameterBinding object if the binding they represent will be able to provide a value for the parameter.

These functions are called while Web API is being configured and before any requests are processed, which
means that the decisions the functions make are based on the definition of the parameter without any request context.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

345

In Chapter 14, I showed you how to create a parameter binding rule that had the effect of applying the FromUri
or FromBody attribute for a specific type throughout the application. Here is the statement that I added to the
WebApiConfig.cs file to create the rule:

...
config.ParameterBindingRules.Insert(0, typeof(Numbers),
 x => x.BindWithAttribute(new FromUriAttribute()));
...

I used an extension method, BindWithAttribute, as shorthand to create an HttpParameterBinding object whose
ExecuteBindingAsync method gets its values from the FromUriAttribute class for parameters whose type is Numbers.

Most parameter binding rules are for a specific type, which works nicely for complex type parameters where
the effect of a rule will be limited and contained. I can’t use a type-specific rule for my header values because the
rule would apply to all string parameters, even those whose values should come from somewhere else. I need to
be more specific about the parameters that my rule applies to or ensure that I can provide values for all simple-type
parameters. I’ll show you both approaches in the sections that follow.

Relying on the Parameter Name
To identify a parameter that will correspond to a header value, I need to use the properties defined by the
HttpParameterDescriptor class, as described in Table 15-7. This is the only source of information that my rule
function has and means I need some way of detecting the parameters I am interested in based on their name, type,
optionality, or the action method in which they are defined.

The obvious choice is to use the parameter name and compare it to a list of request headers. This is not ideal
because it creates a special class of reserved names that can’t be used for action method parameters that are not going
to be bound from the headers, but it is an interesting technique that lets me demonstrate how the parameter binding
rule system works.

At the start of the chapter, I explained that request headers are represented by the HttpHeaders class
and accessed through the HttpRequestMessage.Headers property. In fact, the Headers property returns an
HttpRequestHeaders object, which is derived from HttpHeaders and defines convenience properties for the headers
that the HTTP specification allows in requests. I find the convenience properties rather frustrating to work with
because they return objects that parse the header values, rather than let me work directly with the string values, so
I prefer to work with the members defined by the HttpHeaders class directly. However, the HttpRequestHeaders
convenience properties are useful to me here because I can treat them as an authoritative list of parameter names for
which values should be obtained from the request headers.

In Listing 15-20, you can see the binding parameter rule that I added to the WebApiConfig.cs file. The rule tells
Web API to use the HeaderValueParameterBinding class I defined in Listing 15-14 when a property name corresponds
to a value HTTP header name.

Listing 15-20. Adding a Parameter Binding Rule to the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Web.Http.ValueProviders;
using System.Net.Http.Headers;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

346

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "Binding Example Route",
 routeTemplate: "api/{controller}/{action}/{first}/{second}"
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Services.Add(typeof(ValueProviderFactory),
 new HeaderValueProviderFactory());

 config.ParameterBindingRules.Add(x =>
 typeof(HttpRequestHeaders).GetProperty(x.ParameterName) != null
 ? new HeaderValueParameterBinding(x)
 : null);
 }
 }
}

I have expressed the parameter binding rule as a lambda expression. I use standard .NET reflection to see
whether the HttpRequestHeaders class has a property that matches the parameter name; if it does, I return an
instance of the HeaderValueParameterBinding class.

If there is no matching HTTP header, then I return null, which tells Web API that this binding rule is unable
to provide a value for the parameter. The search will continue through any other parameter binding rules that have
been defined, and the default behavior described in the previous section will be used if none of the rules provides an
HttpParameterBinding object.

Tip ■ parameters bound using the rule shown in listing 15-21 must still be optional. i have changed the way that values
are located for the parameter, but that has no effect on the optimization i described in the action method selection process.

Handling All Simple Type Values
The problem with the technique in the previous section is that it creates a list of reserved parameter names. It isn’t a
huge problem because you can apply the FromUri attribute to parameters that need to get values from the URL that
are also header names, but it can cause confusion for the unwary.

I need some way to tell which parameters should have values bound from a request header, allowing me to focus
on the HeaderValueParameterBinding class as narrowly as possible.

An alternative approach is to provide values for a wider range of parameters but take responsibility for finding
values for them even when there is no corresponding header. The simplest way to do this is to build on the built-in
functionality and follow the approach taken by the FromUriAttribute by using all of the value provider factories in
the service collection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

347

To demonstrate how this can be done, I added a MultiFactoryParameterBinding.cs file to the Infrastructure
folder and used it to define the class shown in Listing 15-21.

Listing 15-21. The Contents of the MultiFactoryParameterBinding.cs File

using System.Threading;
using System.Threading.Tasks;
using System.Web.Http;
using System.Web.Http.Controllers;
using System.Web.Http.Metadata;
using System.Web.Http.ValueProviders;

namespace ExampleApp.Infrastructure {
 public class MultiFactoryParameterBinding : HttpParameterBinding {

 public MultiFactoryParameterBinding(HttpParameterDescriptor descriptor)
 : base(descriptor) {
 // do nothing
 }

 public override Task ExecuteBindingAsync(ModelMetadataProvider metadataProvider,
 HttpActionContext actionContext, CancellationToken cancellationToken) {

 foreach (ValueProviderFactory factory in
 GlobalConfiguration.Configuration.Services.GetValueProviderFactories()) {

 if (factory is HeaderValueProviderFactory
 || factory is IUriValueProviderFactory) {
 IValueProvider provider = factory.GetValueProvider(actionContext);
 ValueProviderResult result = null;
 if (provider != null && (result =
 provider.GetValue(Descriptor.ParameterName)) != null) {
 SetValue(actionContext, result.RawValue);
 break;
 }
 }
 }
 return Task.FromResult<object>(null);
 }
 }
}

Tip ■ this class relies on the order in which the value providers are registered in the services collection. this allows
you to control the source of data values, but you must ensure that the built-in factories appear before custom ones if you
want to give preference to locating data from the request Url. the built-in factories are registered before custom ones,
so you should use the Add method when registering your factory. if you want your factory to have precedence over the
built-in classes, then use the Insert method instead.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

348

The ExecuteBindingAsync method gets the set of ValueProviderFactory objects in the services collection and
uses a foreach loop to call the GetValueProvider method on each of them to try to get an IValueProvider object
and, in turn, get a value for the parameter. This continues until a value is provided, at which point I call the SetValue
method and break out of the loop.

Tip ■ the ExecuteBindingAsync method is asynchronous, which is useful if you need to look up a data value
from a database or perform a complex calculation. it is, however, overkill if you are simply obtaining a value from the
request. rather than create a Task to get the data value, i perform the work synchronously and call
Task.FromResult<object>(null) to create a completed Task that has no result.

This is the same approach taken by the default behavior I described in the previous section, except that I
have added explicit support for the HeaderValueProviderFactory class as well as factories that implement the
IUriValueProviderFactory interface. By default, there are three value provider factories that may be able to provide a
value—my custom factory and the two built-in factories described in Table 15-8.

Table 15-8. The Built-in Value Provider Factory Classes

Name Description

QueryStringValueProviderFactory Provides values from the query string.

RouteDataValueProviderFactory Provides values from the routing data. See Chapters 20 and 21 for details of
Web API routing.

The reason that I have added explicit support for the HeaderValueProviderFactory class is so that
I can work around the action method selection optimization I described earlier. I had to implement the
IUriValueProviderFactory interface in the HeaderValueProviderFactory when I was relying on the default behavior
and then make the accept parameter optional so that the action method would match the request—but with explicit
support in the parameter binding, I can remove the IUriValueProviderFactory interface, and the accept parameter
no longer needs to be optional. Listing 15-22 shows how I revised the HeaderValueProviderFactory class to remove
the IUriValueProviderFactory interface.

Listing 15-22. Removing an Interface in the HeaderValueProviderFactory.cs File

using System.Net.Http;
using System.Web.Http.Controllers;
using System.Web.Http.ValueProviders;

namespace ExampleApp.Infrastructure {

 public class HeaderValueProviderFactory : ValueProviderFactory {
 public override IValueProvider GetValueProvider(HttpActionContext context) {
 if (context.Request.Method == HttpMethod.Post) {
 return new HeaderValueProvider(new HeadersMap(context.Request.Headers));
 } else {
 return null;
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

349

Listing 15-23 shows the change I made to the Bindings controller so the accept parameter defined by the
SumNumbers action method is not optional.

Listing 15-23. Changing a Parameter Definition in the BindingsController.cs File

...
[HttpGet]
[HttpPost]
public string SumNumbers(Numbers numbers, string accept) {
 return string.Format("{0} (Accept: {1})", numbers.First + numbers.Second, accept);
}
...

The final step is to create the parameter binding rule in the WebApiConfig.cs file, as shown in Listing 15-24.

Listing 15-24. Defining a Parameter Binding Rule in the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Web.Http.ValueProviders;
using System.Net.Http.Headers;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 // ...routing statements omitted for brevity...

 config.Services.Add(typeof(ValueProviderFactory),
 new HeaderValueProviderFactory());

 config.ParameterBindingRules.Add(x => {
 return x.ParameterType.IsPrimitive || x.ParameterType == typeof(string)
 ? new MultiFactoryParameterBinding(x) :
 null;
 });
 }
 }
}

I created the parameter binding rule using the version of the Add method that takes a
Func<HttpParameterDescriptor, HttpParameterBinding> argument. When using a lambda expression, this means
that the HttpParameterDescriptor goes to an HttpParameterBinding instance, but only if the parameter is one that
the rule wants to support. I use the HttpParameterDescriptor.ParameterType property to see whether the property
is a primitive type or a string and, if so, return an instance of the MultiFactoryParameterBinding class. If the
parameter isn’t a type I want to work with, I return null to signal that I don’t want to provide a binding and that Web
API should continue checking other rules.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Binding Simple data typeS

350

Summary
In this chapter, I showed you how value providers and value provider factories work and how they are used by ASP.
NET Web API. I explained the sequence that Web API uses to locate parameter bindings during the application
startup process and how the results are used to obtain values for action method parameters when requests arrive,
allowing custom value providers and factories to supplement the standard sources of data. In Chapter 16, I explain
how value providers form the foundation of the model binding feature, which allows complex types to be bound from
data obtained by value providers.

www.it-ebooks.info

http://www.it-ebooks.info/

351

Chapter 16

Binding Complex Data Types Part I

In Chapter 15, I showed you how to bind simple data types from the request URL using value providers. In this
chapter, I describe model binders, which build on the foundation of value providers to allow binding of complex types.
I describe the built-in model binders, which bind a comprehensive range of types, in this chapter. I also explain how
to create and apply a custom model binder for dealing with types that the built-in binders cannot deal with.

Model binders work only with value providers, meaning that data values are obtained from the URL. It is media
type formatters that are responsible for create complex types from the data in the request body. I introduced media
type formatters in Chapter 12 when I showed you how data objects are serialized from action method results. In
Chapter 17, I explain how media type formatters are used to deserialize data and create model objects for action
method parameters. Table 16-1 summarizes this chapter.

Preparing the Example Project
I am going to continue working with the ExampleApp project I have been using throughout this part of the book.
To prepare for this chapter, I have removed the statement in the WebApiConfig.cs file that I used in Chapter 17 to
create a parameter binding rule. Listing 16-1 shows WebApiConfig.cs after I removed the statements.

Table 16-1. Chapter Summary

Problem Solution Listing

Bind an object from the URL. Format the URL or query string so that the properties it
contains correspond to the properties of the model class.

1–8

Broaden the source of values for
model binding.

Use the ModelBinder interface to include value providers that
implement the IUriValueProviderFactory interface.

9–12

Bind arrays of simple types. Format the data so that the routing or query string properties
have the same name.

13–17

Bind key-value pairs. Format the data to use array-style indexers. 18–19

Create a custom model binder. Implement the IModelBinder interface. 20–24

Apply a custom model binder. Use the ModelBinder attribute and, optionally, add the binder
to the services collection. You can also create a parameter
binding rule to apply the model binder.

25–31

Instantiate a model class using data
expressed in a single routing or query
string property.

Create a type converter and apply it with the TypeConverter
attribute.

32–35

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

352

Listing 16-1. The WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Web.Http.ValueProviders;
using System.Net.Http.Headers;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "Binding Example Route",
 routeTemplate: "api/{controller}/{action}/{first}/{second}"
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Services.Add(typeof(ValueProviderFactory),
 new HeaderValueProviderFactory());
 }
 }
}

Tip ■ remember that you don’t have to create the example project yourself. you can download the source code for
every chapter for free from Apress.com.

Without the binding rule, Web API won’t be able to find a value for the accept parameter on the SumNumbers
action method of the Binding controller. I will be focused on binding classes in this chapter, so I removed the
parameter, as shown in Listing 16-2.

Listing 16-2. Removing an Action Method Parameter in the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

353

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public string SumNumbers([FromUri]Numbers numbers) {
 return string.Format("{0}", numbers.First + numbers.Second);
 }
 }
}

Notice that I have applied the FromUri attribute to the numbers parameter. I start this chapter by showing you how
to bind complex type arguments from the URL, so I need to specify that the data values for the Numbers object should
not be obtained from the request body.

The final preparation I need to make for this chapter is to change the Ajax request made in the bindings.js file
so that it uses the GET verb and includes the model data in the query string, as shown in Listing 16-3.

Listing 16-3. Changing the Ajax Request Verb in the bindings.js File

var viewModel = ko.observable({ first: 2, second: 5 });
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "GET",
 data: viewModel(),
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

To test the changes before proceeding to the rest of the chapter, start the application and use the browser to
navigate to the /Home/Bindings URL. Click the Send Request button; the values in the input elements will be sent to
the web services, and the results will be displayed at the top of the browser window, as illustrated in Figure 16-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

354

Using the Built-in Model Binders
In Chapter 15, I showed you how value providers are able to obtain data values from the URL to bind simple type
parameters. Model binders build on the foundation of value providers to combine data values from the request into
instances of complex types.

Tip ■ as a reminder, the simple types are TimeSpan, DateTime, Guid, string, char, bool, int, uint, byte, sbyte,
short, ushort, long, ulong, float, double, and decimal. any other type is a complex type, including arrays and
collections of simple types.

Web API comes with a set of built-in model binders that can bind objects in the most common situations.
The built-in binders are comprehensive enough that most applications don’t need customizations at all. In this
section, I explain how the built-in model binders work and how you can adapt their behavior if you need customized
binding support.

Table 16-2 lists the built-in binder classes that you will encounter most often. You don’t need to work directly
with these classes, but they can be useful as a foundation when creating custom binders, as I describe in the
“Working with Custom Model Binders” section later in this chapter. The classes listed in Table 16-2 are defined in the
System.Web.Http.ModelBinding.Binders namespace.

Figure 16-1. Preparing the example application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

355

Later in this chapter, I explain how the overall model binding feature works and show you how to create and
apply a custom model binder. Table 16-3 puts the default model binders in context.

Binding Objects
I am going to start by describing how Web API binds a single instance of a class to a parameter, not least because this
is what is already happening when the SumNumbers action method is invoked in the example application.

I used the FromUri attribute in Chapter 15 to enable the binding of simple type parameters using value type
providers. As I explained in the previous section, model binders build on value providers to get multiple values to
create an object, and the FromUri attribute can enable this feature for complex type arguments, which is why I applied
it to the numbers parameter.

...
public string SumNumbers([FromUri]Numbers numbers) {
...

The FromUri attribute isn’t a model binder, which is a class that is responsible for creating a specific type of
object. Instead, FromUri is a model binding attribute, which tells Web API to use the model binder classes to create an
instance of the parameter type, which is Numbers in this case.

Table 16-2. The Built-in Model Binder Classes

Name Description

ArrayModelBinder Binds an array of objects. See the “Binding Collections and Arrays” section for details.

CollectionModelBinder Binds a strongly typed List or Enumerable. See the “Binding Collections and
Arrays” section for details.

DictionaryModelBinder Binds key-value pairs to a strongly typed Dictionary. See the “Binding Key-Value
Pairs” section for details.

MutableObjectModelBinder Binds objects. See the “Binding Objects” section for details.

TypeConverterModelBinder Binds objects using a type converter, which I describe in the “Using Type
Converters” section.

Table 16-3. Putting the Default Model Binders in Context

Question Answer

What are they? The built-in model binders are used by Web API to instantiate classes, arrays, and
collections using request data values obtained from value providers.

When should you use them? The built-in model binders are used when the FromUri or ModelBinder attribute is
used. See the “Broadening the Source of Binding Values” section for details of the
difference between these two attributes.

What do you need to know? Web API includes default model binders that can deal with instantiating and
populating most classes. You should need to create a custom binder only when a
class requires special care to instantiate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

356

A model binder is a class responsible for using one or more values from the value providers to create an instance
of the model type, which is used as an argument when invoking the action method. The built-in model binder that
deals with objects works in two steps:

 1. Use the parameterless constructor to create a new instance of the model type.

 2. Set each property defined by the model type using a value from the value providers.

These two steps are the reason why most model types are just a collection of automatically implemented
properties: there is no point in defining a constructor with parameters because it will prevent the model binder from
creating an instance and because methods and get-only properties will be ignored by the model binder. The Numbers
class is a good, although simple, example.

...
public class Numbers {
 public int First { get; set; }
 public int Second { get; set; }
}
...

Note ■ throughout this chapter, i will make changes to the bindings.js file to send different kinds of requests to the
web service, but i don’t change the corresponding html in the razor view because it is the format of the request that
is important, not the ability of the user to change the data values used in the request. to test the changes, start the
application, navigate to the /Home/Bindings Url, and click the send request button.

Binding Multiple Objects
By default, the object model binder tries to use the name of the parameter as a prefix when asking the value providers
for values for each of the properties. In the case of my example, the parameter is called numbers, which means that the
model binder will try to obtain values for numbers.first and numbers.second in the request.

If the value provides can’t obtain values for the prefixed names, then the model binder will ask for values without
the prefix: first and second. This is the behavior I have been relying on in my examples.

Prefixes are useful because they allow a client to send data for multiple objects of the same type in the same URL.
Listing 16-4 shows how I have changed the bindings.js file so that values for two Numbers objects are sent in the
request query string.

Listing 16-4. Changing the Request Query String in the bindings.js File

var viewModel = ko.observable({ first: 2, second: 5, third: 10, fourth: 100 });
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "GET",
 data: {
 "numbers1.first": viewModel().first,
 "numbers1.second": viewModel().second,
 "numbers2.first": viewModel().third,
 "numbers2.second": viewModel().fourth
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

357

 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

Tip ■ notice that i have quoted the property names in the data settings object. the dot notation required to express
a prefix can’t be used as a literal property name, but Javascript is flexible enough to be able to define properties as
quoted strings.

I have added two properties to the view model and used them to create an object for the data setting that groups
them into two prefixed sets. The changes in Listing 16-4 will send a request with the following URL:

/api/bindings/sumnumbers?numbers1.first=2&numbers1.second=5&numbers2.first=10
 &numbers2.second=100

Tip ■ if you test the changes now, you will see that everything seems to work but that the result returned from the
web service is zero. the problem is that the model binder has created an instance of the Numbers class, which has
initialized the two int properties to zero, which is their default value. the binder then tries to find numbers.first and
numbers.second values, which are not in the request. the binder drops the prefix and looks for first and second values,
which are not in the request either. at this point, the binder gives up, and the action method is invoked with a Numbers
object whose properties are set to zero. the binder makes a best-effort attempt to get values, and it assumes that it
isn’t a problem when they don’t exist. you must use the model validation feature if you want to ensure that the request
contains certain values. see Chapter 18 for details.

I need to update the action method so that it has two Numbers parameters whose names correspond to the
prefixed included in the request URL, as shown in Listing 16-5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

358

Listing 16-5. Changing the Action Method Parameters in the BindingsController.cs File

...
[HttpGet]
[HttpPost]
public string SumNumbers([FromUri] Numbers numbers1, [FromUri] Numbers numbers2) {
 return string.Format("{0}", numbers1.First + numbers1.Second
 + numbers2.First + numbers2.Second);
}
...

Tip ■ i have used parameter names numbers1 and numbers2, but that isn’t required. you can use any parameter
names you like and they will be used as prefixes when the binder is looking for property values.

Binding Nested Objects
Prefixes can also be used to define the structure of more complex objects. To demonstrate how this works, I have
added a property to the Numbers class that is a complex type—in this case, an Operation object that is the other class
defined in the BindingModels.cs file, as shown in Listing 16-6.

Listing 16-6. Adding a Property to the Numbers Class in the BindingModels.cs File

namespace ExampleApp.Models {

 public class Numbers {
 public int First { get; set; }
 public int Second { get; set; }
 public Operation Op { get; set; }
 }

 public class Operation {
 public bool Add { get; set; }
 public bool Double { get; set; }
 }
}

In Listing 16-7, you can see how I have modified the jQuery request so that it contains the prefixed values needed
to create an instance of the modified Numbers class.

Listing 16-7. Changing the Request Query String in the bindings.js File

var viewModel = ko.observable({ first: 2, second: 5, add: true, double: true });
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "GET",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

359

 data: {
 "numbers.first": viewModel().first,
 "numbers.second": viewModel().second,
 "numbers.op.add": viewModel().add,
 "numbers.op.double": viewModel().double
 },
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

These changes create a request like this:

api/bindings/sumnumbers?numbers.first=2&numbers.second=5&numbers.op.add=true
 &numbers.op.double=true

Listing 16-8 shows the changes that I made to the action method to receive the data values from the query string
via the model binder.

Listing 16-8. Changing the Action Method Parameters in the BindingsController.cs File

...
[HttpGet]
[HttpPost]
public string SumNumbers([FromUri] Numbers numbers) {
 var result = numbers.Op.Add ? numbers.First + numbers.Second
 : numbers.First - numbers.Second;
 return string.Format("{0}", numbers.Op.Double ? result * 2: result);
}
...

I don’t need to take any special steps to ensure that the model binder populates the properties of the nested
Operations object because the model binder tries to locate values for it automatically.

Broadening the Source of Binding Values
A model binding attribute is a broker between a set of value provider factories and the model binding classes that can
create different types. In using the FromUri attribute, I activated the model binding process, but I did so with a subset
of the available value providers. As I explained in Chapter 15, the FromUri attribute filters out any value provider
factory that doesn’t implement the IUriValueProviderFactory interface. I worked around this in Chapter 15 by

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

360

implementing the interface in my custom value provider factory so that I could bind simple type parameters from
request headers, but there is an alternative approach: you can use the ModelBinder attribute, from which the FromUri
attribute is derived.

The only difference between the ModelBinder and FromUri attributes is that ModelBinder uses all of the available
value provider factories. In this section, I demonstrate how to use the ModelBinder attribute so that values from
individual model type properties can come from a broader range of value provider factories.

The first change is to add a new property to the model class that will correspond to a request header. Listing 16-9
shows the addition of an Accept property to the Numbers class. (Ignore that there is no good reason to mix headers
with the int values in the Numbers class—it is the technique that is important in this example.)

Listing 16-9. Adding a Property to a Model Class in the BindingModels.cs File

...
public class Numbers {
 public int First { get; set; }
 public int Second { get; set; }
 public Operation Op { get; set; }
 public string Accept { get; set; }
}
...

I removed the IUriValueProviderFactory interface from the HeaderValueProviderFactory at the end of
Chapter 15, but I still need to make some changes to the class. When I created the HeaderValueProviderFactory
class, I implemented the GetValueProvider method so that it would return an instance of the HeaderValueProvider
class only for POST requests. I am working with GET requests in this chapter, so I have removed statements from the
GetValueProvider method so that the request verb isn’t checked, as shown in Listing 16-10.

Listing 16-10. Removing the HTTP Method Restriction in the HeaderValueProviderFactory.cs File

using System.Net.Http;
using System.Web.Http.Controllers;
using System.Web.Http.ValueProviders;

namespace ExampleApp.Infrastructure {

 public class HeaderValueProviderFactory : ValueProviderFactory {
 public override IValueProvider GetValueProvider(HttpActionContext context) {
 //if (context.Request.Method == HttpMethod.Post) {
 return new HeaderValueProvider(new HeadersMap(context.Request.Headers));
 //} else {
 // return null;
 //}
 }
 }
}

I also need to modify the HeaderValueProvider class so that is able to cope with prefixes. Listing 16-11 shows
the changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

361

Listing 16-11. Adding Prefix Support in the HeaderValueProvider.cs File

using System.Globalization;
using System.Web.Http.ValueProviders;
using System.Linq;

namespace ExampleApp.Infrastructure {
 public class HeaderValueProvider : IValueProvider {
 private HeadersMap headers;

 public HeaderValueProvider(HeadersMap map) {
 headers = map;
 }

 public ValueProviderResult GetValue(string key) {
 string value = headers[key.Split('.').Last()];
 return value == null
 ? null
 : new ValueProviderResult(value, value, CultureInfo.InvariantCulture);
 }

 public bool ContainsPrefix(string prefix) {
 return false;
 }
 }
}

The binder starts by calling the GetPrefix method of the value providers to see whether any of them can process
requests with the prefix numbers. Since the request data contains this prefix, the value provider responsible for managing
the query string returns true, and the binder requests values for the numbers.first and numbers.second. The binder
then repeats the process for the numbers.Op prefix. Finally, the binder tries to get a value for numbers.Accept.

As you can see in Listing 16-11, I used the Add method to register the HeaderValueProvider class with the
services collection, and that means the built-in value providers are queried before my custom class. The effect of
this is that the ContainsPrefix method isn’t called because the query string value provider is asked first and is able
to provide all of the values that the binder needs, with the exception of numbers.Accept. The change I made to the
GetValue method splits up the request property name and extracts the last component so that I can match it to a
header, providing the header with the information it needs.

Tip ■ you might wonder why my GetValue method is asked for numbers.Accept when the ContainsPrefix
method always returns false. this happens because the model binder is given access to only a single value provider,
so microsoft has defined a composite provider that consolidates the results from all of the registered value providers.
the model binder is told by the consolidated provider that it can produce values with the numbers prefix because the
query string value provider says it can—and that affirmation is therefore applied to all of the value providers.

The final step is to modify the controller so that it uses the ModelBinder attribute, and the result it returns to the
client includes the value of the Accept request header, as shown in Listing 16-12.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

362

Listing 16-12. Updating the Action Method in the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;
using System.Web.Http.ModelBinding;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public string SumNumbers([ModelBinder] Numbers numbers) {
 var result = numbers.Op.Add
 ? numbers.First + numbers.Second
 : numbers.First - numbers.Second;

 return string.Format("{0} (Accept:{1})",
 numbers.Op.Double ? result * 2 : result, numbers.Accept);
 }
 }
}

The use of the ModelBinder attribute means that all of the value provider factories are used to obtain sources of
data, including the custom provider that provides access to the request headers.

Tip ■ the name of the action method parameter is used as the prefix by default, but you can use the Name property
when applying the ModelBinder attribute to specify another prefix. see the “applying a Custom model Binder” section for
more information on using the ModelBinder attribute.

Binding Collections and Arrays
The built-in model binders are able to bind multiple related values to create collections and arrays. In Listing 16-13,
you can see that I have changed the query string data sent by the client so that it includes a sequence of numeric values.

Listing 16-13. Changing the Request Data in the bindings.js File

var viewModel = ko.observable({ first: 2, second: 5, third: 100});
var response = ko.observable("Ready");
var gotError = ko.observable(false);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

363

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "GET",
 data: {
 numbers: [viewModel().first, viewModel().second, viewModel().third]
 },
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

These changes produce a request that targets the following URL:

/api/bindings/sumnumbers?numbers[]=2&numbers[]=5&numbers[]=100

Tip ■ the [and] characters are escaped when the request is sent in this format and replaced with the %5B and %5D
sequences.

You can omit the square brackets by setting the jQuery traditional Ajax setting to true, which will send the
request in this format (both are accepted by Web API).

/api/bindings/sumnumbers?numbers=2&numbers=5&numbers=100

I have changed the SumNumbers action method to receive the array of data values, as shown in Listing 16-14.

Listing 16-14. Binding Request Data As an Array in the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;
using System.Web.Http.ModelBinding;
using System.Linq;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

364

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public string SumNumbers([ModelBinder] int[] numbers) {
 return numbers.Sum().ToString();
 }
 }
}

The process of creating and populating the array is handled by the model binder and passed to the action
method. You can elect to receive the same data as a strongly typed List, as shown in Listing 16-15.

Listing 16-15. Binding Request Data As a Strongly Typed Collection in the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;
using System.Web.Http.ModelBinding;
using System.Linq;
using System.Collections.Generic;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public string SumNumbers([ModelBinder] List<int> numbers) {
 return numbers.Sum().ToString();
 }
 }
}

Tip ■ you can also bind to a strongly typed Enumerable, such as Enumerable<T>, by changing the type of the action
method parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

365

Binding Arrays and Lists of Complex Types
The approach I used in the previous section can be combined with the use of prefixes to bind arrays of complex types.
Listing 16-16 shows the changes I made to the bindings.js file so that jQuery sends properties that will correspond
to an array of Numbers objects.

Listing 16-16. Changing the Request Data in the bindings.js File

var viewModel = ko.observable({ first: 2, second: 5, third: 100, fourth: 200});
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "GET",
 data: {
 "numbers": [{ first: viewModel().first, second: viewModel().second },
 { first: viewModel().third, second: viewModel().fourth }],
 },
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

I have set the data property to an object that has a property called numbers, which in turn is set to an array of
objects with first and second properties. The result is a request in this format:

/api/bindings/sumnumbers?numbers[0][first]=22&numbers[0][second]=5
 &numbers[1][first]=100&numbers[1][second]=200

The built-in binders work out the relationships between the different data items and use them to create an array
of objects. Listing 16-17 shows the corresponding changes to the action method to receive an array of Numbers objects.

Listing 16-17. Receiving an Array of Complex Objects in the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;
using System.Web.Http.ModelBinding;
using System.Linq;
using System.Collections.Generic;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

366

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public string SumNumbers([ModelBinder] Numbers[] numbers) {
 return numbers.Select(x => x.First + x.Second).Sum().ToString();
 }
 }
}

Caution ■ you must ensure that there are no gaps in the index values for array items. the binder stops looking for data
when it fails to get a value for a specific index. if your data jumps from numbers[1] to numbers[3], for example, then the
binder will fail to get a value for numbers[2] and never ask for numbers[3] or any subsequent item.

Binding Key-Value Pairs
The built-in binders are able to create a strongly typed Dictionary that contains key-value pairs. Listing 16-18 shows
the changes that I made to the binders.js file to send a request with data in the format that the Dictionary binder
looks for.

Listing 16-18. Sending Key-Value Request Data in the bindings.js File

var viewModel = ko.observable({ first: 2, second: 5, third: 100, fourth: 200 });
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "GET",
 data: { numbers: [{ key: "one", value: { first: viewModel().first,
 second: viewModel().second }},
 { key: "two", value: { first: viewModel().third,
 second: viewModel().fourth }}]},
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

367

$(document).ready(function () {
 ko.applyBindings();
});

The format of the object used for the data setting contains a number property (named so that the binder will
match it to the action method parameter) that is set to an array of objects that has key and value properties. For this
example, I am going to bind this data to a Dictionary<string, Numbers> object, and you can see that I have set the
key and value properties accordingly. The key will be left as a string (although I could have used data that could be
bound to any type), and the value is set to an object that has first and second properties so that it can be bound to a
Numbers object. The changes in Listing 16-18 create a request with this format URL.

/api/bindings/sumnumbers?numbers[0][key]=one&numbers[0][value][first]=2
 &numbers[0][value][second]=52&numbers[1][key]=two&numbers[1][value][first]=100
 &numbers[1][value][second]=200

In Listing 16-19, you can see how I receive the dictionary in the action method.

Listing 16-19. Receiving Key-Value Pairs in the BindingsController.cs File

using System.Web.Http;
using ExampleApp.Models;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;
using System.Web.Http.ModelBinding;
using System.Linq;
using System.Collections.Generic;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public string SumNumbers([ModelBinder] Dictionary<string, Numbers> numbers) {
 return numbers.Select(x => x.Value.First + x.Value.Second).Sum().ToString();
 }
 }
}

You can mix and match the techniques in this part of the chapter, and the binders will usually be able to figure it
out. You can, for example, send a collection of key-value pairs where the value is an array of complex types that has a
property that is an array of key-value pairs and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

368

Working with Custom Model Binders
As I demonstrated in the previous section, the built-in model binders are capable of dealing with a good range of
bindings. But not every scenario is catered for; the main limitation is that classes can be instantiated only if they have
a parameterless constructor, and data values can be set only through properties, for example. In the sections that
follow, I explain how model binders work and show you how custom model binders can be used to address situations
that the default binders are unable to deal with. Table 16-4 puts custom model binders in context.

Preparing the Application
The main reason to create a custom binder is to instantiate a class that the built-in binders cannot handle. This is
most often the case when there is no parameterless constructor or when a particular initialization process must be
performed. I see this most often with some object-relational mapping (ORM) systems that need to create the objects
they operate on so they can track changes to data values. I am going to create a model binder for the Numbers class.
I want to make the example more realistic, and I made some changes to the class, as shown in Listing 16-20.

Listing 16-20. Changing the Numbers Classin the BindingModels.cs File

namespace ExampleApp.Models {

 public class Numbers {
 private int first, second;

 public Numbers(int firstVal, int secondVal) {
 first = firstVal; second = secondVal;
 }

 public int First {
 get { return first; }
 }

 public int Second {
 get { return second; }
 }

 public Operation Op { get; set; }
 public string Accept { get; set; }
 }

Table 16-4. Putting Custom Model Binders in Context

Question Answer

What are they? Custom model binders allow classes that require special handling to be included in
the model binding process.

When should you use them? Use custom model binders for classes that don’t have parameterless constructors or
require any kind of special handling.

What do you need to know? Custom model binders are reasonably straightforward, but be careful when
handling prefixes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

369

 public class Operation {
 public bool Add { get; set; }
 public bool Double { get; set; }
 }
}

I have added a constructor that requires parameters and changed two of the properties that are read-only.
These changes will prevent the default model binder from being able to create instances of the application, as I will
demonstrate shortly. In Listing 16-21, you can see how I revised the action method in the Bindings controller so that it
receives a Numbers object as a parameter.

Listing 16-21. Changing the Action Method Parameters in the BindingsController.cs File

using System.Web.Http;
using System.Web.Http.ModelBinding;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public string SumNumbers([ModelBinder] Numbers numbers) {
 var result = numbers.Op.Add ? numbers.First + numbers.Second
 : numbers.First - numbers.Second;
 return string.Format("{0}", numbers.Op.Double ? result * 2 : result);
 }
 }
}

The final preparatory change I need to make is to change the data sent by jQuery in the Ajax request. Listing 16-22
shows how I have returned to sending first and second properties, both of which are prefixed with numbers,
matching the name of the action method parameter. I have also included the numbers.op.sum and numbers.op.double
properties so I can populate the nested Operation object.

Listing 16-22. Changing the Ajax Request Data in the bindings.js File

var viewModel = ko.observable({ first: 2, second: 5});
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "GET",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

370

 data: {
 "numbers.first": viewModel().first,
 "numbers.second": viewModel().second,
 "numbers.op.add": true,
 "numbers.op.double": true
 },
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

Testing the Preparations
These changes have created a binding situation that the built-in model binders can’t deal with: the SumNumbers action
method has a Numbers parameter, but the Numbers class doesn’t follow the default pattern to be instantiated. You can see
the effect by starting the application, navigating to /Home/Bindings in the browser, and clicking the Send Request button.

The response from the web service will be reported in the browser as a 500 (Internal Server Error), and if you look
at the response in the browser F12 tools, you will see that the following problem has been reported:

No parameterless constructor defined for this object

I show you how to deal with errors in Chapter 25, but for the moment it is enough to have confirmed that the
built-in model binders can’t instantiate the modified Numbers class.

Understanding Model Binders
Model binders implement the IModelBinder interface, which is defined in the System.Web.Http.ModelBinding
namespace. Listing 16-23 shows the definition of the IModelBinder interface.

Listing 16-23. The IModelBinder Interface

using System.Web.Http.Controllers;

namespace System.Web.Http.ModelBinding {

 public interface IModelBinder {
 bool BindModel(HttpActionContext actionContext,
 ModelBindingContext bindingContext);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

371

The IModelBinder interface defines a single method called BindModel. The way this model works is a little
convoluted. The result and the first argument are entirely standard: the bool result is used to indicate whether the
model binder was able to create an instance of the require type, and the HttpActionContext object. describes the
action method that defines the parameter that is to be bound. Table 16-5 shows the properties and methods that
are defined by the HttpActionDescriptor class. that are useful in model binding; there are additional method and
properties, but they are used when selecting and executing an action method, which I describe in Chapter 22.

Table 16-5. Selected Members Defined by the HttpActionDescriptor Class

Name Description

ActionName Returns the name of the action method

ReturnType Returns the Type that the action method returns

SupportedHttpMethods Returns a collection of HttpMethod objects that represent the HTTP verbs that can be
used to target the action method

GetParameters() Returns a collection of HttpParameterDescription objects that represent the action
method parameters

Table 16-6. Selected Properties Defined by the ModelBindingContext Class

Name Description

FallbackToEmptyPrefix Returns true if the model binder can ignore the binding prefix.

Model Set by the model binder when it is able to create an instance of the model class.

ModelMetadata Returns a ModelMetadata object that describes the type of the parameter that is to be bound.

ModelName Returns the name of the parameter that is to be bound.

ModelState Returns a ModelStateDictionary object that is used to perform validation. See Chapter 18
for details.

ModelType Returns the type of the parameter that is bound.

PropertyMetadata Provides a dictionary of ModelMetadata objects that describe each property defined by
the model type, indexed by name.

ValidationNode Returns a ModelValidationNode object used to perform validation. See Chapter 18 for
details.

ValueProvider Returns an IValueProvider that can be used to obtain individual data values from the
request. The IValueProvider that is returned by default consolidates access to all the
individual value providers that have been registered in the services container or via
dependency injection.

The ModelBindingContext argument is different: it describes the parameter for which a value is required, but it
also provides the means by which the value for the parameter is given to Web API and through which any errors are
expressed. This will make more sense as I demonstrate the process of creating a custom model binder, but just bear
in mind that the ModelBindingContext class provides information to the model binder and provides the parameter
value to Web API so that the action method can be invoked. The ModelBindingContext class defines the properties
shown in Table 16-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

372

The role of the model binder is to examine the action method and the parameter using the HttpActionDescriptor
and ModelBindingContext and, if suitable data is available, create an instance of the class—the model—specified by the
ModelBindingContext.Type property. The model is provided to Web API by setting the ModelBindingContext.Model
property and returning true as the result from the BindModel method.

Tip ■ if suitable data isn’t available, then the ModelBinding.ModelState property is used to report errors. i explain
how models are validated and how errors are handled in Chapter 18.

Creating a Custom Model Binder
There are two categories of model binders. The first is loosely coupled binders., which use the metadata in the
HttpActionDescriptor and ModelBindingContext objects passed to the BindModel method to instantiate classes of
which they have no prior knowledge. The built-in model binders are loosely coupled because they will try to bind any
complex action method parameter, but the limitation of this approach is that they can’t deal with classes that have
constructor parameters or require special configuration.

The other category is tightly coupled binders, which are written to handle a specific class. Tightly coupled binders
have prior knowledge of the steps required to create and configure a particular class and usually don’t need to use the
metadata in order to do so. The problem with tightly coupled classes is that they break when the class they operate on
changes, but this is usually an acceptable trade-off in order to be able to use model binding for difficult classes. It is
tightly coupled binders that most applications require and that I demonstrate in this section.

Caution ■ loosely coupled classes are difficult to write and require thorough testing because they will be used to
bind all sorts of odd classes that have characteristics that have not been foreseen. you should rely on the built-in binders
unless you have expert-level understanding of .net reflection and metadata and you are willing to set aside a substantial
amount of time for making your binders work.

My tightly coupled binder will create instances of the Numbers class, which means I need to extract several values
from the request and use them to create and populate a Numbers object, as described in Table 16-7.

Table 16-7. The Request Properties Required by a Numbers Model Binder

Name Description

numbers.first Required to set the First property defined by the Numbers class, set via the constructor

numbers.second Required to set the Second property defined by the Numbers class, set via the constructor

numbers.op.sum Required to set the Sum property of the Operation class, set via the Op property

numbers.op.double Required to set the Double property of the Operation class, set via the Op property

numbers.accept Required to set the Accept property defined by the Numbers class

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

373

I added a class file called NumbersBinder.cs to the Infrastructure folder and used it to define the model binder
shown in Listing 16-24.

Listing 16-24. The Contents of the NumbersBinder.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.Http.Controllers;
using System.Web.Http.ModelBinding;
using System.Web.Http.ValueProviders;
using ExampleApp.Models;

namespace ExampleApp.Infrastructure {

 public class NumbersBinder : IModelBinder {

 public bool BindModel(HttpActionContext actionContext,
 ModelBindingContext bindingContext) {

 string modelName = bindingContext.ModelName;

 Dictionary<string, ValueProviderResult> data
 = new Dictionary<string, ValueProviderResult>();

 data.Add("first", GetValue(bindingContext, modelName, "first"));
 data.Add("second", GetValue(bindingContext, modelName, "second"));
 data.Add("add", GetValue(bindingContext, modelName, "op", "add"));
 data.Add("double", GetValue(bindingContext, modelName, "op", "double"));
 data.Add("accept", GetValue(bindingContext, modelName, "accept"));

 if (data.All(x => x.Value != null)) {
 bindingContext.Model = CreateInstance(data);
 return true;
 }
 return false;
 }

 private ValueProviderResult GetValue (ModelBindingContext context,
 params string[] names) {

 for (int i = 0; i < names.Length -1; i++) {
 string prefix = string.Join(".",
 names.Skip(i).Take(names.Length - (i + 1)));
 if (context.ValueProvider.ContainsPrefix(prefix)) {
 return context.ValueProvider.GetValue(prefix + "." + names.Last());
 }
 }
 return context.ValueProvider.GetValue(names.Last());
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

374

 private Numbers CreateInstance(Dictionary<string, ValueProviderResult> data) {
 return new Numbers(Convert<int>(data["first"]),
 Convert<int>(data["second"])) {
 Op = new Operation {
 Add = Convert<bool>(data["add"]),
 Double = Convert<bool>(data["double"])
 },
 Accept = Convert<string>(data["accept"])
 };
 }

 private T Convert<T>(ValueProviderResult result) {
 try {
 return (T)result.ConvertTo(typeof(T));
 } catch {
 return default(T);
 }
 }
 }
}

Caution ■ model binders can be used to service multiple requests. don’t use instance variables when writing a model
binder, but ensure that you write thread-safe code and reset the shared state after if you can’t avoid instance variables.

This binder is a little more complex than it needs to because I have structured the code to break up the steps a
binder has to follow. In the sections that follow, I use that structure to explain each step.

Getting Model Property Values from the Value Provider
The first step that my binder takes is to try to locate values for each of the properties that it needs to create an instance
of the Numbers class and that I listed in Table 16-7. I defined the GetValue method in the binder, which receives the
ModelBindingContext and an array of strings as its arguments.

...
private ValueProviderResult GetValue (ModelBindingContext context,
 params string[] names) {

 for (int i = 0; i < names.Length -1; i++) {
 string prefix = string.Join(".",
 names.Skip(i).Take(names.Length - (i + 1)));
 if (context.ValueProvider.ContainsPrefix(prefix)) {
 return context.ValueProvider.GetValue(prefix + "." + names.Last());
 }
 }
 return context.ValueProvider.GetValue(names.Last());
}
...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

375

In Chapter 15, I explained that value providers will return a ValueProviderResult object if they are able to
provide a value and null if not. My first job is to try to gather the set of ValueProviderResult results that contains the
values I need, and I need to do this in a way that deals with the prefixes that the client sends.

I have taken a different approach to dealing with prefixes than Microsoft has used in the built-in binders. Instead
of checking each prefix just once, I handle each property independently and try to locate a value for multiple levels of
prefix. So, for example, if I want the numbers.op.add property, I request the following:

 1. numbers.op.add

 2. op.add

 3. add

I receive the prefixes and name using a params argument, which makes it easy for me to use LINQ to
generate the property name permutations I look for. I check these values with the value providers through the
ModelBindingContext.ValueProvider property, which returns an IValueProvider that queries all of the value
providers registered in the service collection. I terminate the search as soon as I get a ValueProviderResult object for
one of the prefix/name permutations and return it as the result.

I call the GetValue method from the GetBinding method to create a dictionary of ValueProviderResult objects
that are indexed by property name, like this:

...
data.Add("first", GetValue(bindingContext, modelName, "first"));
data.Add("second", GetValue(bindingContext, modelName, "second"));
data.Add("add", GetValue(bindingContext, modelName, "op", "add"));
data.Add("double", GetValue(bindingContext, modelName, "op", "double"));
data.Add("accept", GetValue(bindingContext, modelName, "accept"));
...

Checking Values
Once I have asked the value providers for each of the properties, I have a collection of responses that can be either
ValueProviderResult objects (indicating that the provider located a value) or null (indicating that the provider could
not locate a value). This is the point at which I have to decide whether I am able to bind the model and so I perform a
basic check to ensure that I have not received any null responses, like this:

...
if (data.All(x => x.Value != null)) {
 bindingContext.Model = CreateInstance(data);
 return true;
}
return false;
...

I use LINQ to check for null values, and I return false if there are. A false result from the BindModel method
tells Web API that the binder can’t create an instance of the model object.

Note ■ Web api provides a model validation mechanism that allows errors to be usefully reported to the user. i am
focused solely on the binding process in this chapter, but i describe model validation and validation errors in Chapter 18.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

376

Creating the Model Object
I use a method called CreateInstance if there are no null responses from the value providers. As its name suggests,
the CreateInstance method is responsible for creating an instance of the Numbers class and populating it with data.

An important task when creating an instance of the model object is to convert the values from the
ValueProviderResult objects into the types required for the constructor, methods, and properties. In the custom
binder, I have separated this step into a strongly typed method called Convert, as follows:

...
private Numbers CreateInstance(Dictionary<string, ValueProviderResult> data) {
 return new Numbers(Convert<int>(data["first"]), Convert<int>(data["second"])) {
 Op = new Operation {
 Add = Convert<bool>(data["add"]),
 Double = Convert<bool>(data["double"])
 },
 Accept = Convert<string>(data["accept"])
 };
}
...

The CreateInstance method creates the Numbers object, but it gets its values by calling the Convert method and
specifying the required type using a generic type parameter and the ValueProviderResult. The Convert method
uses the ValueProviderResult.ConvertTo method to perform the type conversion.

...
private T Convert<T>(ValueProviderResult result) {
 try {
 return (T)result.ConvertTo(typeof(T));
 } catch {
 return default(T);
 }
}
...

The ConvertTo method will throw an exception if the value cannot be converted. Handling the conversion in a
strongly typed method lets me use the default keyword to provide the caller with a default value for the required type.
In Chapter 18, I show you how to report binding problems as part of the model validation process.

Applying a Custom Model Binder
Having created a custom model binder, I need to tell Web API to use it to bind Numbers action method parameters.
There are several ways to apply a binder, depending on how widely you want to apply the binding process. Web API
looks in three different places for a model binding instruction before using the built-in binders, in order:

 1. The ModelBinder attribute applied to the action method parameter

 2. The ModelBinder attribute applied to the model class

 3. A parameter binding rule

In the sections that follow, I explain each of the options and demonstrate their use.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

377

Applying a Custom Binder Directly to the Parameter
The most direct way to apply a model binder is to specify the binder type to the action method parameter using the
ModelBinder attribute.., which defines the configuration properties described in Table 16-8.

Table 16-8. The Properties Defined by the ModelBinder Attribute

Name Description

BinderType This property specifies the model binder class that will be used for the parameter.

Name This property specifies the name that will be used as the top-level prefix, overriding the name of
the parameter, which is used by default.

Tip ■ there is an additional property—SupressPrefixCheck—defined by the ModelBinder attribute, but its value is
not checked by the other model binding classes.

Listing 16-25 shows how I applied the ModelBinder attribute and set the BinderType property to specify the
NumbersBinder class for the action method parameter.

Listing 16-25. Applying a Custom Model Binder in the BindingsController.cs File

using System.Web.Http;
using System.Web.Http.ModelBinding;
using ExampleApp.Models;
using ExampleApp.Infrastructure;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public string SumNumbers([ModelBinder(BinderType=typeof(NumbersBinder))]
 Numbers numbers) {
 var result = numbers.Op.Add ? numbers.First + numbers.Second
 : numbers.First - numbers.Second;
 return string.Format("{0}", numbers.Op.Double ? result * 2 : result);
 }
 }
}

I have not set the Name property, so the metadata passed to the binder will specify that the name of the action
method parameter will be used as a prefix. To test the custom model binder, start the application, use the browser
to navigate to the /Home/Bindings URL, and click the Send Request button. The ModelBinder.BinderType property
will override the use of the built-in binders and use my custom binder to instantiate the Numbers class, avoiding the
problems with the constructor parameters and read-only properties.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

378

Registering the Model Binder with the Services Collection
If you don’t want to use the BinderType property every time you apply the ModelBinder attribute, you can register the
binder with the services collection. Listing 16-26 shows the change I made to the WebApiConfig.cs file to register
the binder.

Listing 16-26. Registering a Model Binder in the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Web.Http.ValueProviders;
using System.Net.Http.Headers;
using System.Web.Http.ModelBinding;
using System.Web.Http.ModelBinding.Binders;
using ExampleApp.Models;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "Binding Example Route",
 routeTemplate: "api/{controller}/{action}/{first}/{second}"
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Services.Add(typeof(ValueProviderFactory),
 new HeaderValueProviderFactory());

 config.Services.Insert(typeof(ModelBinderProvider), 0,
 new SimpleModelBinderProvider(typeof(Numbers), new NumbersBinder()));
 }
 }
}

A subclass of the abstract ModelBinderProvider class. is required to register a model binder, but it is easier to use
the SimpleModelBinderProvider class, defined in the System.Web.Http.ModelBinding.Providers namespace, when
you want a binder to be used for all parameters of a specific type. The arguments to the SimpleModelBinderProvider
constructor are the type the binder instantiates and an instance of the model binder class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

379

Tip ■ i have used the Insert method to register the custom model binder so that it is used in preference to the built-in
binders, which will not be able to instantiate the Numbers class.

Having registered the binder, I am able to remove the type from the attribute applied to the action method
parameter, as shown in Listing 16-27.

Listing 16-27. Removing the Model Binder Type in the BindingsController.cs File

...
[HttpGet]
[HttpPost]
public string SumNumbers([ModelBinder] Numbers numbers) {
 var result = numbers.Op.Add ? numbers.First + numbers.Second
 : numbers.First - numbers.Second;
 return string.Format("{0}", numbers.Op.Double ? result * 2 : result);
}
...

Applying a Binder to the Model Class
The ModelBinder attribute can also be applied to the model class, which has the effect of applying the model binder
to every action method parameter of that type. Listing 16-28 shows the application of the ModelBinder attribute to the
Numbers model class, with the BinderType property used to specify the custom model binder.

Listing 16-28. Using the ModelBinder Attribute in the BindingModels.cs File

using System.Web.Http.ModelBinding;
using ExampleApp.Infrastructure;

namespace ExampleApp.Models {

 [ModelBinder(BinderType = typeof(NumbersBinder))]
 public class Numbers {
 private int first, second;

 public Numbers(int firstVal, int secondVal) {
 first = firstVal; second = secondVal;
 }

 public int First {
 get { return first; }
 }

 public int Second {
 get { return second; }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

380

 public Operation Op { get; set; }
 public string Accept { get; set; }
 }

 public class Operation {
 public bool Add { get; set; }
 public bool Double { get; set; }
 }
}

Tip ■ i have shown the attribute with the BinderType property because i like to make it obvious which binder will be
used. however, registering the binder with the services collection affects the ModelBinder attribute wherever it is used,
and you can omit the BinderType property if you prefer.

There is no need to apply the attribute to the action method when the ModelBinder attribute is applied to the
model class. Listing 16-29 shows how I removed the attribute from the controller.

Listing 16-29. Removing the ModelBinding Attribute in the BindingsController.cs File

...
[HttpGet]
[HttpPost]
public string SumNumbers(Numbers numbers) {
 var result = numbers.Op.Add ? numbers.First + numbers.Second
 : numbers.First - numbers.Second;
 return string.Format("{0}", numbers.Op.Double ? result * 2 : result);
}
...

Creating a Parameter Binding Rule
Applying the ModelBinder attribute to the model class affects all the action method parameters of that type, and that
can be overreaching if you need to apply a custom binder only for some action method parameters. You can get more
control over when the model binder is used by defining a parameter binding rule. However, the main benefit of a
parameter binding rule for a model binder is to restrict the set of value providers that are used to obtain data values,
which can be useful when you want to make sure that, say, routing data isn’t used in the model binding process.

Before I define a binding rule, I need to remove the ModelBinder attribute from the Numbers class, as shown in
Listing 16-30. With the attribute in place, the binding process will not look for a parameter binding rule.

Listing 16-30. Removing the ModelBinder Attribute in the BinderModels.cs File

...
//[ModelBinder(BinderType = typeof(NumbersBinder))]
public class Numbers {
 private int first, second;
...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

381

Listing 16-31 shows a parameter binding rule that I added to the WebApiConfig.cs file, which restricts the
sources of data to the query string and request headers.

Listing 16-31. Defining a Parameter Model Binding in the WebApiConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Web.Http.ValueProviders;
using System.Net.Http.Headers;
using System.Web.Http.ModelBinding;
using System.Web.Http.ModelBinding.Binders;
using ExampleApp.Models;
using System.Web.Http.ValueProviders.Providers;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "Binding Example Route",
 routeTemplate: "api/{controller}/{action}/{first}/{second}"
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Services.Add(typeof(ValueProviderFactory),
 new HeaderValueProviderFactory());

 config.Services.Insert(typeof(ModelBinderProvider), 0,
 new SimpleModelBinderProvider(typeof(Numbers), new NumbersBinder()));

 config.ParameterBindingRules.Add(x => {
 return x.ParameterType == typeof(Numbers)
 ? new ModelBinderParameterBinding(x, new NumbersBinder(),
 new ValueProviderFactory[] {
 new QueryStringValueProviderFactory(),
 new HeaderValueProviderFactory()})
 : null;
 });
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

382

Tip ■ i described the built-in value providers in Chapter 15.

The ModelBinderParameterBinding class is derived from HttpParameterBinding and defines a constructor
that receives an HttpParameterDescriptor object, an IModelBinder implementation, and an enumeration of
ValueProviderFactory classes. In the listing, I created a rule that specifies the NumbersBinder binder class but limits
the source of values to the query string and request headers.

Note ■ i described the HttpParameterBinding and HttpParameterDescriptor classes in Chapter 15.

Using Type Converters
Type converters are an oddity. They allow a complex type parameter to be created from the query string, using a
mechanism that has been part of .NET since version 1.1. I have included them in this chapter for completeness, but
the URL format they require isn’t especially useful in most web services. Table 16-9 puts type converters in context.

Table 16-9. Putting Type Converters in Context

Question Answer

What are they? Type converters integrate the .NET type conversion features into the Web API
model binding process.

When should you use them? Use type converters when all of the data required to instantiate a class is contained
in a single query string property or routing segment variable.

What do you need to know? Type converters don’t really fit into the rest of the model binding system, and I have
yet to find them useful in a real project.

Understanding Type Converters
Type converters are responsible for creating an object from the URL, from a single query string property or routing
segment. Type converters are derived from the System.ComponentModel.TypeConverter class and associated with
action method parameters with the TypeConverter attribute.

The problem with type converters is that they require all the information necessary to create an instance of a
model object to be expressed in a single query string parameter or routing segment. I need four values to create an
instance of the Numbers model class; doing so using a type converter means sending a query string like this one:

api/bindings/sumnumbers?numbers=2,54,true,true

In fact, you can encode the data in any way that suits you, but to keep things simple, I have expressed the data
values so they are separated by a comma.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

383

Caution ■ separating values with a single character is common when using a type converter, but be careful when
using characters like + as separators. the string taken from the Url is assumed to be Url encoded, which means that
the + character is replaced with a space.

Creating a Type Converter
The TypeConverter class—and, in fact, the entire System.ComponentModel namespace—is a general-purpose
mechanism for managing and converting types, and most of its features have no role in Web API.

Creating a Web API type converter is relatively simple, especially since you can ignore all but the type and value
parameters defined by the methods in Table 16-10, which are the only ones required to use a type converter in a
Web API application.

Table 16-10. The Methods Required to Create a Web API Type Converter

Name Description

CanConvertFrom(context, type) Called to check whether the type converter is able to create an instance of
its model object from a specified type. In Web API, implementations of this
method should return true for strings and return false for all other types.

ConvertFrom(context, culture,
value)

Called to create an instance of the model object from a request value,
which will be a string. This method should return null if the data cannot be
converted into a model object.

To demonstrate how to create a type converter, I added a class file called NumbersTypeConverter.cs to the
Infrastructure folder and used it to define the class shown in Listing 16-32.

Listing 16-32. The Contents of the NumbersTypeConverter.cs File

using System;
using System.ComponentModel;
using System.Globalization;
using ExampleApp.Models;

namespace ExampleApp.Infrastructure {
 public class NumbersTypeConverter : TypeConverter {

 public override bool CanConvertFrom(ITypeDescriptorContext context,
 Type sourceType) {
 return sourceType == typeof(string);
 }

 public override object ConvertFrom(ITypeDescriptorContext context,
 CultureInfo culture, object value) {

 string valueToParse = value as string;
 string[] elements = null;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

384

 if (valueToParse != null
 && (elements = valueToParse.Split(',')).Length == 4) {

 int firstVal, secondVal; bool addVal, doubleVal;
 if (int.TryParse(elements[0], out firstVal)
 && int.TryParse(elements[1], out secondVal)
 && bool.TryParse(elements[2], out addVal)
 && bool.TryParse(elements[3], out doubleVal)) {

 return new Numbers(firstVal, secondVal) {
 Op = new Operation {
 Add = addVal,
 Double = doubleVal
 }
 };
 }
 }
 return null;
 }
 }
}

The work of creating an object for an action method happens in the ConvertFrom method, which is passed the
data from the request and must convert it into an instance of the model class. In the listing, I split the string I receive
into an array and use the int.TryParse and bool.TryParse methods to convert individual values to the types I need
to create an instance of the Numbers class. If I don’t receive data in the format that I expect, then I return null to
indicate that I cannot create an instance of the model class.

Applying a Type Converter
Type converters are applied to the model class, rather than the action method parameter. The TypeConverter
attribute, defined in the System.ComponentModel namespace, specifies the type converter class that is used to create
instances of the model. Listing 16-33 shows how I have applied the attribute to the Numbers class.

Listing 16-33. Applying a Type Converter in the BindingModels.cs File

using System.Web.Http.ModelBinding;
using ExampleApp.Infrastructure;
using System.ComponentModel;

namespace ExampleApp.Models {

 //[ModelBinder(BinderType = typeof(NumbersBinder))]
 [TypeConverter(typeof(NumbersTypeConverter))]
 public class Numbers {
 private int first, second;

 public Numbers(int firstVal, int secondVal) {
 first = firstVal; second = secondVal;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

385

 public int First {
 get { return first; }
 }

 public int Second {
 get { return second; }
 }

 public Operation Op { get; set; }
 public string Accept { get; set; }
 }

 public class Operation {
 public bool Add { get; set; }
 public bool Double { get; set; }
 }
}

Type converters only read their data from the URL, which means I need to configure the client to send a
GET request in the format I described in the previous section. Listing 16-34 shows the changes that I made to the
bindings.js file to configure the jQuery Ajax request.

Listing 16-34. Configuring the Ajax Request in the bindings.js File

var viewModel = ko.observable({ first: 2, second: 5});
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "GET",
 data: "numbers=" + viewModel().first + ","
 + viewModel().second + "," + "true" + "," + true,
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

I format the query string that the Ajax request will be sent to so that it uses the format that the type converter
can process. The final step is to disable the parameter binding rule in the WebApiConfig.cs file, which preempts the
TypeConverter attribute. Listing 16-35 shows the changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

386

Listing 16-35. Disabling the Parameter Binding Rule in the WebConfig.cs File

using System.Web.Http;
using ExampleApp.Infrastructure;
using System.Web.Http.ValueProviders;
using System.Net.Http.Headers;
using System.Web.Http.ModelBinding;
using System.Web.Http.ModelBinding.Binders;
using ExampleApp.Models;
using System.Web.Http.ValueProviders.Providers;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "Binding Example Route",
 routeTemplate: "api/{controller}/{action}/{first}/{second}"
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Services.Add(typeof(ValueProviderFactory),
 new HeaderValueProviderFactory());

 config.Services.Insert(typeof(ModelBinderProvider), 0,
 new SimpleModelBinderProvider(typeof(Numbers), new NumbersBinder()));

 //config.ParameterBindingRules.Add(x => {
 // return x.ParameterType == typeof(Numbers)
 // ? new ModelBinderParameterBinding(x, new NumbersBinder(),
 // new ValueProviderFactory[] {
 // new QueryStringValueProviderFactory(),
 // new HeaderValueProviderFactory()})
 // : null;
 //});
 }
 }
}

To test the type converter, start the application and navigate to the /Home/Bindings URL. When you click the
Send Request button, jQuery will send an Ajax request that contains a query string that contains all of the values in a
single property, which will then be parsed by the type converter and passed as an argument to the action method.
The result is shown in Figure 16-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Binding Complex data types part i

387

Summary
In this chapter, I showed you how you can use Web API to bind complex types from data contained in the request URL
using model binders. I demonstrated how to use the built-in model providers to bind objects, arrays, and collections and
how to create and apply a custom model binder, which is useful when working with classes that require special handling.
I focused on the query string, but the same techniques apply to routing data, which I detail in Chapters 20 and 21.
I finished this chapter by explaining type converters, which are an odd adaptation of an old .NET feature into the Web API
class framework. In the next chapter, I show you how media type formatters—which I introduced in Chapter 12 to serialize
action method results—can be used to deserialize objects from the request body. I also show you how to completely
replace the default parameter binding system with one of your own creation.

Figure 16-2. Using a type converter

www.it-ebooks.info

http://www.it-ebooks.info/

389

Chapter 17

Binding Complex Data Types Part II

In this chapter, I conclude the coverage of the parameter and model binding processes by explaining how media type
formatters can be used to deserialize complex types from the request body. I show you how to perform deserialization
with a custom media type formatter and then detail how the built-in formatters work, including how to send data in
the required format from the client. I finish this chapter by showing you how to replace the class that is responsible
for integrating the behavior I have been describing since Chapter 15 with a custom implementation. Table 17-1
summarizes this chapter.

Table 17-1. Chapter Summary

Problem Solution Listing

Deserialize a custom data format. Create a media type formatter and override the
ReadFromStreamAsync method.

1–6

Register a custom media type
formatter.

Add or insert an instance of the formatter class to the
HttpConfiguration.Formatters collection.

7

Process URL-encoded data. Target the FormUrlEncodedMediaTypeFormatter or
JQueryMvcFormUrlEncodedFormatter media type formatters.

8–11

Instantiate difficult types from
URL-encoded data.

Derive a custom class from the
FormUrlEncodedMediaTypeFormatter class and override the
ReadFromStreamAsync method to read the data and bind the
object.

12–15

Process JSON-encoded data. Target the JsonMediaTypeFormatter media type formatter. 16

Instantiate difficult types from
JSON-encoded data.

Derive a custom class from the MediaTypeFormatter class and use
the Json.Net library directly.

17–18

Process XML-encoded data. Apply the DataContract and DataMember attributes to the model
class and target the XmlMediaTypeFormatter media type formatter.

19–20

Instantiate difficult types from
XML-encoded data.

Derive a custom class from the MediaTypeFormatter class and use
LINQ to XML to process the data.

21–22

Change the entire parameter and
model binding processes.

Create a custom implementation of the IActionValueBinder
interface, either by implementing the interface directly or by
deriving from the DefaultActionValueBinder class.

23–26

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

390

Preparing the Example Project
I am going to continue using the ExampleApp project I have been working with throughout this part of the book, but
I need to make some preparatory changes for this chapter. First I need to simplify the Numbers class so that it has a
parameterless constructor and settable properties—changes that are required so that I can demonstrate the default
behavior. Listing 17-1 shows the changes I made, which include removing the ModelBinder and TypeConverter
attributes that I applied in Chapter 16. I have left the constructor with parameters in place so that I can demonstrate
dealing with objects that require special handling.

Listing 17-1. Simplifying the Class in the BindingModels.cs File

namespace ExampleApp.Models {

 public class Numbers {

 public Numbers() { /* do nothing */ }

 public Numbers(int first, int second) {
 First = first; Second = second;
 }

 public int First { get; set; }
 public int Second { get; set; }
 public Operation Op { get; set; }
 public string Accept { get; set; }
 }

 public class Operation {
 public bool Add { get; set; }
 public bool Double { get; set; }
 }
}

Tip ■ remember that you don’t have to create the example project yourself. you can download the source code for
every chapter for free from Apress.com.

I need to remove the model binding configuration from the WebApiConfig.cs file. The features that I will describe
in this chapter do not use value providers or model binders. Listing 17-2 shows the revised configuration file.

Listing 17-2. Simplifying the WebApiConfig.cs File

using System.Web.Http;
using System.Web.Http.ModelBinding;
using System.Web.Http.ModelBinding.Binders;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;
using ExampleApp.Models;

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

391

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "Binding Example Route",
 routeTemplate: "api/{controller}/{action}/{first}/{second}"
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Services.Add(typeof(ValueProviderFactory),
 new HeaderValueProviderFactory());

 config.Services.Insert(typeof(ModelBinderProvider), 0,
 new SimpleModelBinderProvider(typeof(Numbers), new NumbersBinder()));
 }
 }
}

The final change is to the bindings.js file so that the jQuery Ajax request uses standard data encoding and uses
the POST verb. Listing 17-3 shows the changes.

Listing 17-3. Changing the Request Verb and Data Format in the bindings.js File

var viewModel = ko.observable({
 first: 2, second: 5, "op.add": true, "op.double": true
});
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "POST",
 data: viewModel(),
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

392

$(document).ready(function () {
 ko.applyBindings();
});

I also want to change the SumNumbers action method in the Bindings controller so that it returns an int result.
I changed the result to a string so that I could include the value of the Accept header, but I only need to report the
result of the calculation performed by the SumNumbers action method in this chapter. Listing 17-4 shows the change to
the action method.

Listing 17-4. Changing the Action Method Result in the BindingsController.cs File

using System.Web.Http;
using System.Web.Http.ModelBinding;
using ExampleApp.Models;
using ExampleApp.Infrastructure;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public int SumNumbers(Numbers numbers) {
 var result = numbers.Op.Add ? numbers.First + numbers.Second
 : numbers.First - numbers.Second;
 return numbers.Op.Double ? result * 2 : result;
 }
 }
}

Testing the Application
To test the changes, start the application and use the browser to navigate to the /Home/Bindings URL. When you
click the Send Request button, the client will display the result, which will be twice the sum of the values in the input
elements, as shown in Figure 17-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

393

Creating a Custom Media Type Formatter
By default, Web API assumes that any complex type parameter will be obtained from the request body and uses a
media type formatter to try to get and bind a value. I introduced media type formatters in Chapter 12 and described
the built-in JSON and XML media type formatters in Chapter 13, but my focus in both chapters was on using them to
serialize data from action method results so that it could be sent to the client. Media type formatters are also able to
deserialize data and use it to create instances of the classes required to invoke an action method.

Tip ■ as a reminder, the simple types are the TimeSpan, DateTime, or Guid object or any one of the .net primitive
types: string, char, bool, int, uint, byte, sbyte, short, ushort, long, ulong, float, double, and decimal. any other
type—and that includes arrays and collections of simple types—is a complex type.

In Chapter 12, I created the ProductFormatter class, which was responsible for formatting a Product object into
a string like this:

1,Kayak,275.0

The three comma-separated values represented the ProductId, Name, and Price properties defined by the
Product model object. In this section, I am going to return to this data format and create a media type formatter that
can deserialize it to create Numbers objects. Table 17-2 puts creating a custom media type formatter to deserialize data
into context.

Figure 17-1. Testing the application preparation

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

394

Preparing the Client
The first change I need to make is to change the Ajax request that jQuery sends so that the data is in the expected
format and that the Content-Type header is correctly set, as shown in Listing 17-5.

Listing 17-5. Changing the Ajax Request in the bindings.js File

var viewModel = ko.observable({
 first: 2, second: 5, add: true, double: true
});
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "POST",
 contentType: "application/x.product",
 data: [viewModel().first, viewModel().second, viewModel().add,
 viewModel().double].join(),
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

Table 17-2. Putting Custom Media Type Formatters in Context

Question Answer

What are they? Custom media types can be used to deserialize data from the request body
that is in a bespoke or unusual encoding format. Custom media formatters are
also useful for dealing with classes that cannot be instantiated by invoking a
parameterless constructor and setting properties.

When should you use them? The built-in media type formatters, which I describe later in this chapter, support
the most commonly encountered data format, but custom formatters are useful
for dealing with classes that have to be instantiated in a specific way or when you
need to support legacy clients that don’t use a common data format.

What do you need to know? Media type formatters don’t have to be able to serialize data, which I described
in Chapter 12. Instead, you can create formatters that just deserialize data, which
is helpful when your application sends out data in a standard format but needs
to work around poor encoding sent by clients.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

395

I have used the contentType setting to specify that the content is in my custom application/x.product
encoding (the MIME type I used in Chapter 12) and created a formatted string for the data setting by creating an
array with the values from the view model and by calling the join method, which combines the values with a comma
separator. If you start the application and send a request, you will see the following URL in the F12 tools:

/api/bindings/sumnumbers

It has a payload of the following:

2,5,true,true

The web service will report an error because I have not implemented the deserialization support.

Creating the Media Type Formatter
Now that I have a request I can process, it is time to create the custom media type formatter. I added a class file called
XNumbersFormatter.cs to the Infrastructure folder and used it to create the media type formatter shown in Listing 17-6.

Listing 17-6. The Contents of the XNumbersFormatter.cs File

using System;
using System.IO;
using System.Linq;
using System.Net.Http;
using System.Net.Http.Formatting;
using System.Net.Http.Headers;
using System.Text;
using System.Threading.Tasks;
using ExampleApp.Models;

namespace ExampleApp.Infrastructure {
 public class XNumbersFormatter : MediaTypeFormatter {
 long bufferSize = 256;

 public XNumbersFormatter() {
 SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/x.product"));
 }

 public override bool CanWriteType(Type type) {
 return false;
 }

 public override bool CanReadType(Type type) {
 return type == typeof(Numbers);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

396

 public async override Task<object> ReadFromStreamAsync(Type type,
 Stream readStream, HttpContent content, IFormatterLogger formatterLogger) {

 byte[] buffer = new byte[Math.Min(content.Headers.ContentLength.Value,
 bufferSize)];
 string[] items = Encoding.Default.GetString(buffer, 0,
 await readStream.ReadAsync(buffer, 0, buffer.Length)).Split(',', '=');

 if (items.Length == 4) {
 return new Numbers(
 GetValue<int>("First", items[0], formatterLogger),
 GetValue<int>("Second", items[1], formatterLogger)) {

 Op = new Operation {
 Add = GetValue<bool>("Add", items[2], formatterLogger),
 Double = GetValue<bool>("Double", items[3], formatterLogger)
 }
 };
 } else {
 formatterLogger.LogError("", "Wrong Number of Items");
 return null;
 }
 }

 private T GetValue<T>(string name, string value, IFormatterLogger logger) {
 T result = default(T);
 try {
 result = (T)System.Convert.ChangeType(value, typeof(T));
 } catch {
 logger.LogError(name, "Cannot Parse Value");
 }
 return result;
 }
 }
}

Note ■ i am not going to build on the ProductFormatter class i created in Chapter 12 because it is specific to the
Product model class and because i made all sorts of additions to demonstrate different features, ending up with an
overly complicated class. i want to focus on just deserializing data in this chapter, so i have created a new class to keep
the example simple.

This formatter binds instances of the Numbers class for requests whose Content-Type header is application/x.
product. In the sections that follow, I’ll break down each part of the class and explain how it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

397

Defining the Formatter Structure
The MediaTypeFormatter class is abstract and requires only the CanWriteType and CanReadType methods to be
implemented—but there are two other steps required to create a working media type formatter. First you need to add
the MIME type that you want to support to the SupportedMediaTypes collection in the class constructor, as follows:

...
public XNumbersFormatter() {
 SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/x.product"));
}
...

For my implementations of the CanWriteType and CanReadType methods, I want to tell Web API that I am not
willing to serialize any data and that I can deserialize only Numbers objects.

...
public override bool CanWriteType(Type type) {
 return false;
}

public override bool CanReadType(Type type) {
 return type == typeof(Numbers);
}
...

Getting the Request Data
Media type formatters that deserialize data override the ReadFromStreamAsync method, and that is where the bulk of
the work is done in the XNumbersFormatter class. The ReadFromStreamAsync method is passed arguments of the types
described in Table 17-3 and is responsible for using them to instantiate an object.

Table 17-3. The Parameter Types of the MediaTypeFormatter.ReadFromStreamAsync Method

Type Description

Type The type that the formatter is required to instantiate. This is useful if the implementation
of the CanReadType method responds with true to multiple types.

Stream A System.IO.Stream object from which the request body can be read. This must be used
cautiously; see the warnings and examples that follow this table.

HttpContent A System.Net.Http.HttpContent object that describes the request content and provides
access to it. This object is used to gain access to an HttpContentHeaders object through
its Headers property. See Table 17-4 for details of the headers that are available.

IFormatterLogger An implementation of the System.Net.Http.Formatting.IFormatterLogger interface
that can be used to report problems processing the data. See the “Creating the Model
Object” section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

398

The HttpContent class provides information about the request and provides methods that can be used to read
the request body, but the ReadFromStreamAsync method is required to read data from the Stream object it receives as
an argument. This means the value of the HttpContent object is its Headers property, which returns an instance of
the HttpContentHeaders class. The HttpContentHeaders class is derived from HttpHeaders and adds convenience
properties for content-related headers, as described in Table 17-4. (The HttpContentHeaders class contains properties
that are used in responses and requests. I have included the request headers only in the table.)

Tip ■ see www.w3.org/Protocols/rfc2616/rfc2616-sec14.html for the detailed specification and use of http headers.

For my purposes, it is the ContentLength property that is most useful because it tells me how much data I need
to read from the Stream argument to the ReadFromStreamAsync method. Here is the code that reads the body of the
request and converts it into an array of strings:

...
byte[] buffer = new byte[Math.Min(content.Headers.ContentLength.Value, bufferSize)];
string[] items = Encoding.Default.GetString(buffer, 0,
 await readStream.ReadAsync(buffer, 0, buffer.Length)).Split(',', '=');
...

These statements follow three important rules that you should follow when writing a custom media type
formatter:

Don’t use the convenience methods to read basic types.•	

Limit the amount of data you read.•	

Read data asynchronously.•	

A simple but effective denial-of-service attack is for a client to send an HTTP server misleading information in the
Content-Length header, either to cause an error or to try to get the server to exhaust its memory by reading enormous
amounts of data. A custom media type formatter requires care because the content is read and processed by your
code, rather than that of the ASP.NET Framework as is the case in an MVC application.

Table 17-4. The Request Header Convenience Properties Defined by the HttpContentHeaders Class

Name Description

ContentEncoding Returns the value of the Content-Encoding header, which is used to indicate when
additional encodings have been applied to the content in addition to the one specified
by the Content-Type header.

ContentLength Returns the value of the Content-Length header, which reports the size of the request
body in bytes. When using the value of the Content-Length header, be sure to apply an
upper limit to how much data you read from the request body; see the following text for
details.

ContentMD5 Returns the value of the Content-MD5 header, which contains a hash code to ensure the
integrity of the data.

ContentType Returns the value of the Content-Type header, which specifies the primary encoding
of the request body. Additional encodings can be specified with the Content-Encoding
header.

www.it-ebooks.info

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

399

The first precaution you should take is to avoid using the convenience methods provided by the stream and
reader classes in the System.IO namespace. Using a ReadLine or ReadString method would allow me to simplify my
media type formatter, but these methods just keep reading data from the underlying stream until they get the data
they expect. Instead, you should read the content into a byte[] buffer directly from the stream.

The second precaution you should take is to limit the amount of data you read from the stream. In Listing 17-6,
I defined a maximum buffer size of 256 bytes, which is enough to represent my Numbers class. When I create the byte
array, I set the size of the array using the Content-Length header only if it is smaller than 256 (and I ignore negative
Content-Length headers, which are sent to generate an error, although this is largely habit.

...
byte[] buffer = new byte[Math.Min(content.Headers.ContentLength.Value, bufferSize)];
...

Tip ■ you don’t have to guard against negative Content-Length header values, which used to be a popular attack.
Basic validation is performed on the headers when the request is processed and requests with illegal headers are
rejected by asp.net.

The final rule you should follow is to read data asynchronously from the Stream to maximize the request
throughput of the web service. I used the Stream.ReadAsync method to read the request body.

...
string[] items = Encoding.Default.GetString(buffer, 0,
 await readStream.ReadAsync(buffer, 0, buffer.Length)).Split(',', '=');
...

I have used the await keyword for my read operation, and that is why I have added the async keyword to the
ReadFromStreamAsync method.

Creating the Model Object
Once I have the data from the request body, I can use it to create an instance of the Numbers class, which is handled by
this statement:

...
return new Numbers(
 GetValue<int>("First", items[0], formatterLogger),
 GetValue<int>("Second", items[1], formatterLogger)) {

 Op = new Operation {
 Add = GetValue<bool>("Add", items[2], formatterLogger),
 Double = GetValue<bool>("Double", items[3], formatterLogger)
 }
};
...

I have used the Numbers constructor that takes parameters, just to show that you can instantiate objects in any
way you need when writing a custom media type formatter. I get the values I require for the constructor parameters
and the Operation properties through a method called GetValue, which I defined to let me take advantage of C#
generic types so that I can easily convert string values to different types.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

400

...
private T GetValue<T>(string name, string value, IFormatterLogger logger) {
 T result = default(T);
 try {
 result = (T)System.Convert.ChangeType(value, typeof(T));
 } catch {
 logger.LogError(name, "Cannot Parse Value");
 }
 return result;
}
...

The caller specifies the type that is required using the generic type parameter T, and I use the System.Convert.
ChangeType method to perform the conversion. The important part of the GetValue method is the use of the
IFormatterLogger parameter object, which is used to record any problems processing the request data to create the
model object. The default implementation of the IFormatterLogger interface adds errors to the model state, which is
part of the model validation process I describe in Chapter 18. The IFormatterLogger interface defines the methods
I have listed in Table 17-5.

Table 17-5. The Methods Defined by the IFormatterLogger Interface

Method Description

LogError(property, message) Records an error for the specified property. The error is described by a
string message.

LogError(property, exception) Records an error for the specified property. The error is described by an
Exception.

In the listing, I note any problems parsing values, but I still return the default value for the required type. This will
make more sense once I describe the model validation process in Chapter 18.

Registering and Testing the Media Type Formatter
Having created the custom media type formatter (and explained how it works), I can tell Web API to start using it to
deserialize Numbers objects for requests that use my application/x.product format. Listing 17-7 shows the change I
made to the WebApiConfig.cs file to register the XNumbersFormatter class.

Listing 17-7. Registering a Media Type Formatter in the WebApiConfig.cs File

using System.Web.Http;
using System.Web.Http.ModelBinding;
using System.Web.Http.ModelBinding.Binders;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;
using ExampleApp.Models;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

401

 // ...routing statements omitted for brevity...

 config.Services.Add(typeof(ValueProviderFactory),
 new HeaderValueProviderFactory());

 config.Services.Insert(typeof(ModelBinderProvider), 0,
 new SimpleModelBinderProvider(typeof(Numbers), new NumbersBinder()));

 config.Formatters.Add(new XNumbersFormatter());
 }
 }
}

For variety, I am going to test the custom formatter with Postman. Set the URL to
http://localhost:29844/api/bindings/sumnumbers (replacing 29844 with your application’s port number), the
request type to POST, and the Content-Type header to application/x.product.

Click the Raw button to specify a request body that won’t be formatted by Postman and enter the following into
the text box:

100,150,true,false

Click the Send button, and Postman will send the request to the web service, which will return the following
result (the previous values specified that the web service should add 100 and 150 but not double the result):

250

Using the Built-in Media Type Formatters
The default behavior for a complex type parameter is to act as though the FromBody attribute has been applied. I
introduced the FromBody attribute in Chapter 14 when I showed you how to use it to force Web API to look in the
request body for a value that it would otherwise try to obtain it from the URL. Behind the scenes, the FromBody
attribute is used to select a media type formatter that can process the body of a request based on the MIME type. Web
API comes with four built-in media type formatters enabled by default, which I have listed in Table 17-6.

Table 17-6. The Built-in Media Type Formatters

MIME Types Media Type Formatter

application/json, text/json JsonMediaTypeFormatter

application/xml, text/json XmlMediaTypeFormatter

application/x-www-form-urlencoded FormUrlEncodedMediaTypeFormatter

application/x-www-form-urlencoded JQueryMvcFormUrlEncodedFormatter

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

402

Tip ■ there is an additional media type formatter for the Bson data format, which is disabled by default and which i
am not describing in this book because Bson isn’t widely used.

When a request arrives, the MIME type in the Content-Type header selects the media type formatter that can
handle that type. In the sections that follow, I explain how each formatter works and show you how to format the
client request data to target them. Table 17-7 puts binding complex types with the built-in media type formatters
in context.

Table 17-7. Putting Binding Complex Types with the Built-in Media Type Formatters in Context

Question Answer

What are they? The built-in formatters support the three most commonly used data formats
for a web service. They are used by default but can be supplemented or
replaced by custom media type formatters.

When should you use them? The built-in media type formatters are used by default and are suitable
for dealing with requests that lead to the instantiation of classes with
parameterless constructors and settable properties.

What do you need to know? It is usually a simple matter to create a custom media type formatter that deals
with inconsistent or incorrectly formatted data sent by a client—or to deal with
classes that must be instantiated carefully.

Handling URL-Encoded Data
If you use jQuery to write your application client, then you will usually end up dealing with form-encoded data
because it is the default format that jQuery uses when sending an Ajax request. As Table 17-7 shows, two media type
formatters can handle the application/x-www-form-urlencoded MIME type: FormUrlEncodedMediaTypeFormatter
and JQueryMvcFormUrlEncodedFormatter. I explain the relationship between them and how each of them works in
the sections that follow.

SeLeCtING Other Data FOrMatS

i have covered the media type formatter that deals with Url-encoded data first because it is the format that you
are most likely to encounter as an mVC framework developer and you are in a position to write your own web
service clients. it is the default encoding used by jQuery, and it is well-understood and supported.

the other data formats are important if you need to support clients that you have not written yourself or that are
not browser-based. Just about every web-connected platform can create and process Json or xml data, and by
supporting these formats, you broaden the kinds of clients that can consume your web service.

i recommend making a deliberate decision about the data formats you support. each additional format requires
testing and maintenance and adds to the burden of building and running the web service. i recommend starting
with Url-encoded and Json data and enabling xml only if you can’t deliver your web service without it. see
Chapter 13 for details of how to disable media type formatters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

403

Handling URL-Encoded Requests
The FormUrlEncodedMediaTypeFormatter class can bind only to an instance of the FormDataCollection class, which
is defined in the System.Net.Http.Formatting namespace and which presents form-encoded data as a collection of
name-value pairs.

The real value of the FormUrlEncodedMediaTypeFormatter class is that it provides a foundation for creating
formatters that handle more useful types, such as the JQueryMvcFormUrlEncodedFormatter class that I describe in the
next section.

I need to change the data format for the Ajax request that jQuery makes in order to target the
FormUrlEncodedMediaTypeFormatter class, as shown in Listing 17-8.

Listing 17-8. Changing the Request Format in the bindings.js File

var viewModel = ko.observable({
 first: 2, second: 5, add: true, double: true
});
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "POST",
 data: viewModel(),
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

The changes to the client-side code are minor because jQuery sends URL-encoded data by default. Listing 17-9
shows the change I made to the action method to receive that data using a FormDataCollection object.

Listing 17-9. Receiving Request Data in the BindingsController.cs File

using System.Web.Http;
using System.Web.Http.ModelBinding;
using ExampleApp.Models;
using ExampleApp.Infrastructure;
using System.Net.Http.Formatting;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

404

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public IHttpActionResult SumNumbers(FormDataCollection numbers) {

 int first, second;
 bool add, doubleVal;

 if (int.TryParse(numbers["first"], out first)
 && int.TryParse(numbers["second"], out second)
 && bool.TryParse(numbers["add"], out add)
 && bool.TryParse(numbers["double"], out doubleVal)) {

 int result = add ? first + second : first - second;
 return Ok(string.Format("{0}", doubleVal ? result * 2 : result));

 } else {
 return BadRequest();
 }
 }
 }
}

I have to take responsibility for converting the form data values into the types I require to do the work in the
action method, which in this case means using the int.TryParse and bool.TryParse methods to convert form data
values (which are expressed as string values) to int and bool types. If I receive all of the data values I need—and I
can convert them to the types I need—then I perform the calculation and return the result using the Ok method, which
I introduced in Chapter 11. If I don’t get the values I need, then I use the BadRequest method to send the client a 400
(Bad Request) response.

Note ■ you won’t often rely on the FormUrlEncodedMediaTypeFormatter class directly because the other built-in
media type formatters can bind to .net classes, but i have included the details for completeness and because i use this
formatter when showing you how to customize the binding process.

Creating Complex Types from URL-Encoded Requests
The JQueryMvcFormUrlEncodedFormatter class is derived from FormUrlEncodedMediaTypeFormatter and adds support
for binding values to complex types, which is a lot more useful than working with the FormDataCollection class.

Behind the scenes, the JQueryMvcFormUrlEncodedFormatter class uses extension methods defined in the
System.Web.Http.ModelBinding.FormDataCollectionExtensions class to create objects using the model binding
feature that I described in Chapter 16. Unfortunately, the FormDataCollectionExtensions extension methods are
written to use only the built-in media formatters and value providers, preventing the use of custom classes and
limiting the range of types that can be bound from application/x-www-form-urlencoded data to classes with
parameterless constructors and settable properties, arrays, lists, and key-value pairs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

405

Tip ■ the name of the JQueryMvcFormUrlEncodedFormatter class reflects the fact that the property names are
 converted from the jQuery default to that used by the mVC framework.

Using model binders also means that the data sent by the client needs to be structured with prefixes in order to
be properly processed. Listing 17-10 shows the changes I made to the view model in the bindings.js file.

Listing 17-10. Adding Prefixes to the View Model in the bindings.js File

...
var viewModel = ko.observable({
 first: 2, second: 5,
 "op.add": true, "op.double": true
});
...

If I had not prefixed add and double with op, then the media type formatter would not have assigned values to the
Op and Add properties of the Numbers object it creates. Listing 17-11 shows the changes I made to the action method in
the Bindings controller to use the JQueryMvcFormUrlEncodedFormatter formatter.

Listing 17-11. Changing the Action Method Parameter in the BindingsController.cs File

using System.Web.Http;
using System.Web.Http.ModelBinding;
using ExampleApp.Models;
using ExampleApp.Infrastructure;
using System.Net.Http.Formatting;

namespace ExampleApp.Controllers {
 public class BindingsController : ApiController {
 private IRepository repo;

 public BindingsController(IRepository repoArg) {
 repo = repoArg;
 }

 [HttpGet]
 [HttpPost]
 public int SumNumbers(Numbers numbers) {
 var result = numbers.Op.Add ? numbers.First + numbers.Second
 : numbers.First - numbers.Second;
 return numbers.Op.Double ? result * 2 : result;
 }
 }
}

It is this change—specifying a parameter that is a complex type but not the FormDataCollection
class—that causes Web API to select the JQueryMvcFormUrlEncodedFormatter class instead of the
FormUrlEncodedMediaTypeFormatter class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

406

Tip ■ you might be wondering how the JQueryMvcFormUrlEncodedFormatter class is able to use the model binding
system when the built-in value providers read values from the Url. the answer is that the NameValuePairsValueProvider
class is used behind the scenes. this class takes an arbitrary set of key-value pairs and presents them through the
IValueProvider interface. the NameValuePairsValueProvider class is the superclass of the QueryStringValueProvider
and RouteDataValueProvider classes, which get their key-value pairs from the query string and routing data, respectively.
the JQueryMvcFormUrlEncodedFormatter works directly with the NameValuePairsValueProvider class and gets its
key-value pairs from the FormUrlEncodedMediaTypeFormatter class, which decodes the Url-encoded request body.

Instantiating Difficult Types Using URL-Encoded Data
Although the JQueryMvcFormUrlEncodedFormatter doesn’t allow the use of custom model binders, I can use the
FormUrlEncodedMediaTypeFormatter class to create a custom media type formatter that does—and that means I can
instantiate classes that require special handling, such as those with constructor parameters. Listing 17-12 shows the
contents of a class file called UrlNumbersFormatter.cs that I added to the Infrastructure folder and used to create a
media type formatter that can instantiate the Numbers class using the constructor with parameters.

Listing 17-12. The Contents of the UrlNumbersFormatter.cs File

using System;
using System.Globalization;
using System.IO;
using System.Net.Http;
using System.Net.Http.Formatting;
using System.Threading.Tasks;
using System.Web.Http;
using System.Web.Http.Controllers;
using System.Web.Http.Metadata;
using System.Web.Http.ModelBinding;
using System.Web.Http.ValueProviders.Providers;
using ExampleApp.Models;

namespace ExampleApp.Infrastructure {
 public class UrlNumbersFormatter : FormUrlEncodedMediaTypeFormatter {

 public override bool CanWriteType(Type type) {
 return false;
 }

 public override bool CanReadType(Type type) {
 return type == typeof(Numbers);
 }

 public override async Task<object> ReadFromStreamAsync(Type type,
 Stream readStream, HttpContent content, IFormatterLogger formatterLogger) {

 FormDataCollection fd = (FormDataCollection)
 await base.ReadFromStreamAsync(typeof(FormDataCollection),
 readStream, content, formatterLogger);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

407

 HttpActionContext actionContext = new HttpActionContext { };

 ModelMetadata md = GlobalConfiguration.Configuration
 .Services.GetModelMetadataProvider().GetMetadataForType(null, type);

 ModelBindingContext bindingContext = new ModelBindingContext {
 ModelMetadata = md,
 ValueProvider = new NameValuePairsValueProvider(fd,
 CultureInfo.InvariantCulture)
 };

 if (new NumbersBinder().BindModel(actionContext, bindingContext)) {
 return bindingContext.Model;
 }
 return null;
 }
 }
}

The ReadFromStreamAsync method calls the base implementation to create a FormDataCollection object, which
I then pass to an instance of the NameValuePairsValueProvider class. The NameValuePairsValueProvider class
implements the IValueProvider interface and allows me to take values from the body and feed them into the custom
model binder I created in Chapter 16.

Many of the rest of the statements in the ReadFromStreamAsync method prepare the context objects that I need
in order to use the model binder. I need HttpActionContext and ModelBindingContext objects to call the BindModel
method of an IModelBinder implementation, but I need to provide only the context that the binder relies on. For
my NumbersBinder class, that means I can instantiate an HttpActionContext object without needing to set any
properties. For the ModelBindingContext, I assign the NameValuePairsValueProvider object to the ValueProvider
property. I also have to set the ModelMetadata property because it is checked by the ModelBindingContext class when
the Model property is set by the model binder class. I describe the ModelMetadata class in Chapter 18, but for the
moment it is enough to know that I get the ModelMetadata instance from the services collection.

Once I have creating the context objects, I can instantiate the model binder class and call the BindModel method.
The BindModel method returns true when it is able to bind an object, and when I get that result, I return the value of
the BindingContext.Model property.

The reason that the built-in JQueryMvcFormUrlEncodedFormatter media type formatter doesn’t allow custom
binders and value providers is because the problems that feeding data from the body to model binders can cause. For
my custom model binder, there are two problems that I need to resolve, and you can see the changes that I made to
the NumbersBinder class in Listing 17-13.

Listing 17-13. Adapting a Model Binder in the NumbersBinder.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.Http.Controllers;
using System.Web.Http.ModelBinding;
using System.Web.Http.ValueProviders;
using ExampleApp.Models;

namespace ExampleApp.Infrastructure {

 public class NumbersBinder : IModelBinder {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

408

 public bool BindModel(HttpActionContext actionContext,
 ModelBindingContext bindingContext) {

 string modelName = bindingContext.ModelName;

 Dictionary<string, ValueProviderResult> data
 = new Dictionary<string, ValueProviderResult>();

 data.Add("first", GetValue(bindingContext, modelName, "first"));
 data.Add("second", GetValue(bindingContext, modelName, "second"));
 data.Add("add", GetValue(bindingContext, modelName, "op", "add"));
 data.Add("double", GetValue(bindingContext, modelName, "op", "double"));
 data.Add("accept", GetValue(bindingContext, modelName, "accept"));

 if (data.All(x => x.Key == "accept" || x.Value != null)) {
 bindingContext.Model = CreateInstance(data);
 return true;
 }
 return false;
 }

 private ValueProviderResult GetValue(ModelBindingContext context,
 params string[] names) {

 for (int i = 0; i < names.Length - 1; i++) {
 string prefix = string.Join(".",
 names.Skip(i).Take(names.Length - (i + 1)));
 if (prefix != string.Empty &&
 context.ValueProvider.ContainsPrefix(prefix)) {
 return context.ValueProvider.GetValue(prefix + "." + names.Last());
 }
 }
 return context.ValueProvider.GetValue(names.Last());
 }

 private Numbers CreateInstance(Dictionary<string, ValueProviderResult> data) {
 // ...statements omitted for brevity...
 }

 private T Convert<T>(ValueProviderResult result) {
 // ...statements omitted for brevity...
 }
 }
}

I need to fix two problems. The first is in the BindModel method, when I check to see whether I have been able
to obtain values for all the properties and constructor parameters I need to set. The Numbers class defines the Accept
property, which I have been setting using data from the request header. Media type formatters don’t have access to
the request, and there is no global property that provides access to it, unlike in the MVC framework. To get the model
binder working with the media type formatter, I have to relax the check that I perform to exclude the value for the
Accept value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

409

...
if (data.All(x => x.Key == "accept" || x.Value != null)) {
 bindingContext.Model = CreateInstance(data);
 return true;
}
...

The second problem is that binders use the parameter name, which is available through the
ModelBindingContext.ModelName property. Media type formatters don’t have access to details about which
parameter they are being used to bind and can’t provide the model binder with the name. To make my custom model
binder work in this situation, I have added support for working with an empty string as the model name, which is the
value that the binder is presented with from the ModelBindingContext that I created in the UrlNumbersFormatter
class.
...
if (prefix != string.Empty && context.ValueProvider.ContainsPrefix(prefix)) {
...

Now that the model binder can be used by the media type formatter, all that remains is to register the
UrlNumbersFormatter class with Web API, as shown in Listing 17-14.

Listing 17-14. Registering a Media Type Formatter in the WebApiConfig.cs File

using System.Web.Http;
using System.Web.Http.ModelBinding;
using System.Web.Http.ModelBinding.Binders;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;
using ExampleApp.Models;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 // ...routing statements omitted for brevity...

 config.Services.Add(typeof(ValueProviderFactory),
 new HeaderValueProviderFactory());

 config.Services.Insert(typeof(ModelBinderProvider), 0,
 new SimpleModelBinderProvider(typeof(Numbers), new NumbersBinder()));

 config.Formatters.Add(new XNumbersFormatter());
 config.Formatters.Insert(0, new UrlNumbersFormatter());
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

410

Notice that I have used the Insert method to register the UrlNumbersFormatter class. Media type formatters
are queried in the order in which they are placed in the HttpConfiguration.Formatters collection, and this means
I must ensure that my custom formatter appears before the JQueryMvcFormUrlEncodedFormatter class if I want it to
deserialize the request data.

Simplifying the Custom Media Type Formatter
The media type formatter that I created in the previous section demonstrated how you can use model binders, which
is helpful if you have already invested time and effort in the code that can instantiate difficult classes. If you don’t have
a model binder that you want to use, then you can read the data values directly from the FormDataCollection object.
Listing 17-15 shows how I simplified the UrlNumbersFormatter class so that it gets the data values and instantiates the
Numbers class directly.

Listing 17-15. Simplifying the Media Type Formatter in the UrlNumbersFormatter.cs File

using System;
using System.IO;
using System.Net.Http;
using System.Net.Http.Formatting;
using System.Threading.Tasks;
using ExampleApp.Models;

namespace ExampleApp.Infrastructure {
 public class UrlNumbersFormatter : FormUrlEncodedMediaTypeFormatter {

 public override bool CanWriteType(Type type) {
 return false;
 }

 public override bool CanReadType(Type type) {
 return type == typeof(Numbers);
 }

 public override async Task<object> ReadFromStreamAsync(Type type,
 Stream readStream, HttpContent content, IFormatterLogger formatterLogger) {

 FormDataCollection fd = (FormDataCollection)
 await base.ReadFromStreamAsync(typeof(FormDataCollection),
 readStream, content, formatterLogger);

 return new Numbers(
 GetValue<int>("First", fd, formatterLogger),
 GetValue<int>("Second", fd, formatterLogger)) {
 Op = new Operation {
 Add = GetValue<bool>("Add", fd, formatterLogger),
 Double = GetValue<bool>("Double", fd, formatterLogger)
 }
 };
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

411

 private T GetValue<T>(string name, FormDataCollection fd,
 IFormatterLogger logger) {
 T result = default(T);
 try {
 result = (T)System.Convert.ChangeType(fd[name], typeof(T));
 } catch {
 logger.LogError(name, "Cannot Parse Value");
 }
 return result;
 }

 }
}

This class uses the same techniques I employed in the “Creating a Custom Media Type Formatter” section, except
that I use the base class to read and parse the data from the request body.

Handling JSON Requests
The JsonMediaTypeFormatter class is responsible for deserializing content in requests that are encoded with
application/json or text/json MIME types (which are equivalent—both MIME types are JSON). It relies on the
excellent Json.Net package to handle the JSON data. One of the reasons that I like the Json.Net package so much is
that I have found it will decode even the sloppiest JSON data, which makes it well-suited for web services that have to
deal with a wide range of clients, including those written by third parties with a less than complete understanding of
the JSON format. Listing 17-16 shows how I have changed the Ajax request sent by jQuery so that the data is encoded
via JSON.

Listing 17-16. Changing the jQuery Request Encoding to JSON in the bindings.js File

var viewModel = ko.observable({
 first: 2, second: 5, op: { add: true, double: true }
});
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "POST",
 data: JSON.stringify(viewModel()),
 contentType: "application/json",
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

412

$(document).ready(function () {
 ko.applyBindings();
});

I have altered the structure of the view model so that there is an op property that is set to an object with add and
double properties. I have also used the contentType property to specify that the request contains JSON data and used
the JSON.stringify method to serialize the view model object into a JSON string like this:

{"first":2,"second":5,"op":{"add":true,"double":true}}

Notice how closely the JSON representation matches the definition of the view model in the JavaScript code. The
JsonMediaTypeFormatter class will be matched to the request based on the MIME type and will create an instance of
the Numbers class.

UNDerStaNDING the JSON.StrINGIFY MethOD

the JSON.stringify method takes an object and serializes it into the Json format. the Json object that defines
the stringify method—and its counterpart, JSON.parse—isn’t part of jQuery. instead, it is provided by the
browser as part of a set of global Javascript objects that provide commonly used functionality.

all modern browsers have a built-in implementation of JSON.stringify, but if you find yourself having to support
older browsers, then you can get an implementation from https://github.com/douglascrockford/JSON-js
that you can include in your application. the file is small, especially if you use the minified version. you can see
which browsers have built-in support for JSON.stringify at http://caniuse.com/json.

Creating Complex Types
The Json.Net package that JsonMediaTypeFormatter relies on can instantiate classes with parameterless constructors
and settable properties, in just the same way as the media type handler for URL-encoded data.

Json.Net provides many options for customizing the instantiation process based on the JSON data, including
attributes that can be applied to the model class to help instantiation. You can get full details of both approaches—
and the rest of the Json.Net features—at http://james.newtonking.com.

In this section, I am going to demonstrate how to use a different Json.Net feature: LINQ to JSON. I like working
with LINQ and find it endlessly useful for wrangling different formats into usable data. Listing 17-17 shows the
contents of the JsonNumbersFormatter.cs file that I added to the Infrastructure folder.

Listing 17-17. The Contents of the JsonNumbersFormatter.cs File

using System;
using System.Collections.Generic;
using System.IO;
using System.Net.Http;
using System.Net.Http.Formatting;
using System.Net.Http.Headers;
using System.Text;
using System.Threading.Tasks;
using ExampleApp.Models;
using Newtonsoft.Json.Linq;

www.it-ebooks.info

https://github.com/douglascrockford/JSON-js
http://caniuse.com/json
http://james.newtonking.com
http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

413

namespace ExampleApp.Infrastructure {
 public class JsonNumbersFormatter : MediaTypeFormatter {
 long bufferSize = 256;

 public JsonNumbersFormatter() {
 SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/json"));
 SupportedMediaTypes.Add(new MediaTypeHeaderValue("text/json"));
 }

 public override bool CanWriteType(Type type) {
 return false;
 }

 public override bool CanReadType(Type type) {
 return type == typeof(Numbers);
 }

 public async override Task<object> ReadFromStreamAsync(Type type,
 Stream readStream, HttpContent content, IFormatterLogger formatterLogger) {

 byte[] buffer = new byte[Math.Min(content.Headers.ContentLength.Value,
 bufferSize)];
 string jsonString = Encoding.Default.GetString(buffer, 0,
 await readStream.ReadAsync(buffer, 0, buffer.Length));

 JObject jData = JObject.Parse(jsonString);
 return new Numbers((int)jData["first"], (int)jData["second"]) {
 Op = new Operation {
 Add = (bool)jData["op"]["add"],
 Double = (bool)jData["op"]["double"]
 }
 };
 }
 }
}

I access the LINQ to JSON feature through this statement:

...
JObject jData = JObject.Parse(jsonString);
...

The result is an implementation of the IEnumerable<KeyValuePair<string, JToken>>, where the JToken class
describes one property from the JSON string I read from the request body. You can use the standard LINQ query
syntax or extension methods to process the JSON data, which is useful if you are processing an array of data.

It is more helpful to be able to access all of the JSON properties when instantiating a single object, and JSON
to LINQ helpfully presents the data values through array-style indexers. In the listing, I used the indexers to get the
four data values I require to create an instance of the Numbers class. Listing 17-18 shows the statement I added to the
WebApiConfig.cs file to register the media type formatter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

414

Listing 17-18. Registering a Media Type Formatter in the WebApiConfig.cs File

using System.Web.Http;
using System.Web.Http.ModelBinding;
using System.Web.Http.ModelBinding.Binders;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;
using ExampleApp.Models;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 // ...routing statements omitted for brevity...

 config.Services.Add(typeof(ValueProviderFactory),
 new HeaderValueProviderFactory());

 config.Services.Insert(typeof(ModelBinderProvider), 0,
 new SimpleModelBinderProvider(typeof(Numbers), new NumbersBinder()));

 config.Formatters.Add(new XNumbersFormatter());
 config.Formatters.Insert(0, new UrlNumbersFormatter());
 config.Formatters.Insert(0, new JsonNumbersFormatter());
 }
 }
}

Handling XML Requests
Dealing with XML data can be tricky because there are so many ways in which the same data can be expressed. If you
have control over the clients that will consume your web service, then you should use one of the other data formats I
described in this chapter. The most common need to support XML arises in a web service that has to support legacy
clients, under which circumstances you will have to adapt to process whatever format—or formats—you are sent.
Using the built-in XML media type serializer involves carefully formatting the data sent by the client and preparing the
model class for use by the web service.

jQuery doesn’t have built-in support for generating XML data from a JavaScript object, but in Listing 17-19 you
can see how I have manually formatted the data I will process in the web service.

Listing 17-19. Using jQuery to Send XML Data in the bindings.js File

var viewModel = ko.observable({
 first: 2, second: 5, op: { add: true, double: true }
});
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/bindings/sumnumbers", {
 type: "POST",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

415

 data: "<Numbers>"
 + "<First>" + viewModel().first + "</First>"
 + "<Op>"
 + "<Add>" + viewModel().op.add + "</Add>"
 + "<Double>" + viewModel().op.double + "</Double>"
 + "</Op>"
 + "<Second>" + viewModel().second + "</Second>"
 + "</Numbers>",
 contentType: "application/xml",
 success: function (data) {
 gotError(false);
 response("Total: " + data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

Note ■ this code is messy because jQuery lacks built-in support for xml. Clients that send xml will generally have a
better mechanism for creating the data they will send to the web service.

The result of the changes in Listing 17-19 is that the body of the HTTP request will contain the following XML
fragment:

<Numbers>
 <First>2</First>
 <Op>
 <Add>true</Add>
 <Double>true</Double>
 </Op>
 <Second>5</Second>
</Numbers>

I find using the built-in media type formatter to be awkward because there are some important constraints on
the way that XML data has to be structured. These can be worked around by changing the way the model class is
configured—which I explain shortly—but these changes just create a different rigid data structure.

The first constraint is that the name and capitalization of each attribute name much exactly match the class
or property name that it corresponds to. That means the top-level element must be Numbers, for example, and not
numbers, and certainly not something like myNumbersXML.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

416

The second constraint—and the one that I find the most problematic—is that the attributes must be organized
in alphabetical order. This is the reason the Second attribute follows the Op attribute—because, of course, the letter O
appears before S in the alphabet. I explain how to change the order of the attributes shortly, but it is possible only to
create a different enforced order and not to create a more flexible approach (for that you need a custom media type
formatter such as the one I describe in the next section).

The XML serializer that the built-in media type formatter uses will instantiate only the objects that have been
annotated with the DataContract attribute and will set only the properties that have been decorated with the
DataMember attribute. Both attributes are defined in the System.Runtime.Serialization namespace, and you can see
how I have applied them to the Numbers and Operation classes in Listing 17-20.

Listing 17-20. Applying the Data Contract Attributes in the BindingModels.cs File

using System.Runtime.Serialization;

namespace ExampleApp.Models {

 [DataContract(Namespace="")]
 public class Numbers {

 public Numbers() { /* do nothing */ }

 public Numbers(int first, int second) {
 First = first; Second = second;
 }

 [DataMember]
 public int First { get; set; }
 [DataMember]
 public int Second { get; set; }
 [DataMember]
 public Operation Op { get; set; }
 public string Accept { get; set; }
 }

 [DataContract(Namespace="")]
 public class Operation {
 [DataMember]
 public bool Add { get; set; }
 [DataMember]
 public bool Double { get; set; }
 }
}

I have set the Namespace property of the DataContract attributes to the empty string ("") so that the serializer
won’t expect an xmlns attribute on the top-level element of the data that is received from the client.

The DataContract and DataMember attributes are defined in an assembly that is not added to Web API projects by
default. Select Add Reference from the Visual Studio Project menu, click the Framework section, and locate and check
the option for the System.Runtime.Serialization assembly, as shown in Figure 17-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

417

The DataMember attribute defines properties that can be used to change the way that the XML data is processed,
as described in Table 17-8. The problem with these properties, however, is that they just create a different kind of rigid
data structure that the client has to adhere to, and the media type formatter won’t deserialize the request if there is a
mismatch between the data from the client and the format implied by the attributes.

Figure 17-2. Adding the System.Runtime.Serialization assembly

Table 17-8. The Properties Defined by the DataMember Attribute

Name Description

IsRequired When true, the serializer will not deserialize the data if it does not contain a value for the
property to which the attribute has been applied. Missing data feeds an error into the model
state, which is used for validation. I describe model state and validation in Chapter 18. The
default value is false.

Name Set the name of the XML element from which the value for the property will be read. The
default behavior is to use the name of the property.

Order When set, this specifies the position of the element in the XML data that will be used to read a
value for the property. This overrides the alphabetic order that is the default behavior.

Creating Complex Types from XML Data
When trying to instantiate classes using XML, I avoid treating the elements and attributes as a document with
namespaces and schemas. Instead, I use LINQ to mine the XML data for key-value pairs. This approach has its
limitations—not least that it incurs the overhead of XML without getting any of the benefits that structured data
offers—but in most web services the use of XML is a legacy holdover, and the task at hand is to support XML clients
with the minimum of effort. To that end, I created a class file called XmlNumbersFormatter.cs in the Infrastructure
folder and used it to create the media type formatter shown in Listing 17-21.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

418

Listing 17-21. The Contents of the XmlNumbersFormatter.cs File

using System;
using System.Collections.Generic;
using System.IO;
using System.Net.Http;
using System.Net.Http.Formatting;
using System.Net.Http.Headers;
using System.Text;
using System.Threading.Tasks;
using System.Xml.Linq;
using ExampleApp.Models;

namespace ExampleApp.Infrastructure {
 public class XmlNumbersFormatter : MediaTypeFormatter {
 long bufferSize = 256;

 public XmlNumbersFormatter() {
 SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/xml"));
 SupportedMediaTypes.Add(new MediaTypeHeaderValue("text/xml"));
 }

 public override bool CanWriteType(Type type) {
 return false;
 }

 public override bool CanReadType(Type type) {
 return type == typeof(Numbers);
 }

 public async override Task<object> ReadFromStreamAsync(Type type,
 Stream readStream, HttpContent content, IFormatterLogger formatterLogger) {

 byte[] buffer = new byte[Math.Min(content.Headers.ContentLength.Value,
 bufferSize)];
 XElement xmlData = XElement.Parse(Encoding.Default.GetString(buffer, 0,
 await readStream.ReadAsync(buffer, 0, buffer.Length)));

 Dictionary<string, string> items = new Dictionary<string, string>();
 GetKvps(xmlData, items);

 if (items.Count == 4) {
 return new Numbers(
 GetValue<int>(items["first"], formatterLogger),
 GetValue<int>(items["second"], formatterLogger)) {
 Op = new Operation {
 Add = GetValue<bool>(items["add"], formatterLogger),
 Double = GetValue<bool>(items["double"], formatterLogger)
 }
 };
 } else {
 formatterLogger.LogError("", "Wrong Number of Items");
 return null;
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

419

 private void GetKvps(XElement elem, Dictionary<string, string> dict) {
 if (elem.HasElements) {
 foreach (XElement innerElem in elem.Elements()) {
 GetKvps(innerElem, dict);
 }
 } else {
 dict.Add(elem.Name.LocalName.ToLower(), elem.Value);
 }
 }

 private T GetValue<T>(string value, IFormatterLogger logger) {
 T result = default(T);
 try {
 result = (T)System.Convert.ChangeType(value, typeof(T));
 } catch {
 logger.LogError("", "Cannot Parse Value");
 }
 return result;
 }
 }
}

You will recognize some of the code and techniques from earlier custom media type formatters in this chapter.
In this case, I read the body of the request and use the XElement.Parse method to enter the world of XML to LINQ. I
enumerate the XML elements and create a dictionary of key-value pairs, which I then use to instantiate the Numbers
class (using the constructor that defines parameters) and set its properties. This is less elegant than treating the XML
data as a stream that is handled only once, but it has the benefit of not enforcing a rigid order in which the XML
elements must appear. Listing 17-22 shows how I registered the media type formatter in the WebApiConfig.cs file.

Listing 17-22. Registering the Custom Media Type Formatter in the WebApiConfig.cs File

using System.IO;
using System.Text;
using System.Web.Http;
using System.Web.Http.ModelBinding;
using System.Web.Http.ModelBinding.Binders;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;
using ExampleApp.Models;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 // ...routing statements omitted for brevity...

 config.Services.Add(typeof(ValueProviderFactory),
 new HeaderValueProviderFactory());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

420

 config.Services.Insert(typeof(ModelBinderProvider), 0,
 new SimpleModelBinderProvider(typeof(Numbers), new NumbersBinder()));

 config.Formatters.Add(new XNumbersFormatter());
 config.Formatters.Insert(0, new UrlNumbersFormatter());
 config.Formatters.Insert(0, new JsonNumbersFormatter());
 config.Formatters.Insert(0, new XmlNumbersFormatter());
 }
 }
}

I have used the Insert method once again because I need to ensure that Web API uses my custom media type
formatter before the built-in ones.

Customizing the Model Binding Process
Web API delegates the entire process of binding values for parameters to an implementation of the
IActionValueBinder interface, which is defined in the System.Web.Http.Controllers namespace. Listing 17-23
shows the definition of the interface.

Listing 17-23. The IActionValueBinder Interface

namespace System.Web.Http.Controllers {
 public interface IActionValueBinder {
 HttpActionBinding GetBinding(HttpActionDescriptor actionDescriptor);
 }
}

The interface defines a GetBinding method. The important thing to note about the IActionValueBinder
interface is that the GetBinding method operates on action methods and is being asked to find bindings for all of the
parameters defined by an action—not just a single parameter.

You can see this in the classes that the IActionValueBinder interface uses. The GetBinding method is passed
an instance of the HttpActionDescriptor class, which I introduced in Chapter 9 and where I listed the four most
important members, which I have repeated in Table 17-9. There are other members, but they are not useful for the
purposes of parameter bindings.

Table 17-9. Selected Members Defined by the HttpActionDescriptor Class

Name Description

ActionName Returns the name of the action method

ReturnType Returns the Type that the action method returns

SupportedHttpMethods Returns a collection of HttpMethod objects that represent the HTTP verbs that can be
used to target the action method

GetParameters() Returns a collection of HttpParameterDescription objects that represent the action
method parameters

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

421

The HttpActionBinding class, which is returned by the GetBinding method, is a wrapper around the
HttpActionDescriptor and an array of HttpParameterBinding objects that are used to get values for the parameters
defined by an action method. The HttpActionBinding class defines a constructor with the following signature:

...
public HttpActionBinding(HttpActionDescriptor actionDescriptor,
 HttpParameterBinding[] bindings) {
...

The members defined by the HttpActionBinding class are not important in this chapter—it is enough to
know that the purpose of an implementation of the IActionValueBinder interface is to be able to create an
HttpActionBinding object using this constructor. In the sections that follow, I’ll show you how to change the behavior
of the default IActionValueBinder implementation and how to create a custom one. Table 17-10 puts changing the
action value binder in context.

Table 17-10. Putting Changing the Action Value Binder in Context

Question Answer

What is it? A custom action value binder allows you to change the way that Web API locates
values for action method parameters.

When should you use it? Use this feature with caution because it takes a lot of effort to create a complete
binding system and a lot of testing to make sure it works.

What do you need to know? You can override the GetParameterBinding method of the
DefaultActionValueBinder class if you want to change the default behavior but
still take advantage of features such as value providers, model binders, and media
type formatters.

Changing the Behavior of the Default Action Value Binder
All of the functionality that I have described since Chapter 14—value providers, model binders, and media type
formatters—is provided by the DefaultActionValueBinder class, which is the Web API default implementation of the
IActionValueBinder interface.

There are no configuration options for changing the behavior of the DefaultActionValueBinder class, but it
is possible to create a subclass and override the method that defines the default policy for how values are sought
for parameters. As a reminder, here is the default sequence that yields an HttpParameterBinding object for a
single parameter:

 1. If the parameter has been decorated with a subclass of the ParameterBindingAttribute,
then call the attribute’s GetBinding method.

 2. Try to obtain an HttpParameterBinding object from the parameter binding rules
collection.

 3. For simple types, proceed as though the FromUri attribute has been applied to the
parameter.

 4. For complex types, proceed as though the FromBody attribute has been applied to the
parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

422

This sequence is implemented in the GetParameterBinding method of the DefaultActionValueBinder class. To
demonstrate how to change the sequence, I created a file called CustomActionValueBinder.cs in the Infrastructure
folder and used it to define the class shown in Listing 17-24.

Listing 17-24. The Contents of the CustomActionValueBinder.cs File

using System.Web.Http;
using System.Web.Http.Controllers;
using System.Web.Http.ModelBinding;

namespace ExampleApp.Infrastructure {
 public class CustomActionValueBinder : DefaultActionValueBinder {

 protected override HttpParameterBinding GetParameterBinding(
 HttpParameterDescriptor parameter) {

 if (parameter.ParameterBinderAttribute != null) {
 return parameter.ParameterBinderAttribute.GetBinding(parameter);
 }

 HttpParameterBinding binding =
 parameter.Configuration.ParameterBindingRules.LookupBinding(parameter);
 if (binding != null) {
 return binding;
 }

 if (parameter.ParameterType.IsPrimitive
 || parameter.ParameterType == typeof(string)) {
 return parameter.BindWithAttribute(new ModelBinderAttribute());
 }

 return new FromBodyAttribute().GetBinding(parameter);
 }

 }
}

Note ■ although the IActionValueBinder interface deals with an entire action method in one go, the GetParameterBinding
method in the DefaultActionValueBinder class deals with one parameter at a time. the DefaultActionValueBinder
implementation of the GetBinding method calls the GetParameterBinding method for each parameter defined by the action
method described by the HttpActionDescriptor class.

This class follows the same sequence of the DefaultActionValueBinder class but with one important difference:
for simple types, I act as though the ModelBinder attribute has been applied, rather than the FromUri attribute. The
FromUri attribute excludes any value provider factory class that does not implement the IUriValueProviderFactory
interface. By using the ModelBinder attribute—which I described in Chapter 15—I allow all value provider factories to
participate in the binding process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

423

Tip ■ there is a second difference between CustomActionValueBinder and DefaultActionValueBinder: i check
only for primitive types and strings, rather than the full set of simple types. if you override the GetParameterBinding
method in a real project, take care to consider how you draw the line between types you will obtain from the Url and
those you will obtain from the body.

Listing 17-25 shows how I registered the CustomActionValueBinder class as the implementation of the
IActionValueBinder interface that Web API should use.

Listing 17-25. Registering an Action Value Binder in the WebApiConfig.cs File

using System.IO;
using System.Text;
using System.Web.Http;
using System.Web.Http.ModelBinding;
using System.Web.Http.ModelBinding.Binders;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;
using ExampleApp.Models;
using System.Web.Http.Controllers;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 // ...routing statements omitted for brevity...

 config.Services.Add(typeof(ValueProviderFactory),
 new HeaderValueProviderFactory());

 config.Services.Insert(typeof(ModelBinderProvider), 0,
 new SimpleModelBinderProvider(typeof(Numbers), new NumbersBinder()));

 config.Formatters.Add(new XNumbersFormatter());
 config.Formatters.Insert(0, new UrlNumbersFormatter());
 config.Formatters.Insert(0, new JsonNumbersFormatter());
 config.Formatters.Insert(0, new XmlNumbersFormatter());

 config.Services.Replace(typeof(IActionValueBinder),
 new CustomActionValueBinder());
 }
 }
}

I used the HttpConfiguration.Services.Replace method to replace the DefaultActionValueBinder with a
CustomActionValueBinder object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

424

Creating a Custom Action Value Binder
You can completely replace the process used to bind parameter values by directly implementing the
IActionValueBinder interface. There is little reason to do this because there is a lot of flexibility in how the
DefaultActionValueBinder can be used. But, if you have a compelling need to completely change the way
that binding works, then this is the technique to use. As a demonstration, Listing 17-26 shows how I updated
the CustomActionValueBinder class to implement the IActionValueBinder interface, rather than derive from
DefaultActionValueBinder.

Listing 17-26. Implementing the IActionValueBinder Interface in the CustomActionValueBinder.cs File

using System.Web.Http;
using System.Web.Http.Controllers;
using System.Web.Http.ModelBinding;
using System.Linq;

namespace ExampleApp.Infrastructure {
 public class CustomActionValueBinder : IActionValueBinder {

 public HttpActionBinding GetBinding(HttpActionDescriptor actionDescriptor) {
 return new HttpActionBinding(
 actionDescriptor,
 actionDescriptor.GetParameters()
 .Select(p => GetParameterBinding(p)).ToArray()
);
 }

 protected HttpParameterBinding GetParameterBinding(
 HttpParameterDescriptor parameter) {

 if (parameter.ParameterBinderAttribute != null) {
 return parameter.ParameterBinderAttribute.GetBinding(parameter);
 }

 HttpParameterBinding binding =
 parameter.Configuration.ParameterBindingRules.LookupBinding(parameter);
 if (binding != null) {
 return binding;
 }

 if (parameter.ParameterType.IsPrimitive
 || parameter.ParameterType == typeof(string)) {
 return parameter.BindWithAttribute(new ModelBinderAttribute());
 }

 return new FromBodyAttribute().GetBinding(parameter);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Binding Complex data types part ii

425

The changes are simple because I am reproducing the behavior of the default class, and all of the complexity of
the model binding process is contained in the value providers, model binders, and media type formatters that Web
API includes.

Tip ■ you can elect to use as many or as few of the existing binding classes as you require, but before you embark on
a project to replace the model binding process, i recommend taking a moment to consider the problem you are trying to
solve. the default binding process is flexible and customizable, and smaller changes made within the default process are
easier to test and maintain than a completely new process.

Summary
In this chapter, I explained how media type formatters can be used to bind complex types from the body of a request.
I showed you how deserialization works by creating and using a custom media type formatter and by using the built-
in media type formatters. I explained the limitations on the classes that the built-in formatters will instantiate and
demonstrated how to override this behavior to deserialize classes that require special handling. I finished this chapter
by demonstrating how to replace the class that drives the parameter and model binding processes with a custom
implementation. In the next chapter, I show you the features that Web API provides to ensure that the data you bind
from requests is what you expected.

www.it-ebooks.info

http://www.it-ebooks.info/

427

Chapter 18

Model Validation

The way that Web API binds complex types is useful and f lexible, but Web API is a little too trusting and tries to carry
on to the point where the action method can be executed, even if the data that has been sent to the client can’t be
used to bind to the parameters that the action method requires or if the data cannot be used within the application.

Three main problems arise when processing client data: under-posting, over-posting, and unusable data. In this
chapter, I describe each in turn and explain why it presents a problem in web service development before showing
you the Web API features you can use to guard against them. Table 18-1 summarizes this chapter.

Table 18-1. Chapter Summary

Problem Solution Listing

Check the validity of a model object
passed as a parameter to an action
method.

Read the IsValid property of the ModelStateDictionary class
to get the overall validity and enumerate the Keys and Values
collections to get details of specific validation errors.

1–9

Protect against under- and
over-posting.

Use the binding control attributes. 10, 11

Protect against bad data. Use the validation attributes or create a self-validating model
object.

12–14

Validate data as the model object is
created.

Use the IFormatterLogger object in a custom media type
formatter.

15–17

Preparing the Example Project
I am going to continue working with the ExampleApp project I created in Chapter 10 and have been using for
examples since. For this chapter, I am going to add a simple form that sends data to the web service using an Ajax
POST request so that I can demonstrate how model validation works. My first change is to add a new action method to
the Home controller so that I can render an MVC Razor view to produce the HTML form, as shown in Listing 18-1.

Listing 18-1. Adding an Action Method to the HomeController.cs File

using System.Web.Mvc;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class HomeController : Controller {
 IRepository repo;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

428

 public HomeController(IRepository repoImpl) {
 repo = repoImpl;
 }

 public ActionResult Index() {
 return View(repo.Products);
 }

 public ActionResult Formats() {
 return View();
 }

 public ActionResult Bindings() {
 return View();
 }

 public ActionResult Validation() {
 return View();
 }
 }
}

Listing 18-2 shows the contents of the Validation.cshtml view file that I created in the Views/Home directory.
This is the view file that will be rendered when the Validation action method in the MVC Home controller is invoked.

Listing 18-2. The Contents of the Views/Home/Validation.cshtml File

@{ ViewBag.Title = "Model Validation"; }

@section Scripts {
 <script src="~/Scripts/validation.js"></script>
}

<div class="alert alert-success" data-bind="css: { 'alert-danger': gotError }">

</div>
<div class="form-group">
 <label>ProductID</label>
 <input class="form-control" data-bind="value: viewModel().productID" />
</div>
<div class="form-group">
 <label>Name</label>
 <input class="form-control" data-bind="value: viewModel().name" />
</div>
<div class="form-group">
 <label>Price</label>
 <input class="form-control" data-bind="value: viewModel().price" />
</div>
<button class="btn btn-primary" data-bind="click: sendRequest">Send Request</button>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

429

This view contains a set of input elements that update a Knockout observable object and a script element that
imports the validation.js file from the Scripts folder. This is the file that contains the JavaScript code that sends the
Ajax request to the web service, as shown in Listing 18-3.

Listing 18-3. The Contents of the Scripts/validation.js File

var viewModel = ko.observable({
 productID: 1,
 name: "Emergency Flare",
 price: 12.99
});

var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/products", {
 type: "POST",
 data: viewModel(),
 success: function (data) {
 gotError(false);
 response("Success");
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

The JavaScript code sends a POST request to the /api/products URL and updates the HTML content based on
the response. The final step is to create the action method on the Products controller that will be invoked when the
Ajax request is received by the web service, as shown in Listing 18-4.

Listing 18-4. Defining an Action Method in the ProductsController.cs File

using System.Collections.Generic;
using System.Web.Http;
using ExampleApp.Models;

namespace ExampleApp.Controllers {
 public class ProductsController : ApiController {
 IRepository repo;

 public ProductsController(IRepository repoImpl) {
 repo = repoImpl;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

430

 public IEnumerable<Product> GetAll() {
 return repo.Products;
 }

 public void Delete(int id) {
 repo.DeleteProduct(id);
 }

 public void Post(Product product) {
 repo.SaveProduct(product);
 }
 }
}

The Products method is a RESTful Web API controller, which means that the Post method will be invoked when
Web API receives an HTTP POST request that targets the /api/products URL. I explain how RESTful controllers
work—and how Web API URLs are defined—in Part 3 of this book.

Testing the Changes
To test the changes, start the application and navigate to the /Home/Validation URL. The Validation.cshtml view
will be rendered to generate the HTML form shown in Figure 18-1, with the input elements populated with the
defaults that I defined in the validation.js file.

Figure 18-1. The HTML form rendered by the Validation.cshtml view

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

431

Clicking the Send Request button will send an Ajax request that targets the new Post method in the Products
controller. This will trigger the model binding process so that the Post method can be passed a Product object, which
is then added to the model via the repository.

You can check to see whether the product has been created by using the browser to navigate to the /Home/Index
URL, which displays the contents of the repository, as illustrated by Figure 18-2.

Figure 18-2. Adding a new product to the repository

Understanding Common Data Problems
You will face three main problems when dealing with data in a web service: too little data (under-posting), too much
data (over-posting), and bad data (as good a term as any). I describe and demonstrate each kind of problem in the
sections that follow before showing you the Web API features that can be used to handle them.

Understanding Under-Posting
Under-posting occurs when the request doesn’t contain values for all of the properties defined by a model object. This
usually occurs because the client doesn’t validate the data provided by the user, but it can also be a deliberate attack
that aims to take advantage of ill-chosen default values.

The underlying problem is that the model binding process has no inherent understanding of the way in which
model objects are used. An instance of the model class required for a parameter is created, and values for all of the
properties it defines are sought from the request. No error is reported if there are properties for which the request
doesn’t provide a value and if the default value for the property type will be used. To demonstrate under-posting, I
have changed the data that the client sends to the web service so that the Price property isn’t provided. Listing 18-5
shows the changes to the validation.js file.

Listing 18-5. Under-Posting in the validation.js File

var viewModel = ko.observable({
 productID: 1,
 name: "Emergency Flare",
 price: 12.99
});

Tip ■ don’t forget to clear the browser cache when you make changes to the validation.js file; otherwise, the
changes may not take effect, and you won’t get the expected results.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

432

var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {
 $.ajax("/api/products", {
 type: "POST",
 data: { productID: viewModel().productID, name: viewModel().name },
 success: function (data) {
 gotError(false);
 response("Success");
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

To test the effect of the omission, start the application and use the browser to navigate to the /Home/Validate
URL. Click the Send Request button to trigger the Ajax request, which will cause the model binding feature to create
an instance of the Product object and seek values from the request for the Product properties. Since there is no value
for the Price property, the default value for the Price property type that was assigned when the instance was created
will be left unchanged when the action method is invoked. The default value for decimal values is zero, and you can
see the result by using the browser to navigate to the /Home/Index URL, which will display the list of Product objects
in the repository, as illustrated in Figure 18-3.

Figure 18-3. The effect of under-posting on the repository

The impact of under-posting depends on the type of the properties that are affected and the way that the model
object is used. For a storefront application, allowing a product to be added to the catalog with a zero price is a quick
way to lose money on profitless sales. The most troublesome problems arise when default values infer some kind of
special status on a request, such as an IsAdminUser property that defaults to true.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

433

Understanding Over-Posting
Over-posting occurs when the request contains values for model properties that the developer expected to come from
elsewhere. This typically occurs when the model object contains a property that confers special status on the request,
such as the IsAdminUser property I described for under-posting. The default binding process will look for request
values for all the objects in a model object, even if you expected the values to be set elsewhere in the application. As
a demonstration, Listing 18-6 shows the addition of a property that I added to the Product class that indicates the
discount rate for the price.

Listing 18-6. Adding a Property in the Product.cs File

namespace ExampleApp.Models {
 public class Product {
 public int ProductID { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
 public bool IncludeInSale { get; set; }
 }
}

My application may expect to set the IncludeInSale property entirely separately from the process of populating
the repository, but the Web API binding process has no way to know that and will set the property if there is a
corresponding value in the request. Listing 18-7 shows the change I made to the client-side code to include a value for
the new property.

Listing 18-7. Over-Posting Data in the validation.js File

var viewModel = ko.observable({
 productID: 1,
 name: "Emergency Flare",
 price: 12.99
});

var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {

 var requestData = viewModel();
 requestData.IncludeInSale = true;

 $.ajax("/api/products", {
 type: "POST",
 data: requestData,
 success: function (data) {
 gotError(false);
 response("Success");
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

434

 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

Over-posting isn’t always malicious and can occur when clients send values for all the properties defined by
a model object even when the user hasn’t directly provided a value. The impact can vary from inconsistent
data—products that are on sale when there is no sale, for example—to security breaches, where accounts or request
are given elevated access to the application.

Tip ■ although i show you how to deal with over-posting using the Web api validation features, the best solution is to
avoid defining model properties that cause problems, which prevents requests from being able to cause unwanted
effects. if you can’t separate out the safe and unsafe properties in your model classes, then consider using a data transfer
object (dto), which is a class used solely as an action method parameter and contains only the safe properties. the binding
process will set the dto properties, which you can then copy to an instance of the model class within the action method.

Understanding Bad Data
The final category of problem is bad data, where the client sends data values that cannot be used, either because the
values cannot be parsed to the types required by the data model or because the values do not make sense. Most bad
data arises because the user has made a mistake, but it can also represent a deliberate attempt to get the web service
to act in unexpected or unpredictable ways.

To see the effect of a value that cannot be parsed into a model property, start the application, use the browser to
navigate to the /Home/Validation URL, and change the value of the Price property so that it isn’t a numeric value.
Click the Send Request button and navigate to the /Home/Index URL to see the effect, which is illustrated by Figure 18-4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

435

The Web API binding process doesn’t throw an exception when it tries to use the value in the request (free in
this example) to set the Price property of the Product object. Instead, it just fails quietly, and the default value for the
property type is used (zero in this case since the Price property is a double).

The other kind of bad data problem arises when the request contains a value that can be parsed into the right
type but doesn’t make sense. To see the effect of this kind of problem, repeat the process to create a new product, but
set the Price field to -1, as shown in Figure 18-5.

Figure 18-4. The effect of a data value that cannot be parsed to a model property value

Figure 18-5. The effect of a data value that can be parsed but is still invalid

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

436

The binding process has no insight into the meaning of the properties that it is setting and has no understanding
that a negative value for a price doesn’t make sense. The effect of this kind of problem tends to manifest itself
elsewhere in the application, such as when the total cost of a basket of products is calculated.

Using Web API Model Validation
To help manage the process of validating data, Web API keeps track of the model state, which contains details of any
problems that were encountered during the binding process and which can be checked and handled in the action
method. By default, the model state will contain details of only basic errors—such as problems converting a value into
a property type—but Web API provides an extensible mechanism for defining different kinds of validation that can be
used to detect and report more complex problems. Table 18-2 puts Web API model validation in context.

Table 18-2. Putting Web API Model Validation in Context

Question Answer

What is it? Model validation is the process by which data received from the client is checked to
guard against under-posting, over-posting, and bad data.

When should you use it? You should always validate data received from clients.

What do you need to know? Web API provides information about the model validation process through the
model state.

Table 18-3. The Properties Defined by the ModelStateDictionary Class Used to Check Validation

Name Description

IsValid Returns true if there are no validation errors

Count Returns the number of validation errors

Keys Returns the collection of property names for which there are validation errors

Values Returns an enumeration of ModelState objects for the specific property name

Understanding Model State
The model state for a request is described with an instance of the ModelStateDictionary class, which is defined in
the System.Web.Http.ModelBinding namespace. There are two distinct parts to the life of a ModelStateDictionary
object. When you are writing action methods, you will use the ModelStateDictionary object to check the overall state
of the validation process and to get details about individual errors. For these tasks, the ModelStateDictionary class
defines the properties described in Table 18-3.

The ModelStateDictionary also provides an array-style indexer, which provides an alternative way of accessing
the ModelState objects that are used to represent validation errors. This is the most common way to obtain validation
errors that arise when processing a request.

Listing 18-8 shows how I have changed the Post action method in the Products controller so that I check for
model state errors, enumerate them, and vary the response for requests that contain invalid data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

437

Listing 18-8. Using Model State in the ProductsController.cs File

using System.Collections.Generic;
using System.Web.Http;
using ExampleApp.Models;
using System.Diagnostics;
using System.Web.Http.ModelBinding;

namespace ExampleApp.Controllers {
 public class ProductsController : ApiController {
 IRepository repo;

 public ProductsController(IRepository repoImpl) {
 repo = repoImpl;
 }

 public IEnumerable<Product> GetAll() {
 return repo.Products;
 }

 public void Delete(int id) {
 repo.DeleteProduct(id);
 }

 public IHttpActionResult Post(Product product) {
 if (ModelState.IsValid) {
 repo.SaveProduct(product);
 return Ok();
 } else {
 foreach (string property in ModelState.Keys) {
 ModelState mState = ModelState[property];
 IEnumerable<ModelError> mErrors = mState.Errors;
 foreach (ModelError error in mErrors) {
 Debug.WriteLine("Property: {0}, Error: {1}",
 property, error.ErrorMessage);
 }
 }
 return BadRequest(ModelState);
 }
 }
 }
}

I have made the Post action method more complex than it would be in a real application so that I can describe all
of the types involved in the model state; I’ll show you a more typical usage in the “Removing the Debug Output Code”
section.

The ApiController class is the default base class for Web API controllers, and the ModelStateDictionary
object is exposed through its ModelState property. Within the Post action method, I check the ModelState.IsValid
property to see whether there have been any validation errors when the request was processed. If there are no
validation errors, I add the new Product object to the repository and call the Ok method to generate the result from the
method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

438

Tip ■ When working with model validation, you need to return an IHttpActionResult from the action method even
if you don’t want to return data to the client. this allows the action method to differentiate between requests that were
processed correctly and those for which there were validation errors.

If there are validation errors, indicated when the IsValid property returns false, then I use the
ModelStateDictionary.Keys property to get an enumeration of the property names for which there were problems.

Each property is represented by a ModelState object. The ModelState class is separate from the ModelState
property that the ApiController class defines, but the fact that the same name is used twice leads to this confusing
statement:

...
ModelState mState = ModelState[property];
...

The ModelState property returns the ModelStateDictionary object, which defines the array-style indexer that
returns instances of the ModelState class. The ModelState class defines the properties shown in Table 18-4.

Table 18-5. The Properties Defined by the ModelError Class

Name Description

ErrorMessage Returns an error message that describes the validation problem

Exception Returns an exception associated with the validation problem

Table 18-4. The Properties Defined by the ModelState Class

Name Description

Errors Returns a collection of ModelError objects representing the validation errors for a property

Value Returns the ValueProviderResult associated with the property

Individual validation errors are represented by instances of the ModelError class, which defines the properties
shown in Table 18-5.

I use the ModelState and ModelError classes in the Post action method to enumerate any validation errors that
were encountered during the binding process and write a description of each of them to the Visual Studio Output
window.

Testing the Model State
To test the model state, start the application and use the browser to navigate to the /Home/Validation URL. Change
the value of the Price field to free and click the Send Request button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

439

The model binding process will try to use free as a value for the Product.Price property and fail, since free
cannot be converted to a double. There is little built-in validation in Web API, but problems converting values
are reported by default, and the ModelState.IsValid property will return true, triggering my validation problem
handling code. In the Visual Studio Output window, you will see the following output:

Property: product.Price, Error: The value 'free' is not valid for Price.

The response sent back to the client will contain the 400 (Bad Request) status code. If you use the browser
F12 tools to examine the HTTP response, you will see that it contains a JSON object that contains the same error
information that I wrote to the Output window.

{"Message":"The request is invalid.",
 "ModelState": { "product.Price":["The value 'free' is not valid for Price."] }}

There is no standard format for expressing data validation errors in HTTP responses, but clients that are written
specifically for a Web API web service can parse the JSON object and display appropriate error messages to the user.

Tip ■ the JSon object that is included in the response is part of the broader Web api error-handling functionality,
which i describe in detail in Chapter 25.

Removing the Debug Output Code
I included the code to write out details of the validation errors in the Post action method so that I could explain how
the ModelState and ModelError classes are used. In Listing 18-9, you can see how I have removed this code from the
action method, leaving a much simpler and easier-to-read action method.

Listing 18-9. Removing the Debug Code from the ProductsController.cs File

...
public IHttpActionResult Post(Product product) {
 if (ModelState.IsValid) {
 repo.SaveProduct(product);
 return Ok();
 } else {
 return BadRequest(ModelState);
 }
}
...

This is the typical pattern for dealing with validation errors: check the ModelState.IsValid property and
respond by performing the operation and returning a 200 (OK) response or by reporting an error to the client with a
400 (Bad Request) response.

Using the Binding Control Attributes
The simplest way to guard against under- and over-posting is to use one of the attributes that Web API provides to control
the binding process. The attributes are defined in the System.Web.Http namespace and are described in Table 18-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

440

Listing 18-10 shows how I applied these attributes to the Product model class to prevent under-posting for the
Price property and over-posting for the IncludeInSale property.

Listing 18-10. Applying the Binding Control Attributes in the Product.cs File

using System.Web.Http;

namespace ExampleApp.Models {

 public class Product {

 public int ProductID { get; set; }
 public string Name { get; set; }

 [HttpBindRequired]
 public decimal Price { get; set; }

 [HttpBindNever]
 public bool IncludeInSale { get; set; }
 }
}

To test the attributes, I changed the data that the client-side code sends in the Ajax request, as shown in Listing 18-11.

Listing 18-11. Changing the Request Data in the validation.js File

...
var sendRequest = function (requestType) {

 $.ajax("/api/products", {
 type: "POST",
 data: { Name: viewModel().name, IncludeInSale: true },
 success: function (data) {
 gotError(false);
 response("Success");
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};
...

Table 18-6. The Binding Control Attributes

Name Description

HttpBindNever This attribute tells the built-in model binder to ignore any request values for the property
to which it has been applied to.

HttpBindRequired This attribute reports a validation error if the request does not contain a value for the
property to which it has been applied.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

441

Table 18-8. The Built-in Validation Attributes

Name Example Description

Compare [Compare("OtherProperty")] This attribute reports a validation error if the property it
is applied to does not have the same value as the property
whose name is specified as the configuration string:
OtherProperty in this case. This attribute is useful for
e-mail addresses and passwords.

CreditCard [CreditCard] This attribute reports a validation error if the value for
the property to which it has been applied is not a credit
card number. This attribute just checks the format of the
number and not whether the card itself is valid.

Email [Email] This attribute reports a validation error if the value for the
property to which it has been applied is not a valid e-mail
address. Only the format is checked and not whether the
address exists and can accept e-mail.

The request contains no value for the Price property, which will trigger a validation error, and the IncludeInSale
property, which will be ignored.

Performing Validation with Validation Attributes
The binding control attributes are an effective way of dealing with under- and over-posting, but they don’t address the
bad data problem. The simplest way to increase the amount of validation that is performed is to apply the attributes
defined in the System.ComponentModel.DataAnnotations namespace, which work exactly as they do in the MVC
framework. The attributes are applied to the model class to restrict the range of acceptable values, and the results of
the validation can then be checked within the action method. Table 18-7 puts data validation attributes in context.

Table 18-7. Putting Data Validation Attributes in Context

Question Answer

What is it? The data validation attributes allow you to guard against bad data in requests.

When should you use it? You should use the validation attributes whenever the application is unable to
process the complete range of values for a property type.

What do you need to know? The validation attributes will not report a validation error if there is no value in
the request for the property to which it has been applied.

Using the Built-in Validation Attributes
There is a set of built-in validation attributes that can be used to perform common validation tasks, as described
in Table 18-8. Some of the built-in attributes can be configured when they are applied, so I have included a usage
example for each of them.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

442

The HttpBindRequired binding control attribute ensures that the request contains a value for a model property,
but it doesn’t place any limits on what the value is. To guard against bad data, some of the other validation attributes
must be used. In Listing 18-12, you can see how I applied the Range attribute to constrain the set of acceptable values
for the Price property defined by the Product class.

Listing 18-12. Limiting the Range of Valid Values in the Product.cs File

using System.Web.Http;
using System.ComponentModel.DataAnnotations;

namespace ExampleApp.Models {
 public class Product {
 public int ProductID { get; set; }
 public string Name { get; set; }

 [HttpBindRequired]
 [Range(1, 20000)]
 public decimal Price { get; set; }

 [HttpBindNever]
 public bool IncludeInSale { get; set; }
 }
}

Name Example Description

Enum [Enum(typeof(MyEnum)] This attribute reports a validation error if the value for the
property to which it has been applied cannot be parsed
into a value for the specified enum.

MaxLength [MaxLength(10)] This attribute is applied to string properties and reports a
validation error if the value exceeds the specific number of
characters (10 in the example).

MinLength [MinLength(2)] This attribute is applied to string properties and reports a
validation error if the number of characters in the value is
less than the specific value (2 in the example).

Range [Range(10, 20)] This attribute is applied to numeric properties and reports
a validation error if the value falls outside the specified
limits.

RegularExpression [RegularExpression
("blue|green")]

This attribute reports a validation error if the value doesn’t
match the specific regular expression.

Required [Required] This attribute reports a validation error if no value
has been supplied for the property to which it has
been applied. This is functionally equivalent to the
HttpBindRequired attribute.

StringLength [StringLength(10)] This attribute is applied to string properties and reports
a validation error if the value contains more than the
specific number of characters.

Table 18-8. (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

443

I applied the Range attribute to limit the acceptable range of values from 1 to 20,000 (these are inclusive so that 1
and 20,000 are both valid). To test the change, I need to change the client-side JavaScript code so that it sends a value
for the Price property, as shown in Listing 18-13.

Listing 18-13. Restoring the Price Property in the validation.js File

...
var sendRequest = function (requestType) {

 $.ajax("/api/products", {
 type: "POST",
 data: viewModel(),
 success: function (data) {
 gotError(false);
 response("Success");
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};
...

To test the combined attributes, start the application, use the browser to navigate to the /Home/Validation URL,
enter a value for the Price field, and click the Send Request button. The model will be valid if the value falls between 1
and 20,000 and the request will succeed, but a 400 (Bad Request) response will be sent for values outside of that range.

Caution ■ always take care to combine attributes from table 18-8 with the HttpBindRequired or Required attribute.
the other attributes perform validation only if there is a value in the request for the property to which they are applied,
which means that under-posting doesn’t cause a validation error to be added to the ModelStateDictionary unless the
HttpBindRequred or Required attribute is used as well.

Creating a Self-validating Model Class
An alternative to using attributes is to put the validation logic into the model class and implement the
IValidatableObject interface, which is defined in the System.ComponentModel.DataAnnotations namespace.
The IValidatableObject interface defines the Validate method, which receives a ValidationContext object and
returns an enumeration of the validation errors, expressed as ValidationResult objects.

The ValidatonContext and ValidatonResult objects don’t provide any functionality that is specific to Web API
validation, but implementing the Validate method provides an opportunity to inject validation logic that is specific to
the model class. In Listing 18-14, you can see how I have removed the validation attributes from the Product class and
implemented the IValidatableObject interface.

Listing 18-14. Applying the IValidatableObject Interface in the Product.cs File

using System.ComponentModel.DataAnnotations;
using ExampleApp.Infrastructure;
using System.Collections.Generic;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

444

namespace ExampleApp.Models {

 public class Product : IValidatableObject {

 public int ProductID { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
 public bool IncludeInSale { get; set; }

 public IEnumerable<ValidationResult> Validate(ValidationContext
 validationContext) {

 List<ValidationResult> errors = new List<ValidationResult>();

 if (Name == null || Name == string.Empty) {
 errors.Add(new ValidationResult(
 "A value is required for the Name property"));
 }

 if (Price == 0) {
 errors.Add(new ValidationResult(
 "A value is required for the Price property"));
 } else if (Price < 1 || Price > 2000) {
 errors.Add(new ValidationResult("The Price value is out of range"));
 }

 if (IncludeInSale) {
 errors.Add(new ValidationResult(
 "Request cannot contain values for IncludeInSale"));
 }
 return errors;
 }
 }
}

This technique works best when the validation logic is unlikely to be used on other model objects. If the
validation logic is reusable, then I recommend creating custom validation attributes instead.

Performing Validation in a Media Type Formatter
In Chapter 17, I showed you how to create a custom media type formatter that reads model objects from requests. The
base class for media type formatters, MediaTypeFormatter, provides its subclasses with access to the model validation
feature, which means you can perform validation as the model object is being created. Table 18-9 puts performing
validation in a custom media type formatter in context.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

445

Creating a Validating Media Type Formatter
Listing 18-15 shows the contents of the ValidatingProductFormatter.cs file that I added to the Infrastructure
folder and used to create a custom media formatter that reports validation errors.

Listing 18-15. The Contents of the ValidatingProductFormatter.cs File

using System;
using System.IO;
using System.Linq;
using System.Net.Http;
using System.Net.Http.Formatting;
using System.Net.Http.Headers;
using System.Text;
using System.Threading.Tasks;
using ExampleApp.Models;
using Newtonsoft.Json.Linq;

namespace ExampleApp.Infrastructure {
 public class ValidatingProductFormatter : MediaTypeFormatter {
 long bufferSize = 256;

 public ValidatingProductFormatter() {
 SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/json"));
 SupportedMediaTypes.Add(new MediaTypeHeaderValue("text/json"));
 }

 public override bool CanReadType(Type type) {
 return type == typeof(Product);
 }

 public override bool CanWriteType(Type type) {
 return false;
 }

 public async override Task<object> ReadFromStreamAsync(Type type,
 Stream readStream, HttpContent content,
 IFormatterLogger formatterLogger) {

 byte[] buffer = new byte[Math.Min(content.Headers.ContentLength.Value,
 bufferSize)];

Table 18-9. Putting Media Type Formatter Validation Context

Question Answer

What is it? The media type formatter base class provides support for reporting validation
errors when creating a model object.

When should you use it? You should perform basic validation for each model property that you set in a
custom media type formatter.

What do you need to know? The binding control attributes are implemented by the default complex model
formatter and are not automatically applied in custom classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

446

 string jsonString = Encoding.Default.GetString(buffer, 0,
 await readStream.ReadAsync(buffer, 0, buffer.Length));

 JObject jData = JObject.Parse(jsonString);

 if (jData.Properties().Any(p =>
 string.Compare(p.Name, "includeinsale", true) == 0)) {
 formatterLogger.LogError("IncludeInSale",
 "Request Must Not Contain IncludeInSale Value");
 }

 return new Product {
 Name = (string)jData["name"],
 Price = (decimal)jData["price"]
 };
 }
 }
}

The ReadFromStreamAsync method is called to parse data from the request and is passed an IFormatterLogger
parameter. The IFormatterLogger interface is defined in the System.Net.Http.Formatting namespace and defines
the methods shown in Table 18-10.

Table 18-10. The Methods Defined by the IFormatterLogger

Name Description

LogError(name, message) Registers a validation error for the specified property name and message

LogError(name, exception) Registers a validation error for the specified property name and exception

In the listing, I use the IFormatterLogger parameter to register a validation error if the request contains a value
for the IncludeInSale property. (This isn’t something I recommend you do in real projects—see the “Rewarding Bad
Behavior with Error Messages” sidebar).

reWarDING BaD BehaVIOr WIth errOr MeSSaGeS

in listing 18-15, i reject requests that contain a value for the IncludeInSale property and report a descriptive
error. this is a different approach to using the HttpBindNever attribute, which quietly ignores values for the
properties to which it is applied.

there is a difficult balance to be struck when it comes to validation messages. on one hand, you want to provide
meaningful messages so that users and third-party developers can figure out what is going wrong. on the other
hand, you don’t want to reveal anything about the internal structure of your application to deliberate over-posters.

there is no absolutely right answer, but my advice is to report errors when it comes to validating the properties
that you have publically described and quietly ignore attempts to over-post by using the HttpBindNever attribute.
that said, silence is not a proper defense against a determined attack, and you should also consider using
professional penetration testers to ensure that your application is not susceptible to obvious security weaknesses.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

447

Registering and Using the Custom Media Type Formatter
I need to register the media type formatter before I can test it. Listing 18-16 shows the change I made to the
WebApiConfig.cs file.

Listing 18-16. Registering a Media Type Formatter in the WebApiConfig.cs File

using System.Web.Http;
using System.Web.Http.ModelBinding;
using System.Web.Http.ModelBinding.Binders;
using System.Web.Http.ValueProviders;
using ExampleApp.Infrastructure;
using ExampleApp.Models;
using System.Web.Http.Controllers;

namespace ExampleApp {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.DependencyResolver = new NinjectResolver();

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "Binding Example Route",
 routeTemplate: "api/{controller}/{action}/{first}/{second}"
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Services.Add(typeof(ValueProviderFactory),
 new HeaderValueProviderFactory());

 config.Services.Insert(typeof(ModelBinderProvider), 0,
 new SimpleModelBinderProvider(typeof(Numbers), new NumbersBinder()));

 config.Formatters.Add(new XNumbersFormatter());
 config.Formatters.Insert(0, new UrlNumbersFormatter());
 config.Formatters.Insert(0, new JsonNumbersFormatter());
 config.Formatters.Insert(0, new XmlNumbersFormatter());
 config.Formatters.Insert(0, new ValidatingProductFormatter());

 config.Services.Replace(typeof(IActionValueBinder),
 new CustomActionValueBinder());
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ Model Validation

448

I also need to change the format of the data that the client sends in the Ajax request so that my validating media
type formatter will be used to bind the model object. Listing 18-17 shows the changes that I made so that the data is
formatted as JSON.

Listing 18-17. Sending JSON Data in the validation.js File

var viewModel = ko.observable({
 productID: 1,
 name: "Emergency Flare",
 price: 12.99
});

var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function (requestType) {

 $.ajax("/api/products", {
 type: "POST",
 data: JSON.stringify(viewModel()),
 contentType: "application/json",
 success: function (data) {
 gotError(false);
 response("Success");
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

When you test the changes, validation will be performed by the media type formatter and by the attributes
applied to the Product class. Being able to mix and match validation techniques allows you to create flexible
validation polices that mix the generic (such as an acceptable range of values) with the specific (such that a request
doesn’t attempt to set a property value).

Summary
In this chapter, I described the different ways in which you can perform validation to protect your model objects
from the three most common web service data problems: under-posting, over-posting, and bad data. In Part 3 of this
book, I describe the Web API request dispatch process and provide the context in which the features I have described
so far exist.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 3

Dispatching Requests

www.it-ebooks.info

http://www.it-ebooks.info/

451

Chapter 19

Dispatching Requests

In this part of the book, I describe the process by which Web API dispatches requests, which is the sequence of steps by
which an incoming HttpRequestMessage object is processed to produce an HttpResponseMessage that can be sent to
the client.

You have already seen some of the steps in Part 2, in which I described how parameter binding and model binding
are used to provide an action method with the values it needs to handle a request and how the action method can
produce a response. In this chapter, I explain how Web API selects and invokes an action method. I detail the interfaces
that describe different areas of functionality and explain how the default implementation of those interfaces work
together to create the default dispatching process. In the chapters that follow, I dig into the details and show you how to
can take control of request dispatching to tailor the process to your own needs. Table 19-1 summarizes this chapter.

Preparing the Example Project
The ExampleApp project I have been using since Chapter 10 is now overcrowded with classes, so I created a new
project for this chapter. I selected the ASP.NET Web Application project type and set the name to Dispatch. I clicked
the OK button to advance through the New Project Wizard, selected the Empty project template, and checked the
options to add the core references for MVC and Web API, just as I did in Chapter 2. I clicked the OK button, and Visual
Studio created the new project.

Table 19-1. Chapter Summary

Problem Solution Listing

Prevent requests from being
processed.

Create a custom message handler that generates an HttpResponseMessage
object without invoking the handler chain.

1–7

Add support for a custom
header.

Create a custom message handler that modifies the HttpRequestMessage
before passing it on to the next handler in the chain.

8–9

Use a message handler as a
diagnostic tool.

Create a custom message handler that calls the Debugger.Break method. 10

Change the suffix used to
identify controller classes.

Create custom implementations of the IHttpControllerTypeResolver
and IHttpControllerSelector interfaces or use reflection to modify the
default implementation classes.

11–15

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

452

After Visual Studio created the project, I entered the following commands into the Package Manager Console to
get the NuGet packages I require:

Update-Package microsoft.aspnet.mvc -version 5.1.1
Update-Package microsoft.aspnet.webapi -version 5.1.1
Update-Package Newtonsoft.json -version 6.0.1
Install-Package jquery -version 2.1.0
Install-Package bootstrap -version 3.1.1
Install-Package knockoutjs –version 3.1.0

This is the standard set of NuGet packages that I use for Web API applications that includes an MVC framework
component.

Creating the Model Class
I require only a simple model class for this chapter, and I don’t need any means to store instances persistently. I added
a class file called Product.cs to the Models folder and used it to define the class shown in Listing 19-1.

Listing 19-1. The Contents of the Product.cs File

namespace Dispatch.Models {

 public class Product {
 public int ProductID { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
 }
}

Creating the Web API Web Service
For this chapter, I need a simple web service controller that defines some basic action methods. I added a class file
called ProductsController.cs to the Controllers folder and used it to define the controller shown in Listing 19-2.

Listing 19-2. The Contents of the ProductsController.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using Dispatch.Models;

namespace Dispatch.Controllers {
 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

453

 public IEnumerable<Product> Get() {
 return products;
 }

 public Product Get(int id) {
 return products.Where(x => x.ProductID == id).FirstOrDefault();
 }

 public Product Post(Product product) {
 product.ProductID = products.Count + 1;
 products.Add(product);
 return product;
 }
 }
}

This is a RESTful controller that defines Get and Post methods that will be targeted by the GET and POST HTTP
verbs. (I explain how the verbs are mapped to the action methods in Chapter 22.)

Caution ■ i have included a static List of Product objects so that i can respond to requests without having to define
and implement a repository. this is suitable for a simple example, but for real projects, follow the repository pattern that
i used for the sportsstore application in Chapter 5.

The Get action method return either a Product object or all of the Products objects, which will be serialized
and sent to the client using one of the media type formatters I described in Chapter 17. The Post method receives a
Product object as an argument, which I add to the static List.

Creating the MVC Controller and View
As with my previous examples, I am going use the MVC framework to deliver HTML and JavaScript code to the client,
which will then use Ajax requests to talk to a Web API web service. I created a HomeController.cs class file in the
Controllers folder and used it to define the controller shown in Listing 19-3.

Listing 19-3. The Contents of the HomeController.cs File

using System.Web.Mvc;

namespace Dispatch.Controllers {

 public class HomeController : Controller {

 public ActionResult Index() {
 return View();
 }
 }
}

The Home controller exists solely to deliver the contents of a view to the client. Listing 19-4 shows the contents of
the Index.cshtml file, which I added to the Views/Home folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

454

Listing 19-4. The Contents of the Index.cshtml File

@{ Layout = null;}
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
 <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
 <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
 <script src="~/Scripts/jquery-2.1.0.min.js"></script>
 <script src="~/Scripts/knockout-3.1.0.js"></script>
 <script src="~/Scripts/dispatch.js"></script>
 <style>
 body { padding-top: 10px; }
 </style>
</head>
<body class="container">
 <div class="alert alert-success" data-bind="css: { 'alert-danger': gotError }">

 </div>

 <div class="panel panel-primary">
 <div class="panel-heading">Products</div>
 <table class="table table-striped">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Price</th></tr>
 </thead>
 <tbody data-bind="foreach: products">
 <tr>
 <td data-bind="text: ProductID"></td>
 <td data-bind="text: Name"></td>
 <td data-bind="text: Price"></td>
 </tr>
 </tbody>
 </table>
 </div>

 <button class="btn btn-primary" data-bind="click: getAll">Get All</button>
 <button class="btn btn-primary" data-bind="click: getOne">Get One</button>
 <button class="btn btn-primary" data-bind="click: postOne">Post</button>
</body>
</html>

I am not using a layout in this project, so the view contains all of the HTML that will be sent to the client. The body
element contains a div element that I styled as an alert using Bootstrap and a button that relies on Knockout to call a
function called sendRequest.

There is also a table element whose rows are populated by Knockout foreach binding and three button
elements, all of which use Knockout to invoke functions when they are clicked.

The last script element in the Index.cshtml file references a file called dispatch.js in the Scripts folder.
I created this file to keep the JavaScript code separate from the view. As Listing 19-5 shows, this file defines the data
used in the Index.cshtml Knockout bindings and defines the functions that the button elements invoke.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

455

Listing 19-5. The Contents of the dispatch.js File

var viewModel = ko.observable({
 productId: 100, name: "Bananas", price: 12.34
});

var products = ko.observableArray();
var response = ko.observable("Ready");
var gotError = ko.observable(false);

var getAll = function () {
 sendRequest("GET");
}

var getOne = function () {
 sendRequest("GET", 2);
}

var postOne= function () {
 sendRequest("POST");
}

var sendRequest = function (verb, id) {

 var url = "/api/products/" + (id || "");

 var config = {
 type: verb || "GET",
 data: verb == "POST" ? viewModel() : null,
 success: function (data) {
 gotError(false);
 response("Success");
 products.removeAll();
 if (Array.isArray(data)) {
 data.forEach(function (product) {
 products.push(product);
 });
 } else {
 products.push(data);
 }
 },
 error: function (jqXHR) {
 gotError(true);
 products.removeAll();
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 }

 $.ajax(url, config);
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

456

$(document).ready(function () {
 ko.applyBindings();
});

The three functions that the button elements invoke—getAll, getOne, and postOne—all rely on the sendRequest
function to send an Ajax request to the web service. Within the sendRequest method, I create the URL and the
configuration object based on the function arguments, which allows me to send the three different types of request
I need using the same code.

Note ■ there are no input elements to allow the user to change the values in the view model. i will change the view
model in the code when i want to send different data to the web service.

Testing the Example Application
To test the web service, start the application. Navigate to the /Home URL with the browser and click the Get One
button. jQuery will send a GET request to the server, receive a serialized representation of a Product object, and use
its property values to update the alert div element, as shown in Figure 19-1.

Figure 19-1. Testing the example application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

457

Understanding Request Dispatching
Three classes coordinate the way that Web API handles HTTP requests, known collectively as the message handlers.
The term message handler arises because all three classes are derived from the abstract HttpMessageHandler class
in the System.Web.Http namespace. The HttpMessageHandler class defines one important method, which derived
classes are required to implement.

...
protected internal override Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request,
 CancellationToken cancellationToken
)
...

The method is called SendAsync, and it receives an HttpRequestMessage object and returns a Task that produces
an HttpResponseMessage object when it completes. The use of the Task result and the CancellationToken parameter
indicate that the method should execute asynchronously.

Processing HttpRequestMessage objects to produce HttpResponseMessage objects is the task of any web
application framework that uses the System.Net.Http classes. The three MessageHandler classes that I describe in
this chapter are the gatekeepers to the world of Web API.

Message handlers are organized into a chain, and each handler processes the request in turn, which gives
handlers the chance to modify or enhance the HttpRequestMessage object. The last message handler in the chain
creates the HttpResponseMessage, which then passes back along the list, allowing each message handler to modify the
response before it is sent to the client. You can see the overall effect in Figure 19-2.

The host will usually be IIS, especially if you are also using the MVC framework, but there are other options,
as I explain in Chapter 26.

From the moment that the host passes on an HttpRequestMessage object, its progress through the
request handling pipeline is always under the supervision of a message handler, right until the point where the
HttpResponseMessage object is given to the host so a response can be sent to the client.

Web API defines a number of interfaces that are used by the message handlers to hand off important tasks. The
use of interfaces means that the dispatch process can be customized, as I describe in the

“Customizing the Dispatch Process” section. It can be hard to keep track of the message handlers, interfaces,
and implementation classes involved in the dispatch process, so I have summarized them in Table 19-2. I explain the
purpose and role of each of them in the sections that follow.

Figure 19-2. The chain of message handlers

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

458

There are two parts of the dispatch process that I touch upon only lightly in this chapter: URL routing and
controllers. I cover both in later chapters, specifically, URL routing in Chapters 20 and 21 and controllers in Chapter 22.
Table 19-3 puts the Web API dispatch process in context.

Table 19-2. The Dispatcher Interfaces and Default Implementation Classes

Name Description

HttpServer The first message handler to receive new HttpRequestMessage objects.

HttpRoutingDispatcher The second message handler, which creates routing data for the request.

HttpControllerDispatcher The third and final message handler, which selects, activates, and executes a
controller to create an HttpResponseMessage object.

IHttpControllerSelector The interface that the HttpControllerDispatcher class uses to
delegate controller selection. The default implementation is the
DefaultHttpControllerSelector class.

IHttpControllerTypeResolver The interface used by the DefaultHttpControllerSelector class to locate
the controller classes in the application. The default implementation is the
DefaultHttpControllerTypeResolver.

IAssembliesResolver The interface used to locate the assemblies in the application so that the
IHttpControllerTypeResolver implementation can search them for controllers.
The default implementation is the DefaultAssembliesResolver class.

IHttpControllerActivator The interface used by the HttpControllerDispatcher class to delegate creating
an instance of the selected controller. The default implementation is the
DefaultHttpControllerActivator class.

IHttpController The interface used to denote a controller. I describe controllers fully in Chapter 22,
but most controllers are derived from the ApiController class, which
implements the IHttpController interface.

Table 19-3. Putting the Web API Dispatch Process in Context

Question Answer

What is it? Web API uses the dispatch process to receive an HttpRequestMessage object
representing an HTTP request and to produce a corresponding HttpResponseMessage
object that will be used to generate the response sent to the client.

When should you use it? The dispatch process is automatically applied to all incoming HTTP requests in a
Web API application and requires no explicit action.

What do you need to know? The dispatch process is managed by three message handler classes. The HttpServer
class receives requests from the hosting environment, the HttpRoutingDispatcher
integrates URL routing, and the HttpControllerDispatcher selects a controller to
handle the request. I explain the details of the URL routing system in Chapters 20
and 21 and of controllers in Chapter 22.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

459

Understanding the HttpServer Class
The first message handler in the chain is an instance of the HttpServer class, which acts as the contact point between
the hosting environment and Web API.

The HttpServer class has a simple job: it receives an HttpRequestMessage object, prepares it for use in a Web API
application, and passes it on to the next message handler in the chain. The preparation involves associating a security
principal with the request, creating the HttpRequestContext object, and setting up the classes that will deal with any
errors when the HttpResponeMessage comes back along the chain.

Tip ■ i describe web service security in Chapters 23 and 24, i described the HttpRequestContext class in Chapter 9,
and i show you how Web api deals with errors in Chapter 25.

The HttpServer class is instantiated by the GlobalConfiguration class during the configuration phase of the
application life cycle. The GlobalConfiguration class also specifies the next message handler in the list, and you can
access both classes through the GlobalConfiguration properties shown in Table 19-4.

You can’t change the values returned by the DefaultHandler and DefaultServer properties, and the HttpServer
class cannot be replaced as the entry point into Web API. But you can add custom message handler classes to change
the way requests are processed; see Chapters 23 and 24 for details and examples. Knowing that the HttpServer class
is the first message handler in the chain allows me to revise my pipeline diagram, as shown in Figure 19-3.

Table 19-4. The GlobalConfiguration Properties That Relate to the HttpServer Class

Name Description

DefaultHandler Returns the HttpMessageHandler implementation that the HttpServer class should pass the
HttpRequestMessage object to when it has finished its preparations. By default, this is the
HttpRoutingDispatcher class, which I describe in the next section. You can add custom message
handlers to the chain, which I describe in the “Customizing the Dispatch Process” section.

DefaultServer Returns the HttpMessageHandler implementation that is the entry point into Web API, which is
the HttpServer class.

Figure 19-3. Revising the pipeline diagram to include the HttpServer class

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

460

Understanding the HttpRoutingDispatcher Class
The second message handler in the chain is an instance of the HttpRoutingDispatcher class, which integrates
URL routing into the Web API request handling pipeline. The HttpRoutingDispatcher class is defined in the
System.Web.Http.Dispatcher namespace.

The URL routing system has one purpose: to inspect the request in order to produce data that other components
will need to process further along the message handler chain. The data that the routing system produces is called
routing data or route data. Consolidating the functionality that inspects requests to extract the routing data means
that a request can be inspected just once by the routing system, even though the routing data that is generated will be
used repeatedly by other components.

Routing data is expressed as a collection of name-value pairs. To generate the routing data, the URL routing
system tries to match a request against a routing pattern, which usually means examining the URL that the client has
requested, but it can also incorporate other aspects of the request such as header values. The instructions for matching
a request and for generating the routing data are collectively known as a route.

Routing data is typically used to extract three types of data from a request:

The name of a controller•	

The name of an action method•	

Values that can be used for parameter binding•	

I say that URL routing typically extracts this data because there is a lot of variability in how routing can be
configured and how much information each request can provide. Requests won’t always contain parameter binding
values or an action method name, for example, and even when they do, the components that consume the routing
data may choose to ignore the values and use some other source of information to do their work.

Even though it may be used to extract controller and action method names, the URL routing system doesn’t
do anything with those names. It doesn’t select the controller or action method, and it doesn’t generate the
HttpResponseMessage that will be sent to the client. The routing system doesn’t assign any meaning to the data it
retrieves; it just extracts the data and does nothing more.

In fact, the routing system doesn’t have any knowledge of what controllers and action methods are, which is why
URL routing works as well in a Web Forms application as it does in Web API and the MVC framework. Routing data is
also used for parameter binding, but the routing system doesn’t do that binding itself; instead, there is a built-in value
provider that gets its data from the routing data associated with a request.

The purpose of the HttpRoutingDispatcher class uses the routing system to inspect the HttpRequestMessage
object and produce routing data, which is then associated with the HttpRequestContext object associated with the
request and made accessible through the HttpRequestContext.RouteData property.

Tip ■ i explain the format of the routing data, and the classes that provide it, in Chapters 20 and 21.

Understanding the Default URL Routing Configuration
There are two ways in which to define Web API routes. The first is to use convention-based routing, which means that
routes are configured in a single location and are written to match as many requests as possible. This is the traditional
use of URL routing, and it originates from the MVC framework where a uniform and standardized URL schema makes
it easier for users to interact with the application.

The other way to define routes is direct routing or attribute-based routing. There are some common RESTful
URL formats that are hard to implement easily with convention-based routing but that are more easily expressed by
applying routing information directly to the controllers and action methods that support a specific URL pattern. I am
not a fan of direct routing for MVC framework applications, but it can be extremely useful in Web API applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

461

There are no default direct routes defined in a Web API application, but I describe the feature in detail in Chapters 20
and 21. Web API routing is set up in the WebApiConfig.cs file, as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;

namespace Actions {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

The two highlighted statements set up the default URL routing configuration. The MapHttpAttributesRoutes
method sets up direct routing (which I describe in Chapter 21).

Tip ■ Web api and MVC framework urL routing work in similar ways but do not share a common class hierarchy or
configuration files. applications that use both frameworks have two separate routing configurations. MVC framework
routing is configured in the App_Start/RouteConfig.cs file using classes in the System.Web.Routing namespace. Web
api routing is configured in the App_Start/WebApiConfig.cs file using classes from the System.Web.Http namespace.
Be careful when creating your routing configuration, especially when using Visual studio to resolve namespaces, because
it is easy to end up with a class that mixes classes with the same names from different namespaces and so won’t compile.

The other statement calls the Routes.MapHttpRoute method on the HttpConfiguration argument passed to the
Register method. The MapHttpRoute method sets up a new route called DefaultApi that generates two pieces of routing
data, controller and id, both of which are extracted from the request URL. This is an example of convention-based
routing, which I describe in detail in Chapter 20.

The controller value is used to select the controller that will handle the request, and the id value is for
parameter binding. You can see how the controller and id values are extracted from the URL by looking at the
routeTemplate property used to create the route.

...
routeTemplate: "api/{controller}/{id}",
...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

462

For this URL:

/api/products

the DefaultApi route would produce routing data that contains only the products value for controller because there
is no value for the id key. I explain how route templates are defined and applied in Chapters 20 and 21.

For this URL:

/api/products/1

the routing data produced by the DefaultApi route would contain products as the value for controller and 1 as the
value for id. Table 19-5 summarizes the routing data for the /api/products/1 URL, which I will use as the exemplar
request for the rest of this section.

Table 19-5. The Routing Data Generated by the Default Route for the Exemplar URL

Key Value

controller products

id 1

Figure 19-4. Revising the pipeline diagram to include the HttpRoutingDispatcher class

Tip ■ notice that the DefaultApi route doesn’t generate a routing data value for an action method name. i explain
why in Chapter 22.

Figure 19-4 shows my pipeline diagram, updated to show the HttpRoutingDispatcher class, the routing system,
and the routing data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

463

Understanding the HttpControllerDispatcher Class
The third and final built-in message handler class is HttpControllerDispatcher, and it is responsible for locating a
controller class, creating an instance of it, and asking it to process the request to produce the HttpResponseMessage
that will be passed back to the hosting environment via the other message handlers in the chain. The
HttpControllerDispatcher class relies on several components to achieve its goal. In the sections that follow,
I describe how controllers are located and instantiated.

Selecting the Controller
The HttpControllerDispatcher class delegates the selection of the controller class to an implementation of the
IHttpControllerSelector interface, which is defined in the System.Web.Http.Dispatcher namespace. Here is the
definition of the IHttpControllerSelector interface:

using System.Collections.Generic;
using System.Diagnostics.CodeAnalysis;
using System.Net.Http;
using System.Web.Http.Controllers;

namespace System.Web.Http.Dispatcher {

 public interface IHttpControllerSelector {

 IDictionary<string, HttpControllerDescriptor> GetControllerMapping();

 HttpControllerDescriptor SelectController(HttpRequestMessage request);
 }
}

The GetControllerMapping method returns a collection of all the controllers that are available in the application.
I explain the purpose of this method in the “Customizing Other Dispatch Components” section later in the chapter,
but it is not of interest at the moment.

Instead, it is the SelectController method that is important, and it is called by the HttpControllerDispatcher
to obtain an HttpControllerDescriptor object that describes the controller that can handle the request. The
HttpControllerDescriptor class is defined in the System.Web.Http.Controllers namespace and provides the
properties and methods shown in Table 19-6.

Table 19-6. The Members Defined by the HttpControllerDescriptor Class

Name Description

Configuration Returns the HttpConfiguration object associated with the controller. Controllers
can have their own configurations, as I explain in Chapter 22.

ControllerName Returns the name of the controller.

ControllerType Returns the Type of the controller.

CreateController(request) Creates an instance of the controller that will handle the specified
HttpRequestMessage object.

GetCustomAttributes<T>() Returns the collection of attributes of type T that have been applied to the
controller class.

GetFilters() Returns the filters that have been applied to the class. I describe Web API filters in
Chapters 23 and 24.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

464

The default implementation of the IHttpControllerSelector interface is the DefaultHttpControllerSelector
class, which is defined in the System.Web.Http.Dispatcher namespace. To select a controller, the
DefaultHttpControllerSelector class needs to do the following tasks: identify all of the controllers in the
application, select the controller to handle the current request, and then, finally, create an instance of that controller.
I describe how each task is completed in the following sections.

During application startup, the DefaultHttpControllerSelector builds a list of all the controller classes in
the application, which is later used as the basis for selecting a controller to handle each request. It delegates the
identification of controllers to the IHttpControllerTypeResolver interface, as follows:

using System.Collections.Generic;
using System.Diagnostics.CodeAnalysis;

namespace System.Web.Http.Dispatcher {

 public interface IHttpControllerTypeResolver {

 ICollection<Type> GetControllerTypes(IAssembliesResolver assembliesResolver);
 }
}

The IHttpControllerTypeResolver interface defines the GetControllerTypes method, which is required
to return a collection of all the controller types in the application. The GetControllerTypes method is passed an
implementation of the IAssembliesResolver interface. This interface defines the GetAssemblies method, which is
responsible for returning a collection of all the assemblies in the application, as follows:

using System.Collections.Generic;
using System.Diagnostics.CodeAnalysis;
using System.Reflection;

namespace System.Web.Http.Dispatcher {

 public interface IAssembliesResolver {
 ICollection<Assembly> GetAssemblies();
 }
}

The default implementations of these interfaces are simple. The DefaultAssembliesResolver class
implements the IAssembliesResolver interface and returns all the assemblies in the application domain. A custom
implementation could filter the assembly collection to include just those that are known to contain controllers, but
the benefit would be a marginally quicker startup process at the cost of an application that won’t work properly if the
assembly structure is changed.

The default implementation of the IHttpControllerTypeResolver interface is the
DefaultHttpControllerTypeResolver class, and it inspects the classes in the assemblies returned by the
IAssembliesResolver interface and identifies those that are controllers. Controllers are identified by three characteristics:

 1. They are classes that implement the IHttpController interface.

 2. The name of the class has the Controller suffix (for example, ProductsController).

 3. The class is public and is not abstract.

The DefaultHttpControllerSelector class creates a cache of HttpControllerDescriptor objects for each
controller class that the IHttpControllerTypeResolver implementation identifies.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

465

Tip ■ the controller classes are inspected at startup because it can be a slow process, especially for large projects.
the set of controller classes that the DefaultHttpControllerSelector locates is cached so that the process is
performed only when the application first starts.

When the HttpControllerDispatcher class asks for a controller by calling the SelectController method, the
DefaultHttpControllerSelector class looks through its cache of HttpControllerDescriptor objects until it
finds one with a ControllerName value that matches the controller value from the routing data created by the
HttpRoutingDispatcher class.

Note ■ the DefaultHttpControllerTypeResolver and DefaultAssembliesResolver classes are the default
implementations of their interfaces if you want to derive new functionality without implementing the
IHttpControllerTypeResolver and IAssembliesResolver directly. however, if you are hosting your Web api
application in iis, two other classes are used: WebHostHttpControllerTypeResolver and WebHostAssembliesResolver.
hosting environments are free to change the default implementations of interfaces, and you should make sure you
understand the impact of replacing them with custom implementations, especially for such low-level interfaces.

Activating the Controller
At this point, the HttpControllerDispatcher class has obtained an HttpControllerDescriptor object that describes
the controller that will handle the request. The next step is to instantiate the controller class, a process known as
activation.

Activation is performed by calling the CreateController method of the HttpControllerDescriptor class, which
in turn delegates the process to an implementation of the IControllerActivator interface.

using System.Net.Http;
using System.Web.Http.Controllers;

namespace System.Web.Http.Dispatcher {

 public interface IHttpControllerActivator {
 IHttpController Create(HttpRequestMessage request,
 HttpControllerDescriptor controllerDescriptor, Type controllerType);
 }
}

The Create method is called to create an IHttpController object and is provided with the HttpRequestMessage
that describes the current request, the HttpControllerDescriptor that describes the controller, and the controller Type.

The default IHttpControllerActivator implementation is the DefaultHttpControllerActivator class, which
is defined in the System.Web.Http.Dispatcher namespace. The process that the DefaultHttpControllerActivator
class follows is simple:

 1. Try to get an instance of the controller type from the dependency resolver.

 2. Create an instance of the controller by invoking a parameterless constructor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

466

This approach supports the dependency injection model I described in Chapter 10 but falls back to instantiating
classes directly if there is no resolver in the application. It also means that if you need to define controllers without
parameterless constructors, you must either create a custom implementation of the IHttpControllerActivator
interface or configure a dependency resolver that knows how to instantiate them (as I did in the SportsStore
application for controllers that defined a repository constructor argument).

Executing the Controller
The HttpControllerDispatcher has almost completed its task: it has selected a controller and created an instance
of it, and all that remains is to ask it to process the result so that the HttpResponseMessage can be returned along
the chain of message handlers and, ultimately, sent to the client. As I mentioned in the previous section, one of the
identifying characteristics of a controller is that it implements the IHttpController interface.

using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;

namespace System.Web.Http.Controllers {

 public interface IHttpController {
 Task<HttpResponseMessage> ExecuteAsync(HttpControllerContext controllerContext,
 CancellationToken cancellationToken);
 }
}

The IHttpController interface defines the ExecuteAsync method, which is passed an HttpControllerContext
and a CancellationToken. The purpose of the method is to asynchronously process the request using the information
provided by the HttpControllerContext and return a Task that produces an HttpResponseMessage object when it
completes.

The HttpControllerContext object is created by the HttpControllerDispatcher class in order to provide the
controller with all the details it needs to do its work. The HttpControllerContext class defines the properties shown
in Table 19-7.

Table 19-7. The Properties Defined by the HttpControllerContext Class

Name Description

Configuration Returns the HttpConfiguration object that should be used to service the request. As I
explain in Chapter 22, controllers can be given their own configuration to work with.

Controller Returns the IHttpController instance. This is not entirely useful when the
HttpControllerContext is being passed an argument to the controller but is more useful
when used for other tasks such as action method selection (which I describe in Chapter 22).

ControllerDescriptor Returns the HttpControllerDescriptor that led to the controller being instantiated.

Request Returns the HttpRequestMessage that describes the current request.

RequestContext Returns the HttpRequestContext that provides additional information about the request.

RouteData Returns the IHttpRouteData object that contains the routing data for the request. See
Chapters 20 and 21 for details.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

467

The details of how the IHttpController implementation processes the HttpControllerContext into an
HttpResponseMessage are entirely opaque to the message handlers, but I explain how the default controller class,
ApiController, works in Chapter 22. You won’t be surprised that it relies on delegating work to implementations of
interfaces that you can replace or customize.

Now that I have explained how the HttpControllerDispatcher works, I can update my diagram to reflect the
end-to-end flow of a request and its response through the Web API dispatch process, as illustrated in Figure 19-5.

Figure 19-5. The end-to-end Web API dispatch process

There are two areas that I have only lightly touched on as I described the dispatch process: URL routing and
controllers. In both cases, this is because they are big enough features to warrant their own chapters. I describe URL
routing in Chapters 20 and 21 and explain how controllers work in Chapter 22.

Customizing the Dispatch Process
The reason that there are so many interfaces involved in the dispatch process is so that the way requests are handled
can be customized. Although I described the default implementation classes in the previous section, implementations
of the dispatch interfaces are obtained from the services collection, using the extension methods listed in Table 19-8.

Table 19-8. The Extension Methods That Obtain Dispatcher Objects from the Services Collection

Name Description

GetAssembliesResolver() Returns an implementation of the IAssembliesResolver interface

GetHttpControllerActivator() Returns an implementation of the IHttpControllerActivator interface

GetHttpControllerSelector() Returns an implementation of the IHttpControllerSelector interface

GetHttpControllerTypeResolver() Returns an implementation of the IHttpControllerTypeResolver interface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

468

Table 19-9. Putting the Customizing the Dispatch Process in Context

Question Answer

What is it? The dispatch process can be customized to control the way that requests flow
through the Web API application.

When should you use it? The default dispatch process is suitable for most Web API applications, but
customizations can be useful for integrating custom systems into Web API (such as
custom authentication) or to support unusual or legacy clients.

What do you need to know? You can use custom message handlers to adapt requests from difficult clients to the
standard Web API model or to stop requests from being processed. Finer-grained
customizations are possible by reimplementing the interfaces that are used to
locate and select controller classes.

These extension methods are defined in the System.Web.Http namespace and operate on the ServicesContainer
class. That means you can obtain a reference to instances of the default classes by calling one of these methods on the
HttpConfiguration.Services property, like this:

...
GlobalConfiguration.Configuration.Services.GetHttpControllerSelector()
...

The fact that implementation classes are located via the services collection means that it is easy to create and use
custom classes to replace the defaults and that, if you do, you can take advantage of the services in your own classes so
that you don’t have to reimplement the entire dispatch process.

In the sections that follow, I’ll show you how to extend and customize the dispatch process, by adding new
message handlers and creating custom implementations of the dispatch interfaces. Table 19-9 puts customizing the
dispatch process in context.

Creating Custom Message Handlers
Web API allows custom message handlers to be added to the chain between the HttpServer and HttpRoutingDispatch
classes. Custom message handlers are similar to traditional ASP.NET modules and can be used to prepare an
HttpRequestMessage for process or modify an HttpResponseMessage before it is used to produce a response to the client.

Custom message handlers are derived from the DelegatingHandler class, which is derived from
MessageHandler, but adds support for an inner handler, which is the next handler in the chain. A custom handler can
call the inner handler to advance the request to the next stage in the dispatch pipeline or generate a response itself to
terminate the request handing process. As a demonstration, I created a folder called Infrastructure and added to it a
class file called CustomMessageHandler.cs. Listing 19-6 shows the custom message handle that I created.

Listing 19-6. The Contents of the CustomMessageHandler.cs File

using System.Net;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

469

namespace Dispatch.Infrastructure {
 public class CustomMessageHandler : DelegatingHandler {

 protected async override Task<HttpResponseMessage> SendAsync(HttpRequestMessage
 request, CancellationToken cancellationToken) {

 if (request.Method == HttpMethod.Post) {

 return request.CreateErrorResponse(HttpStatusCode.MethodNotAllowed,
 "POST Not Supported");
 } else {
 return await base.SendAsync(request, cancellationToken);
 }
 }
 }
}

This class demonstrates how a message handler can intercept requests and create a result directly. Within the
SendAsync method, I look for POST requests by checking the HttpRequestMessage.Method property. When the
method is POST, I create an HttpResponseMessage with the 405 (Method Not Allowed) status code, like this:

...
return request.CreateErrorResponse(HttpStatusCode.MethodNotAllowed,
 "POST Not Supported");
...

CreateErrorResponse is one of the extension methods that can be applied to HttpRequestMessage objects
to create HttpResponseMessage objects. These methods conveniently populate the HttpResponseMessage fields
from their parameter values and details of the request. There are methods available to create successful and error
responses, all of which are defined by the HttpRequestMessageExtensions class. I have shown the most useful
methods for creating HttpResponseMessage objects in Table 19-10. (I have omitted a few versions that specify a
particular media type formatter to encode data objects or provide additional detail about an error.)

Table 19-10. The Methods for Creating HttpResponseMessage Objects from an HttpRequestMessage

Method Description

CreateResponse() Creates a basic HttpResponseMessage with the 200 (OK) status code
and no content.

CreateResponse(status) Creates an HttpResponseMessage with the specified status code, which
is expressed as an HttpStatusCode value.

CreateResponse(data) Creates an HttpResponseMessage with the 200 (OK) status code and
the specified data object as the content. The data object is encoded
using the content negotiation process that I described in Part 2.

CreateResponse(status, data) Creates an HttpResponseMessage with the specified status code and
data object. The status code is expressed as an HttpStatusCode, and
the data object is encoded using the content negotiation process I
described in Part 2.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

470

A message handle that returns an HttpResponseMessage from its SendAsync method terminates the normal
process of the HttpRequestMessage through the chain of message handlers. For my example message handler, this
means that POST requests are rejected, and both requests with other verbs are allowed to processed.

If a handler wants to pass on a request to the next handler in the chain, then it calls the SendAsync method of the
base class and returns the result, like this:

...
return await base.SendAsync(request, cancellationToken);
...

Each message handler is automatically configured with details of the next message handler so that you don’t have
to manage details of the handler chain inside your custom class.

Message handlers are registered through the HttpConfiguration.MessageHandlers property, as shown in
Listing 19-7.

Listing 19-7. Registering a Custom Message Handler in the WebApiConfig.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using Dispatch.Infrastructure;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

Table 19-10. (continued)

Method Description

CreateResponse(status, data, mime) Creates an HttpResponseMessage with the specified status code and
data object. The status code is expressed as an HttpStatusCode, and
the data object is encoded using the specified MIME type using the
media type formatter process I described in Part 2.

CreateErrorResponse(status, message) Creates an HttpResponseMessage with the specified status code and
error message. The status code is expressed using HttpStatusCode, and
the message is a string. I describe Web API error handling in Part 2.

CreateErrorResponse(status, error) Creates an HttpResponseMessage with the specified status code and
error. The status code is expressed using HttpStatusCode, and the error
is an HttpError. I describe Web API error handling in Chapter 25.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

471

 config.MessageHandlers.Add(new CustomMessageHandler());
 }
 }
}

The MessageHandlers collection contains only custom message handlers, which are always placed after
HttpServer and before HttpRoutingDispatcher in the message handler chain. To test the new message handler, start
the application and click the Post button—the handler will intercept the request and return the error response shown
in Figure 19-6.

Figure 19-6. Testing the custom message handler

Caution ■ a single instance of the message handler class is created and used to service all of the requests that the
Web api application receives. this means your code must be thread-safe and must be able to deal with concurrent
execution of the SendAsync method.

Modifying Requests or Responses in a Message Handler
Although you can use a message handler to stop or allow requests through the application—as I did in the previous
section—a more common use for a message handler is to modify the HttpRequestMessage or HttpResponseMessage
object to add new features to your web service.

The problem is that Web API already has every feature that a web service needs, and while it is useful that you can
intercept and modify the request and response, there is little need to do so.

The standard demonstration for message handlers is to add support for the X-HTTP-Method-Override
header, which isn’t supported by Web API by default. It isn’t an example that I like (for the reasons I set out in the
“Understanding the X-HTTP-Method-Override Header” sidebar), but it is a simple and self-contained demonstration
of how a message handler can be used, so I have included it in this chapter. Listing 19-8 shows how I have revised the
CustomMessageHandler class so that it supports the X-HTTP-Method-Override header.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

472

Listing 19-8. Supporting a Nonstandard Header in the CustomMessageHandler.cs File

using System.Net;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;
using System.Linq;

namespace Dispatch.Infrastructure {
 public class CustomMessageHandler : DelegatingHandler {

 protected async override Task<HttpResponseMessage> SendAsync(HttpRequestMessage
 request, CancellationToken cancellationToken) {

 if (request.Method == HttpMethod.Post
 && request.Headers.Contains("X-HTTP-Method-Override")) {

 HttpMethod requestedMethod = new HttpMethod(
 request.Headers.GetValues("X-HTTP-Method-Override").First());

 if (requestedMethod == HttpMethod.Put
 || requestedMethod == HttpMethod.Delete) {
 request.Method = requestedMethod;
 } else {
 return request.CreateErrorResponse(HttpStatusCode.MethodNotAllowed,
 "Only PUT and DELETE can be overridden");
 }
 }
 return await base.SendAsync(request, cancellationToken);
 }
 }
}

UNDerStaNDING the X-http-MethOD-OVerrIDe heaDer

the X-HTTP-Method-Override header allows clients to tell the web service that the request should be handled as
though it has a different http verb. For example, if the server receives an http pOst request with the
X-HTTP-Method-Override set to PUT, then the request should be handled as though the PUT verb had been used.

the X-HTTP-Method-Override arose to work around limitations in some clients that could send only get or pOst
requests or to work around firewalls that blocked any verb except get or pOst. using the X-HTTP-Method-Override
allows clients to work around these limitations and take full advantage of a restful web service.

as helpful as the X-HTTP-Method-Override header can be, it requires coordination between the client and
the server: the client needs to know that the server is looking for the header and will honor it. if the client and
server are not coordinated, then the header will be ignored, and pOst requests will always be taken as pOst
requests, even if the X-HTTP-Method-Override header specifies a different verb. in addition, clients have no way
of knowing whether there are verbs that cannot be used; there is no way of detecting the policy of a corporate
firewall, for example. in short, the X-HTTP-Method-Override has some issues, and i recommend avoiding it if at
all possible. it is no accident that neither Web api nor the MVC framework supports the header.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

473

I look for POST requests that contain the X-HTTP-Method-Override header, which I apply only to the PUT and
DELETE verbs (although if you are supporting this header in a real project, you should take care to allow all of the verbs
that your web service requires). For requests that meet my criteria, I set the value of the HttpRequestMethod.Method
property, which has the effect of causing the rest of the Web API message handlers to treat the request as though it was
made using the verb specified by the X-HTTP-Method-Override header.

The example web service supports only POST and GET, but Listing 19-9 shows the changes that are required to
the dispatch.js file to support the X-HTTP-Method-Override header.

Listing 19-9. Adding Support for the X-HTTP-Method-Override Header in the dispatch.js File

...
var sendRequest = function (verb, id) {

 var url = "/api/products/" + (id || "");

 var config = {
 type: verb || "GET",
 data: verb == "POST" ? viewModel() : null,
 success: function (data) {
 gotError(false);
 response("Success");
 products.removeAll();
 if (Array.isArray(data)) {
 data.forEach(function (product) {
 products.push(product);
 });
 } else {
 products.push(data);
 }
 },
 error: function (jqXHR) {
 gotError(true);
 products.removeAll();
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 }

 if (verb != "GET" && verb != "POST") {
 config.type = "POST";
 config.headers = {
 "X-HTTP-Method-Override": verb
 };
 }

 $.ajax(url, config);
};
...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

474

Using Message Handlers as Diagnostic Tools
I find message handlers most useful as a diagnostic tool for when I can’t figure out the cause of a problem and I start
to lose trust in my tools. Sometimes this is a consequence of desperation—a growing conviction that I am missing
something fundamental—but most often I use message handlers so I can break the Visual Studio debugger right at the
start of the dispatch process and follow a request all the way through the application and follow the response all the way
back out again. This is especially useful when using the debugger to display the Web API source code, which allows all of
the objects and variables to be inspected and makes it easy (or at least easier) to find out what is causing a problem.

You can manually apply breakpoints to your application code, but a request handler can break the
debugger while the request has just entered the world of Web API. Listing 19-10 shows how I have changed the
CustomMessageHandler class so that it breaks the debugger.

Listing 19-10. Creating a Diagnostic Tool in the CustomMessageHandler.cs File

using System.Net;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;
using System.Linq;

namespace Dispatch.Infrastructure {
 public class CustomMessageHandler : DelegatingHandler {

 protected async override Task<HttpResponseMessage> SendAsync(HttpRequestMessage
 request, CancellationToken cancellationToken) {

 if (request.Method == HttpMethod.Post) {
 System.Diagnostics.Debugger.Break();
 }
 return await base.SendAsync(request, cancellationToken);

 }
 }
}

The System.Diagnostics.Debugger class controls the debugger, and the Break method stops execution of the
application and hands it control. With this message handler installed, every POST request causes the debugger to
break so that you can step through the dispatch process. To see the effect, start the application and click the Post
button in the browser. The Break method will be called and execution of the application will be stopped so that you
can control it through the standard Visual Studio debugger.

Customizing Other Dispatch Components
You can create custom implementations of all the interfaces that I described in this chapter, but there is little point in
doing so because the Web API default implementations are serviceable for most applications. That said, it is always
useful to know that you can replace the standard components if you need to, and in the sections that follow, I show
the process for changing the suffix used to identify controller classes, which is Controller by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

475

Implementing the Interfaces
An implementation of the IHttpControllerTypeResolver interface is responsible for identifying the controller
classes in the application. The default implementation of the interface is the DefaultHttpControllerTypeResolver
class, and it defines a method called IsControllerType that is called for each type in the application to see whether it
is a controller, as follows:

...
internal static bool IsControllerType(Type t) {
 return
 t != null &&
 t.IsClass &&
 t.IsVisible &&
 !t.IsAbstract &&
 typeof(IHttpController).IsAssignableFrom(t) &&
 HasValidControllerName(t);
}
...

This method is exactly what you would expect to see; it looks for classes that are public, not abstract,
and that are derived from IHttpController. The final test is the one that is interesting for this example: only
classes for which the HasValidControllerName method returns true are selected. Here is the definition of the
HasValidControllerName method:

...
internal static bool HasValidControllerName(Type controllerType) {
 string controllerSuffix = DefaultHttpControllerSelector.ControllerSuffix;
 return controllerType.Name.Length > controllerSuffix.Length
 && controllerType.Name.EndsWith(controllerSuffix,
 StringComparison.OrdinalIgnoreCase);
}
...

The DefaultHttpControllerSelector.ControllerSuffix property is set to Controller, and the
HasValidControllerName method checks to see that the class name contains the suffix (and isn’t just the suffix so that
a class called Controller won’t be identified as a controller).

Ideally, I could change the suffix used to identify controllers by deriving from the
DefaultHttpControllerTypeResolver class and overriding either the IsControllerType or
HasValidControllerName method; these are both marked as internal. An alternative would be to change the value of
the DefaultHttpControllerSelector.ControllerSuffix property, but that isn’t possible because it has been marked
as readonly.

...
public static readonly string ControllerSuffix = "Controller";
...

The implementation of the DefaultHttpControllerSelector and DefaultHttpControllerTypeResolver classes
means that I need to create my own implementation of the IHttpControllerTypeResolver interface in order to
change the controller suffix. I added a class file called CustomControllerTypeResolver.cs to the Infrastructure
folder and used it to define the class shown in Listing 19-11.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

476

Listing 19-11. The Contents of the CustomControllerTypeResolver.cs Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http.Controllers;
using System.Web.Http.Dispatcher;

namespace Dispatch.Infrastructure {
 public class CustomControllerTypeResolver : IHttpControllerTypeResolver {

 public string Suffix { get; set; }

 public ICollection<Type> GetControllerTypes(IAssembliesResolver
 assembliesResolver) {

 return assembliesResolver.GetAssemblies()
 .Select(assembly => assembly.GetTypes())
 .SelectMany(t => t)
 .Where(t => t != null
 && t.IsClass
 && t.IsVisible
 && !t.IsAbstract
 && typeof(IHttpController).IsAssignableFrom(t)
 && HasValidControllerName(t)).ToList();
 }

 private bool HasValidControllerName(Type t) {
 return t.Name.Length > Suffix.Length
 && t.Name.EndsWith(Suffix, StringComparison.OrdinalIgnoreCase);
 }
 }
}

My custom implementation has a Suffix property that is used to locate controller classes in the assemblies
provided by the IAssembliesResolver implementation object that is passed to the GetControllerTypes method.

Unfortunately, the class shown in Listing 19-11 doesn’t have the effect you might expect, which is because
the DefaultHttpControllerSelector class uses a cache to speed up controller selection, and the class
that handles the caching (the HttpControllerTypeCache class) has a hard-coded dependency on the
DefaultHttpControllerSelector.ControllerSuffix property that it uses to retrieve cached classes. This
means that if I want to change the suffix used by controllers, it isn’t enough to create a new implementation of the
IHttpControllerTypeResolver class—I also have to create a new implementation of the IHttpControllerSelector
interface as well. Listing 19-12 shows the contents of the CustomControllerSelector.cs file that I added to the
Infrastructure folder.

Listing 19-12. The Contents of the CustomControllerSelector.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

477

using System.Web.Http;
using System.Web.Http.Controllers;
using System.Web.Http.Dispatcher;

namespace Dispatch.Infrastructure {

 public class CustomControllerSelector : IHttpControllerSelector {
 private IDictionary<string, HttpControllerDescriptor> dictionary;
 private ILookup<string, HttpControllerDescriptor> mappings;

 public CustomControllerSelector(string suffix) {

 Suffix = suffix;
 HttpConfiguration config = GlobalConfiguration.Configuration;

 IHttpControllerTypeResolver typeFinder =
 config.Services.GetHttpControllerTypeResolver();
 IAssembliesResolver assemblyFinder = config.Services.GetAssembliesResolver();

 IEnumerable<HttpControllerDescriptor> descriptors
 = typeFinder.GetControllerTypes(assemblyFinder)
 .Select(type => new HttpControllerDescriptor {
 Configuration = GlobalConfiguration.Configuration,
 ControllerName = type.Name.Substring(0,
 type.Name.Length - Suffix.Length),
 ControllerType = type});

 mappings = descriptors.ToLookup(descriptor =>
 descriptor.ControllerName, StringComparer.OrdinalIgnoreCase);

 dictionary = descriptors.ToDictionary(d => d.ControllerName, d => d);
 }

 private string Suffix { get; set; }

 public IDictionary<string, HttpControllerDescriptor> GetControllerMapping() {
 return dictionary;
 }

 public HttpControllerDescriptor SelectController(HttpRequestMessage request) {
 string key
 = request.GetRequestContext().RouteData.Values["controller"] as string;
 IEnumerable<HttpControllerDescriptor> matches = mappings[key];
 switch (matches.Count()) {
 case 1:
 return matches.First();
 case 0:
 throw new HttpResponseException(HttpStatusCode.NotFound);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

478

 default:
 throw new HttpResponseException(HttpStatusCode.InternalServerError);
 }
 }
 }
}

The IHttpControllerSelector interface requires two methods to be implemented. The GetControllerMapping
method is used by the attribute routing feature to configure itself during application startup and requires a
Dictionary that maps controller names to HttpControllerDescriptor objects. I use LINQ to create an enumeration
of HttpControllerDescriptor object in the CustomControllerSelector constructor and then use the always-convenient
LINQ ToDictionary method to create the collection that the GetControllerMapping mapping demands.

I have taken a different approach for the SelectController method and used the LINQ ToLookup method. This
little-used method groups together objects based on a key, which is useful because a Web API application can contain
multiple controller classes with the same name but defined in different namespaces. I follow the default behavior and
throw an exception if more than one controller matches the value of the controller routing data value.

Registering the Interface Implementations
Listing 19-13 shows how I replaced the default implementations of the IHttpControllerTypeResolver and
IHttpControllerSelector interfaces with my custom classes in the WebApiConfig.cs file.

Listing 19-13. Registering Custom Classes in the WebApiConfig.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using Dispatch.Infrastructure;
using System.Web.Http.Dispatcher;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.MessageHandlers.Add(new CustomMessageHandler());

 config.Services.Replace(typeof(IHttpControllerTypeResolver),
 new CustomControllerTypeResolver { Suffix = "Service" });
 config.Services.Replace(typeof(IHttpControllerSelector),
 new CustomControllerSelector("Service"));
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

479

Tip ■ notice that i set the suffix when i create instances of both classes. the CustomControllerTypeResolver
class needs to know the suffix so that it can select classes from the application assemblies that are controllers.
the CustomControllerSelector class needs to know the suffix because it needs to remove it from the class names to
create the controller name for the HttpControllerDescriptor objects. it is this dual use of the suffix that has led
Microsoft to define a field in the DefaultHttpControllerSelector class that is then used in other classes. a better
approach would be to define an IHttpControllerNameSelector interface that would consolidate the naming policy in a
single place, but i have chosen to take the more direct—if less ideal—path of just repeating the suffix as a string literal
when instantiating the classes that require it.

Creating a Controller with the New Suffix
The final step is to create a controller class that has the new suffix and will be selected by the custom classes.
Listing 19-14 shows the contents of the ProductsService.cs file that I added to the Controllers folder and used to
define a simple Web API controller.

Listing 19-14. The Contents of the ProductsService.cs File

using System.Net;
using System.Web.Http;
using Dispatch.Models;

namespace Dispatch.Controllers {
 public class ProductsService : ApiController {

 public IHttpActionResult Get() {
 return StatusCode(HttpStatusCode.ServiceUnavailable);
 }

 public IHttpActionResult Get(int id) {
 return StatusCode(HttpStatusCode.ServiceUnavailable);
 }

 public IHttpActionResult Post(Product product) {
 return StatusCode(HttpStatusCode.ServiceUnavailable);
 }
 }
}

I want it to be obvious that this is the controller that the application is using to respond to requests from the
client, so I have defined the same actions methods as in the ProductsController.cs file but modified them so that
they return the 503 (Service Unavailable) status code. To test the custom implementation classes, start the application
and click the Get All or Get One button. The classes I defined in this section will be used to match the request to a
controller; the ProductsService class will be selected, the appropriate action methods executed, and the status code
displayed in the browser window, as shown in Figure 19-7.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

480

Tip ■ You can also click the post button, but the custom message handler that i defined earlier will break the debugger,
so you will have to click the Visual studio Continue button to see the result.

Taking the Simpler Path
Creating two new interface implementations is a lot of work just to change the controller class suffix, but it provided
a nice demonstration of how you can create custom implementations of the dispatcher interfaces and use them to
customize the dispatch process.

In a real project, I would take a much more direct route, albeit an ugly one. All of the work in this section was
required because Microsoft defines the suffix in a field like this:

...
public static readonly string ControllerSuffix = "Controller";
...

I can’t change the value of the field because it is readonly—but it is also marked as static, and that means it is
possible to use reflection to change the value of the field and bypass the readonly constraint. Listing 19-15 shows the
changes required to the WebApiConfig.cs file.

Listing 19-15. Using Reflection to Change the Controller Class Suffix in the WebApiConfig.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using Dispatch.Infrastructure;
using System.Web.Http.Dispatcher;
using System.Reflection;

Figure 19-7. Changing the controller class suffix

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ DispatChing requests

481

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.MessageHandlers.Add(new CustomMessageHandler());

 //config.Services.Replace(typeof(IHttpControllerTypeResolver),
 // new CustomControllerTypeResolver { Suffix = "Service" });
 //config.Services.Replace(typeof(IHttpControllerSelector),
 // new CustomControllerSelector("Service"));

 FieldInfo field = typeof(DefaultHttpControllerSelector)
 .GetField("ControllerSuffix", BindingFlags.Static | BindingFlags.Public);
 if (field != null) {
 field.SetValue(null, "Service");
 }
 }
 }
}

Caution ■ this is a terrible, terrible example of the worst kind of behavior that all programmers should avoid at all
times. it circumvents the restrictions placed on the ControllerSuffix field by the original developers, it creates a
hard-coded dependency on a private implementation of an interface, and it will almost certainly break when a future
version of Web api takes a more helpful approach to defining the suffix. that said, i use this technique in a real projects
because i think it is a reasonable trade-off against reimplementing two low-level interfaces with the testing and mainte-
nance requirements that implies. But just because i think it is a good trade-off doesn’t mean that it will be appropriate for
your projects.

Summary
In this chapter, I explained how Web API dispatches requests, which is the process of receiving an HttpRequestMethod
object and using it to produce an HttpResponseMessage that will be used to generate a response to the client. I
explained the role of the message handler classes and the different dispatch interfaces that control the flow of a
request through a Web API application. I also demonstrated how to customize the dispatch process by creating
custom message handlers and by reimplementing some of the dispatch interfaces. In the next chapter, I start to
describe the URL routing feature, which is the first step for requests in the dispatch process.

www.it-ebooks.info

http://www.it-ebooks.info/

483

Chapter 20

URL Routing: Part I

In Chapter 19, I explained that URL routing is integrated into the Web API dispatch process by one of the built-in
message handlers. In this chapter, I explain how URL routing works in a Web API application and demonstrate how to
create convention-based routes, where routes are defined in a single place and used to match requests to controllers
and actions throughout the application, known as convention-based routing. In Chapter 21, I continue on the topic
of URL routing and show you a different approach that defines routes through attributes applied to controller classes
and action methods, known as direct or attribute-based routing. Table 20-1 summarizes this chapter.

Preparing the Example Project
I am going to continue working with the Dispatch project I created in Chapter 19, but there are some changes I need
to make. Listing 20-1 shows the WebApiConfig.cs file after I deleted the statements that changed the controller class
suffix and the statement that registers the message handler that causes the debugger to break for POST requests.

Listing 20-1. The Contents of the WebApiConfig.cs File

using System.Web.Http;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

Table 20-1. Chapter Summary

Problem Solution Listing

Specify the HTTP verb that an action method
can receive.

Apply the one of the verb attributes, such as HttpGet. 1–7

Obtain the action method from the
request URL.

Define a variable segment called action in the route
template.

8

Restrict the URLs that a route will match. Increase the use of fixed segments or apply constraints. 9, 13–15

Broaden the URLs that a route will match. Use default segment values and optional segments. 10–12

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

484

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

I also need to add a new Web API controller so that I can define routes that target it later in the chapter.
Listing 20-2 shows the contents of the TodayController.cs file that I added to the Controllers folder.

Listing 20-2. The Content of the TodayController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {

 public class TodayController : ApiController {

 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }
 }
}

This is a controller with a single action method that returns the name of the current day as a string. Getting the
current day doesn’t make for an interesting web service, but it is enough functionality for me to demonstrate how
the Web API URL routing system works.

I need to create a client that will target the controller, and in Listing 20-3 you can see the action method I added
to the HomeController.cs file.

Listing 20-3. Adding an Action in the HomeController.cs File

using System.Web.Mvc;

namespace Dispatch.Controllers {

 public class HomeController : Controller {

 public ActionResult Index() {
 return View();
 }

 public ActionResult Today() {
 return View();
 }
 }
}

The new action renders the default view associated. You can see that view in Listing 20-4, which shows the
content of the Today.cshtml file I created in the /Views/Home folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

485

Listing 20-4. The Contents of the Today.cshtml file

@{ Layout = null;}
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Today</title>
 <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
 <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
 <script src="~/Scripts/jquery-2.1.0.min.js"></script>
 <script src="~/Scripts/knockout-3.1.0.js"></script>
 <script src="~/Scripts/today.js"></script>
 <style>
 body { padding-top: 10px; }
 </style>
</head>
<body class="container">
 <div class="alert alert-success" data-bind="css: { 'alert-danger': gotError }">

 </div>
 <button class="btn btn-primary" data-bind="click: sendRequest">Get Day</button>
</body>
</html>

This is the same basic approach I have been using for many of the MVC views in this book. There is a Bootstrap-styled
div element that provides information about the outcome of the Ajax requests that the client makes and a button element
that uses Knockout to invoke a JavaScript function. The JavaScript function that the button invokes is called sendRequest,
and I defined it in the today.js file, which I added to the Scripts folder and which is shown in Listing 20-5.

Listing 20-5. The Contents of the today.js File

var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function () {
 $.ajax("/api/today/dayofweek", {
 type: "GET",
 success: function (data) {
 gotError(false);
 response(data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

486

Testing the Application Changes
To test the changes for this chapter, start the application and use the browser to navigate to the /Home/Today URL.
This will cause the MVC framework to render the Today.cshtml view for the browser. Click the Get Day button, and
you will see a 405 (Method Not Allowed) error message displayed in the alert div element at the top of the window,
as illustrated by Figure 20-1.

The default routing configuration of the application doesn’t match the Ajax request sent by the client to the
DayOfWeek action method defined by the new Today web service controller. I explain why this is—and how it can be
resolved—in the sections that follow.

Understanding URL Routing
The purpose of URL routing is to match HTTP requests to routes, which contain instructions for producing routing
data that is consumed by other components.

The HttpRoutingDispatcher message handler is responsible for processing HttpRequestMessage objects in
order to produce routing data and assign it to the HttpRequestContext.RouteData property. Figure 20-2 shows the
dispatch process with the details I described in Chapter 19.

Figure 20-1. Testing the new controller

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

487

This chapter is all about the URL routing part of the diagram, which represents the process by which the routing
system processes requests so that a URL such as this will produce the routing data values products and 1 for the
controller and id properties.

/api/products/1

Table 20-2 puts URL routing in context.

Figure 20-2. The Web API dispatch process

Table 20-2. Putting URL Routing in Context

Question Answer

What is it? URL routing processes requests in order to extract data that is used by other
components in the dispatch process, such as the classes that select controllers and
action methods.

When should you use it? URL routing is applied to all requests automatically.

What do you need to know? The default route defined in the WebApiConfig.cs file is suitable for simple RESTful
web services, but most complex applications will need some form of customization.

Note ■ remember that the UrL routing system just generates routing data; it doesn’t use that data to modify the
request (other than to set the HttpRequest.RouteData property) or generate the response. those tasks are handled by
the HttpControllerDispatcher and its interfaces, which i described in Chapter 21 and return to again in Chapter 21.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

488

Understanding the Routing Classes and Interfaces
There are four important types within URL routing: the IHttpRoute and IHttpRouteData interfaces and the
HttpRouteCollection class. The IHttpRoute interface describes a route, and Web API provides a default
implementation—the HttpRoute class—that is used in most applications. In the sections that follow, I describe each
of these types and the members they define, and I’ll show you how they work together throughout this chapter and in
Chapter 21. For quick reference, I have summarized the important types in Table 20-3.

Table 20-3. The Most Important URL Routing Classes and Interfaces

Name Description

IHttpRoute This interface describes a route. See the “Understanding the IHttpRoute Interface” section.

HttpRoute This is the default implementation of the IHttpRoute interface.

IHttpRouteData This interface describes the collection of data values extracted from a request. See the
“Understanding the IHttpRouteData Interface” section.

HttpRouteData This is the default implementation of the IHttpRouteData interface.

IHttpRouteConstraint This interface defines a restriction that limits the requests that a route will match. See
the “Using Routing Constraints” section.

HttpRouteCollection This is the class with which routes are registered and which receives requests from the
HttpRoutingDispatcher. See the “Understanding the HttpRouteCollection Class” section.

HttpRoutingDispatcher This message handler class integrates routing into the dispatch process. See Chapter 19.

RouteAttribute This class defines the Route attribute used to create direct routes on controller classes
and action methods. See Chapter 21.

RouteFactoryAttribute This class allows custom attributes to be defined that customize the generation of direct
routes. See Chapter 21.

RoutePrefix This attribute is used to define a route template prefix that applies to all of the direct
routes defined on a controller. See Chapter 21.

Using the classes I have described in the table, I can update my diagram of the dispatch process, as shown in
Figure 20-3. I explain how the different interfaces and classes operate in the sections that follow and in Chapter 19.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

489

Understanding the IHttpRouteData Interface
The IHttpRouteData interface describes the collection of data values that are extracted from a request when it is
processed. The interface defines the properties shown in Table 20-4.

Figure 20-3. Updating the dispatch diagram

Table 20-4. The Properties Defined by the IHttpRouteData Interface

Name Description

Route Returns the IHttpRoute object that generated the route data

Values Returns an IDictionary<string, object> that contains the routing data

An implementation of the IHttpRouteData interface is the result of the URL routing process and the means by
which the routing system provides data about the request for other components to consume.

The Values property is used to access the routing data that has been extracted from a request. Most routing
data is expressed as string values, but routes can produce any kind of data that other components may find helpful,
which is why the Values property returns a dictionary that maps keys to objects, rather than just strings. The default
implementation of the IHttpRouteData interface is the HttpRouteData class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

490

Understanding the IHttpRoute Interface
Routes are described by the IHttpRoute interface, which defines the properties and methods listed in Table 20-5.
You generally work with route objects indirectly, as I explain in the next section, but the properties and methods
defined by the IHttpRoute interface are useful in understanding how URL routing works, and you will see how the
types they return fit together throughout this chapter.

Understanding the HttpRouteCollection Class
The HttpRouteCollection class orchestrates the entire routing process, and as a consequence, it plays several
different roles.

First, the HttpRouteCollection provides the CreateRoute method that creates new routes using the HttpRoute
class, which is the default implementation of the IHttpRoute interface. There are several versions of the CreateRoute
method, as described in Table 20-6. This is the convention-based style of routing that I described in Chapter 19 and is
used to define routes in the WebApiConfig.cs file.

Table 20-5. The Methods and Properties Defined by the IHttpRoute Interface

Name Description

RouteTemplate Returns the template used to match requests. See the “Using Route Templates”
section.

Defaults Returns an IDictionary<string, object> used to provide default values for
routing data properties when they are not included in the request. Defaults are
usually defined as a dynamic object, as demonstrated in the “Using Routing
Data Default Values” section.

Constraints Returns an IDictionary<string, object> used to restrict the range of requests
that the route will match. Constraints are usually defined as a dynamic object, as
demonstrated in the “Using Routing Constraints” section.

DataTokens Returns an IDictionary<string, object> with data values that are available to
the routing handler. See Chapter 21.

Handler Returns the HttpMessageHandler onto which the request will be passed. This
property overrides the standard dispatch process.

GetRouteData(path, request) Called by the routing system to generate the routing data for the request.

Table 20-6. The HttpRouteCollection Methods for Creating New Routes

Name Description

CreateRoute(template,
defaults, constraints)

Returns an IHttpRoute implementation object that has been configured
with the specified template, defaults, and constraints

CreateRoute(template, defaults,
constraints, tokens)

Returns an IHttpRoute implementation object that has been configured
with the specified template, defaults, constraints, and tokens

CreateRoute(template, defaults,
constraints, tokens, handler)

Returns an IHttpRoute implementation object that has been configured
with the specified template, defaults, constraints, tokens, and message
handler

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

491

The different versions of the CreateRoute method all take parameters that correspond directly to the properties
defined by the IHttpRoute method. Using the CreateRoute method allows you to obtain implementations of the
IHttpRoute interface without tightly coupling your code to a specific implementation class, although there is nothing to
stop you from creating your own implementation of the interface or simply instantiating the HttpRoute class directly.

The CreateRoute method creates the route, but it doesn’t register it so that it will be used to match requests.
The second role that the HttpRouteCollection class plays is to provide a collection that is used to register routes for
use with an application. Table 20-7 lists the methods that provide the collection feature.

Table 20-7. The Collection Members Defined by the HttpRouteCollection Class

Name Description

Count This returns the number of routes in the collection.

Add(name, route) This adds a new route to the collection.

Clear() This removes all the routes from the collection.

Contains(route) This returns true if the collection contains the specified route.

ContainsKey(name) This returns true if the collection contains a route with the specified name.

Insert(index, name, route) This inserts a route with the specified name at the specified index.

Remove(name) This removes the route with the specified name from the collection.

TryGetValue(name, out route) This attempts to retrieve a route with the specified name from the collection.
If there is a route with that name, the method returns true and assigns the
route to the out parameter.

this[int] The HttpRouteCollection class defines an array-style indexer that retrieves
routes by their position in the collection.

this[name] The HttpRouteCollection class defines an array-style indexer that retrieves
routes by their name.

Note ■ as you will learn, routes are tested to see whether they can match a request, which means that the order in
which the routes are added to the collection is important. Just as with the MVC framework, you should add the most
specific routes first so that they are able to match requests before more general routes.

If you use the HttpRouteCollection class methods, then setting up a new route requires two steps: a call to the
CreateRoute method to create a new IHttpRoute object and a call to the Add or Insert method to add the route to
the collection.

A more common approach is to use the extension methods that are defined on the HttpRouteCollection class,
which allow routes to be set up in a single step. Table 20-8 shows the available extension methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

492

Understanding the Route Attributes
The Route attribute—defined as the RouteAttribute class in the System.Web.Http.Routing namespace—is applied
directly to classes and methods. This is the direct or attribute style of routing, where the routes are more specific than
those in the WebConfig.cs file and are defined alongside the code that will handle the request.

Note ■ Microsoft hasn’t settled on clear terminology for routes that are created using attributes applied to controller
classes or action methods. they switch between the terms attribute-based routes and direct routes, with the latter term
being emphasized in the names of classes and interfaces in the System.Web.Http.Routing namespace. it doesn’t
matter which term you use, but i have tried to be consistent in this chapter and use direct routes.

Working with Convention-Based Routing
In this section, I am going to use the WebApiConfig.cs file to define a series of convention-based routes that
will demonstrate the different ways in which you can match requests and generate routing data. Many of the
techniques apply equally to direct routes, which I describe in Chapter 21. Table 20-9 puts convention-based
routing in context.

Table 20-8. The HttpRouteCollection Extension Methods

Name Description

IgnoreRoute(name, template) Creates and registers a route with the specified name and template that
prevents a request from being handled by Web API

IgnoreRoute(name, template,
constraints)

Creates and registers a route with the specified name, template, and
constraints that prevents a request from being handled by Web API

MapHttpBatchRoute(name,
template handler)

Creates and registers a route for the batch handling of HTTP requests

MapHttpRoute(name, template) Creates and registers a route with the specified name and template

MapHttpRoute(name, template,
defaults)

Creates and registers a route with the specified name, template, and defaults

MapHttpRoute(name, template,
defaults, constraints)

Creates and registers a route with the specified name, template, defaults, and
constraints

MapHttpRoute(name, template,
defaults, constraints, handler)

Creates and registers a route with the specified name, template, defaults,
constraints, and message handler

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

493

Using Route Templates
Templates are at the heart of the routing system and are the start point for matching requests and extracting
information from the URL. Web API route templates work in the same way as those in the MVC framework, and you
can see an example of a Web API route template in the WebApiConfig.cs file, where Visual Studio has set up the
default convention-based route for web services.

using System.Web.Http;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

The routing system treats URLs as a series of segments separated by the / character. The
URL http://myhost.com/api/products/1 has three segments: api, products, and 1. (The protocol, port, and
hostname are all ignored.)

Tip ■ the terminology here gets a bit muddled because there are segments in the request UrL and in the routing
template. Don’t worry if it doesn’t make immediate sense—it will all start to fall into place through examples.

Routing templates match requests based on the segments in the URL that has been asked for using a system
of fixed (or static) and variable segments. Fixed segments will match URLs only if they have the same text in the
corresponding segment. As an example, the routing template for the default route has one fixed segment: api. This
means the route will match only URLs whose first segment is the string api. URLs that have different first segments
will not be matched by the route template.

Table 20-9. Putting Convention-Based Routing in Context

Question Answer

What is it? Convention-based routing defines URL routes in a single location—the WebApiConfig.cs
file—for the entire application. The alternative is to define routes by applying attributes to
classes and methods, which I describe in Chapter 19.

When should you
use it?

The choice between convention-based routing and defining routes with attributes is largely a
matter of personal preference, as I explain in Chapter 21.

What do you need
to know?

The default routing configuration relies on matching action methods based on the HTTP
verb. Define a custom route with an action variable segment if you want to specify an action
method in the URL. See the “Routing to the New Controller” section for details.

www.it-ebooks.info

http://myhost.com/api/products/1
http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

494

Tip ■ route templates are defined without a leading / character. if you do put in a leading /, then an exception will be
thrown when the application is started.

The template variable segments will match any URL that has a corresponding segment, irrespective of what the
value of the segment is. Variable segments are denoted with the { and } characters, and the value of the URL segment
is assigned to a variable of the specified name in the routing data, known—confusingly—as segment variables.

The default route template contains two variable segments, as follows:

...
routeTemplate: "api/{controller}/{id}",
...

The template will match any URL that contains three segments where the first segment is api. The contents of the
second and third segments will be assigned to route data variables called controller and id.

Tip ■ You can vary the set of UrLs that a route template will match by using constraints and defaults, which i explain
in the “Controlling route Matching” section.

Routing to the New Controller
Two segment variables have special importance in Web API: controller and action. The controller variable is
used to match the controller that will be used to handle the request, as I explained in Chapter 19. The action variable
can be used to specify the action method defined by the controller, just as in the MVC framework, but there isn’t a
segment to capture this variable in the default route.

This is because Web API uses the HTTP verb from the request to select an action method by default. I explain the
action method selection process in detail in Chapter 22, but as part of the drive toward RESTful web services, Web API
takes notice of the type of HTTP request.

The reason that the client code that I added at the start of the chapter can’t reach the new controller is because
the action method it contains doesn’t provide the selection process with the information it requires to perform the
default action method selection.

The URL that the client requests is as follows:

/api/today/dayofweek

The api prefix matches the fixed segment at the start of the route template. The variable segments extract a value
of today for the controller variable and dayofweek for the id property. This doesn’t provide the selection mechanism
with enough information to match the request to an action method, which is why an error is reported. There are two
ways to get Web API to route requests to the new controller.

Mapping Request Verbs to Action Methods
One way to give the action method selection mechanism the information it requires is to specify which HTTP verbs an
action method can handle. For my example controller, I need to specify that the DayOfWeek action method should be used
for GET requests, which is the request type that the jQuery client is sending. You can see how I did this in Listing 20-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

495

Listing 20-6. Associating an HTTP Verb with an Action Method in the TodayController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {

 public class TodayController : ApiController {

 [HttpGet]
 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }
 }
}

The HttpGet attribute is one of a set that Web API provides so that you can specify which HTTP methods an
action method can receive. There are attributes for different HTTP verbs: HttpGet, HttpPost, HttpPut, and so on.

You don’t need to use these attributes if the action methods in your controller follow the Web API RESTful
pattern, which is why I have not had to apply attributes to the action methods in the Products controller. I explain
the pattern that Web API looks for to match verbs to action methods in Chapter 22, but for this chapter it is enough to
know that you can provide the verb information needed to select the action method using one of the verb attributes.

However, caution is required because it is easy to create an unwanted effect. Using a verb attribute allows the
default route to direct requests to the DayOfWeek action method, but it does so using only part of the URL that has been
requested. As a reminder, here is the default route template:

...
routeTemplate: "api/{controller}/{id}"
...

And here is the URL from the today.js file that jQuery uses to make the HTTP request:

...
$.ajax("/api/today/dayofweek", {
...

The problem is that the part of the requested URL intended to specify the action method is being assigned to
the id route variable, which is then ignored when the action method is selected. By default, only the value of the
controller variable and the verb attribute are considered when an action method is selected. To demonstrate the
effect this causes, I have added a new action method to the Today controller, as shown in Listing 20-7.

Listing 20-7. Adding a New Action Method to the TodayController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {

 public class TodayController : ApiController {

 [HttpGet]
 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

496

 [HttpGet]
 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

If you start the application and click the Get Day button, you will see a 500 (Internal Server Error) message reported.
The F12 developer tools will allow you to look at the HTTP response sent by the web service, which includes this message:

Multiple actions were found that match the request

The response from the web service also contains a stack trace, so you may have to dig around to see the error
message. The error arises because Web API can’t work out which of the action methods the request is intended for.
It is impossible to differentiate between the action methods when only the controller routing variable and the verb
specified by the attributes are available with which to make a decision.

Tip ■ i explain how to deal with errors properly in Chapter 25.

Creating a Custom Route Template
The HttpGet attribute—and the other verb attributes—is useful when the action methods in a controller are distinctive
enough that the selection process can tell them apart, but a better solution to this problem is to define a custom route
that has a template that uses all of the information in the URL sent by the client. Listing 20-8 shows the route I defined
in the WebApiConfig.cs file.

Listing 20-8. Defining a Custom Route in the WebApiConfig.cs File

using System.Web.Http;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "IncludeAction",
 routeTemplate: "api/{controller}/{action}"
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

497

Caution ■ the route that i have added in Listing 20-8 contains a common problem that prevents requests to the
Products controller from working correctly. i explain what the problem is and how to avoid it in Chapter 22.

I have used the simplest version of the MapHttpRoute extension method, which requires only a name and a
routing template. My new route defines a template that matches all of the segments in the URL sent by the client
and captures the last segment as a route variable called action. This is one of the special variables—along with
controller—that are used in the action method selection process, and it is assumed to contain the name of the
action method that will receive the request. If the route data contains an action value, then it is used in preference to
the HTTP verb to select the action method.

Tip ■ route template segments usually match exactly one UrL segment, but you can make the last segment in a
template match multiple UrL segments by prefixing it with an asterisk, such as {*catchall}. this feature isn’t often
needed in web services because the request UrL generally contains the segments needed to target the controller
(and, optionally, the action method) and the data required for parameter binding (as described in part 2).

The URL routing system evaluates routes in the order in which they are defined in the HttpRouteCollection, and
the evaluation process stops as soon as a route is found that matches the current request. The MapHttpRoute method
appends new routes to the end of the collection, which means that I must define my new route before the default one
to ensure it is asked to route the requests from the client.

SpeCIFYING rOUte paraMeter NaMeS

You will notice that i used the C# named parameter feature in Listing 20-8 to denote which argument was the
route name and which is the template, like this:

...
config.Routes.MapHttpRoute(
 name: "IncludeAction",
 routeTemplate: "api/{controller}/{action}"
);
...

this is just a convention, and i could have achieved the same effect by calling the MapHttpRoute method with
normal parameters, like this:

...
config.Routes.MapHttpRoute("IncludeAction", "api/{controller}/{action}");
...

Using named parameters is helpful because some of the arguments required to define complex routes look
similar, and making it clear which arguments are which makes the purpose of the route more obvious to someone
reading your code. ensuring routes work properly can be a troublesome process in large projects, and it is a good
idea to make routes as clear as possible—specifying parameter names can help make the purpose and function
of a route more obvious.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

498

You can see the effect of the new route by starting the application, using the browser to navigate to the /Home/Today
URL, and clicking the Get Day button. The client will send a request to the /api/today/dayofweek URL, which will be
matched by the route I defined in Listing 20-8. The route template will create route data variables called controller and
action—corresponding to the variable segments—with the values today and dayofweek. The action method selection
process will invoke the DayOfWeek action method defined by the Today controller, which results in Figure 20-4.

Figure 20-4. The effect of defining a custom route

UNDerStaNDING the UrL preFIX

the convention is to prefix Web api UrLs with /api, which is why the route templates i define in this chapter
begin with a fixed /api segment. You don’t have to follow this convention, but you need to understand why it
exists and what the impact of ignoring it will be.

the UrL routing feature is available across all the technologies in the aSp.net family and is implemented as
part of the aSp.net platform as a module. (For details of modules and how they work, see my Pro ASP.NET MVC
Platform book, published by apress.)

Web api has its own implementation of the routing system, but when the application is hosted by iiS—which is
required when using the MVC framework as well—then the Web api routes are consolidated with the MVC routes
into a single collection.

the order in which the Web api and MVC framework routes are arranged depends on the Application_Start
method defined in the Global.asax file. the default is that the Web api routes are set up first, as follows:

...
void Application_Start(object sender, EventArgs e) {
 AreaRegistration.RegisterAllAreas();
 GlobalConfiguration.Configure(WebApiConfig.Register);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
}
...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

499

You can change the order so that the MVC routes are defined first if you prefer. Whichever way the routes are
set up, you must ensure that requests are routed to the right part of the application—and that is where the
/api prefix helps, by defining a fixed segment that clearly denotes web service requests and allows them to
be captured by the Web api routes.

if you stop using a prefix, then you must ensure that your routes are specific enough to capture the requests
intended for the Web api controllers without matching requests intended for the MVC controllers. that requires
careful route planning and lots of testing.

if you just want to deliver a web service without prefixes, then reverse the order of the routing configuration
statements in the Global.asax file and use an /mvc prefix for requests that are intended for MVC controllers.

Controlling Route Matching
Defining a custom route has fixed the problem with my new client code, but it has done so by causing another kind of
problem. To see what has happened, start the application, using the browser to navigate to /Home/Index and clicking
the Get One button. You will see a 404 (Not Found) message displayed, as shown in Figure 20-5.

Figure 20-5. Receiving an error

Clicking the Get One button causes the client to request the following URL:

/api/products/2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

500

This URL is matched by the route template of the route defined in Listing 20-8.

...
routeTemplate: "api/{controller}/{action}"
...

The route matches the request and generates route data that contains controller and action variables whose
values are products and 2, respectively. The controller variable is fine—it contains the name of the Web API
controller that the request was intended for. The problem is with the action variable, which is given special meaning
and causes the action method selection process to look for an action method called 2. Since there is no such method,
Web API produces a 404 (Not Found) response.

The URL routing system doesn’t know about the significance of individual segments or segment variables
(it doesn’t even know that the action method selection process gives special meaning to the controller and action
variables), so it diligently locates a route whose route template matches the request and uses it to produce routing data.

In the sections that follow, I’ll show you different techniques for controlling the way that routes match requests,
allowing for both greater specificity (matching fewer requests) and greater generality (matching more requests).
Table 20-10 puts controlling route matching in context.

Using Routing Data Default Values
Route data defaults are a flexible feature that allows you to supplement the data extracted from the request URL in
order to control the route matching and controller/action selection process. In the following sections, I show you how
to use default values to restrict—and broaden—the range of URLs that a route will match.

Using Segment Defaults to Restrict Matches
The most direct way to limit the set of URLs that a route will match is to increase the number of fixed segments. For my
example route, I can stop it matching requests for other controllers by including the name of the controller in a static
segment, as shown in Listing 20-9.

Table 20-10. Putting Controlling Route Matching in Context

Question Answer

What is it? The range of requests that a route will match can be changed by applying optional segments,
default values, and constraints.

When should
you use it?

Controlling route matching can be useful in a complex application where it is difficult to direct
requests to the correct controller and action method.

What do you
need to know?

If you rely heavily on defaults and constraints to match requests, then it may be worth
reconsidering the design of the application. Complex route configurations are rarely required in a
Web API application and can suggest a structural problem that might be addressed by simplifying
and consolidating the web service controllers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

501

Listing 20-9. Fixing the Controller Segment in the Custom Route in the WebApiConfig.cs File

using System.Web.Http;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "IncludeAction",
 routeTemplate: "api/today/{action}",
 defaults: new { controller = "today" }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

I removed the controller variable segment and replaced it with a fixed segment that means the route template
will match only URLs that start with /api/today. The controller selection process—which I described in Chapter 19—still
requires a value for the controller routing variable, so I have used the defaults parameter to define a set of values
that should be used for routing data if there is no value in the URL.

...
defaults: new { controller = "today" }
...

Defaults are specified with a dynamic object with properties that correspond to variables to be added to the
routing data. In this case, there is only one property—controller—and it is set to today so that the selection process
will route matching requests to the Today controller class.

Using Optional Segments to Widen Matches
Default values can also be used to widen the set of URLs that a route will match by denoting optional segments.
This allows a route template to match URLs that don’t contain a corresponding segment, as shown in Listing 20-10.

Listing 20-10. Using Optional Segments in the WebApiConfig.cs File

...
config.Routes.MapHttpRoute(
 name: "IncludeAction",
 routeTemplate: "api/today/{action}/{day}",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

502

 defaults: new {
 controller = "today",
 day = RouteParameter.Optional
 }
);
...

I have defined a new variable segment that will define a routing variable called day, and I have defined a
corresponding default property that is set to the RouteParameter.Optional value.

This allows my custom route to match URLs such as /api/today/dayofweek/1 (which contains a day segment)
and /api/today/dayofweek (which contains no day segment).

Simply broadening the range of URLs that are matched isn’t useful in its own right, but the presence of route data
variables is taken into account when selecting an action method. In Listing 20-11, you can see a new action method
I defined on the Today controller.

Listing 20-11. Defining a New Action Method in the TodayController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {

 public class TodayController : ApiController {

 [HttpGet]
 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }

 [HttpGet]
 public string DayOfWeek(int day) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 }

 [HttpGet]
 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

Tip ■ notice that i still have to apply the HttpGet attribute. the action route data variable helps the action method
selection process, but Web api still checks for the attribute that corresponds to the http verb as a precaution before
executing the method. i explain this process in detail in Chapter 22.

The new action method is also called DayOfWeek, but it defines a day parameter that corresponds to the optional
segment in the custom route. When the action method is selected, the presence of a day variable in the route data will
determine the version of the method chosen. If there is no day value, then the parameterless DayOfWeek method will
be chosen. If there is a day value, then it will be used in the parameter binding process that I described in Part 2, and
the other version of the DayOfWeek method will be used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

503

The simplest way to test the new action method is with Postman. If you send GET requests to /api/today/dayofweek
and /api/today/dayofweek/4, you will see different days returned in the response (unless you do this on Thursday, in
which case both methods will return the same value). For testing on a Thursday, request /api/today/dayofweek/5 instead.

Using Default Segment Values to Widen Matches
I used default values in the previous section to create an optional segment, which allowed a broader range of URLs to
be matched to action methods. The standard use of default values is to allow a range of URLs to be mapped to a single
action method by providing a value for the routing data that is used when a segment isn’t defined in the request URL.
Listing 20-12 shows how I have changed the definition of the day property in the defaults object for the custom route.

Listing 20-12. Setting a Default Value for a Custom Route in the WebApiConfig.cs File

...
config.Routes.MapHttpRoute(
 name: "IncludeAction",
 routeTemplate: "api/today/{action}/{day}",
 defaults: new {
 controller = "today",
 day = 6
 }
);
...

I have specified a default value of 6. The default value is used only when the route matches a URL that doesn’t contain
a day segment. The URL sent from the jQuery client I created at the start of the chapter is /api/today/dayofweek, and
since there is no day segment, the default value is applied—and this has the effect of treating the request as though
the URL was actually /api/today/dayofweek/6. The default value is not used when the URL contains a day segment,
so the overall effect is to direct all requests whose URLs start with /api/today/dayofweek to the DayOfWeek action method
that takes a parameter (the one I defined in Listing 20-11).

To test the default value, start the application, use the browser to navigate to /Home/Today, and click the Get Day
button. The URL sent by the client will not contain a day segment, so the default value will be used, which means that
the response from the action method will always be the name of the sixth day of the week, as shown in Figure 20-6.
(As far as .NET is concerned, the week starts with Sunday, which is day zero. You may get different results depending
on your calendar and locale settings.)

Figure 20-6. The effect of a default value

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

504

Using Routing Constraints
Routing constraints allow you to narrow the range of requests that a route will match by adding additional checks
beyond matching the routing template. In the sections that follow, I’ll show you the different ways in which
constraints can be applied.

Caution ■ Use constraints only to control route matching and not to perform validation of the data values that will be used
as action method parameters or by the parameter binding process i described in part 2. Validating the data that is passed
to action methods is the job of the model validation process, which i describe in Chapter 18. Using routing constraints to
perform validation will cause the client to receive a 404 (not Found) response for requests that contain bad data, which is
confusing to the user because their client will have targeted a valid UrL but will have done so with unsuitable data. Model
validation allows you to reject requests and provide information about what the problems with the data are.

Understanding Constraints
Constraints are expressed using implementations of the IHttpRouteConstraint interface, which is defined in the
System.Web.Http.Routing namespace. Here is the definition of the interface:

using System.Collections.Generic;
using System.Net.Http;

namespace System.Web.Http.Routing {

 public interface IHttpRouteConstraint {

 bool Match(HttpRequestMessage request, IHttpRoute route, string parameterName,
 IDictionary<string, object> values, HttpRouteDirection routeDirection);
 }
}

The IHttpRouteConstraint interface defines the Match method, which is passed arguments required to
constrain the match: the HttpRequestMessage object that represents the request, the IHttpRoute object that is trying
to match the request, the name of the parameter that the constraint is being applied to, and a dictionary containing
the data matched from the request. The final parameter is an HttpRouteDirection value, which is used to indicate
whether the route is being applied to an incoming request or being used to generate an outgoing URL. The response
from the Match method determines whether the route can match the request; a result of true allows a match, and a
result of false prevents matching.

Creating a Custom Constraint
My goal in this section is to create a constraint that will match or reject requests based on the user-agent header
sent by the client. Listing 20-13 shows the contents of the UserAgentConstraint.cs file that I added to the
Infrastructure folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

505

Listing 20-13. The Contents of the UserAgentConstraint.cs File

using System.Collections.Generic;
using System.Linq;
using System.Net.Http;
using System.Web.Http.Routing;

namespace Dispatch.Infrastructure {

 public class UserAgentConstraint : IHttpRouteConstraint {
 private string requiredUA;

 public UserAgentConstraint(string agentParam) {
 requiredUA = agentParam.ToLowerInvariant();
 }

 public bool Match(HttpRequestMessage request, IHttpRoute route,
 string parameterName, IDictionary<string, object> values,
 HttpRouteDirection routeDirection) {

 return request.Headers.UserAgent
 .Where(x =>
 x.Product != null && x.Product.Name != null &&
 x.Product.Name.ToLowerInvariant().Contains(requiredUA))
 .Count() > 0;
 }
 }
}

This constraint receives a constructor argument that is used to match user-agent strings. When the Match method
is called, I get the value of the User-Agent header through the HttpRequestMessage object and check to see whether
it contains the target string.

Tip ■ You can see an example of a constraint that operates on a segment variable in Chapter 21.

To demonstrate the use of the constraint, I have defined two routes in the WebApiConfig.cs file,
as shown in Listing 20-14.

Listing 20-14. Defining Routes in the WebApiConfig.cs File

using System.Web.Http;
using Dispatch.Infrastructure;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

506

 config.Routes.MapHttpRoute(
 name: "ChromeRoute",
 routeTemplate: "api/today/DayOfWeek",
 defaults: new { controller = "today", action = "dayofweek"},
 constraints: new { useragent = new UserAgentConstraint("Chrome") }
);

 config.Routes.MapHttpRoute(
 name: "NotChromeRoute",
 routeTemplate: "api/today/DayOfWeek",
 defaults: new { controller = "today", action = "daynumber" }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

As I noted at the start of this section, constraints should be used only to control whether a request matches a
route—and not to perform validation of data that is going to be passed to the action method. Constraints work best
when you use them to select between related routes, such as the ones in Listing 20-14. All requests to the
/api/today/dayofweek URL are routed to the Today controller, but requests made from the Chrome browser are
directed to the DayOfWeek action method, while all other clients are directed to the DayNumber action method.

You can see the effect by starting the application and using two browsers (one of which must be Chrome and
one of which must not be Chrome) to navigate to the /Home/Today URL; then click the Get Day button. The response
sent by the web service will be different for each browser, as shown by Figure 20-7, which illustrates Chrome and
Internet Explorer.

Figure 20-7. Using a custom constraint

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

507

Using the Built-in Constraints
The System.Web.Http.Routing.Constraints namespace contains classes that provide a range of built-in constraints.
Table 20-11 lists the constraint classes.

Table 20-11. The Built-in Route Constraint Classes

Name Description

AlphaRouteConstraint Matches a route when the segment variable contains only alphabetic characters.

BoolRouteConstraint Matches a route when the segment variable contains only true or false.

DateTimeRouteConstraint Matches a route when the segment variable can be parsed as a DateTime object.

DecimalRouteConstraint
DoubleRouteConstraint
FloatRouteConstraint
IntRouteConstraint
LongRouteConstraint

Matches a route when the segment variable can be parsed as a decimal, double,
float, int, or long value.

HttpMethodConstraint Matches a route when the request has been made with a specific verb. (This class
is defined in the System.Web.Http.Routing namespace.)

MaxLengthRouteConstraint
MinLengthRouteConstraint

Matches a route when the segment variable is a string with a maximum or
minimum length.

MaxRouteConstraint
MinRouteConstraint

Matches a route when the segment variable is an int with a maximum or
minimum value.

RangeRouteConstraint Matches a route when the segment variable is an int within a range of values.

RegexRouteConstraint Matches a route when the segment variable matches a regular expression.

Caution ■ i don’t want to endlessly labor the point, but these constraint classes make it easy to validate data in the
wrong place, generating 404 (not Found) errors that will confuse the client application and the user. See Chapter 18 for
details of the model validation process, which can be used to return meaningful errors when the data sent by the client
cannot be used.

In Listing 20-15, you can see how I have used the RegExpRouteConstraint class to allow the route to match a
limited range of controller names.

Listing 20-15. Using a Built-in Constraint in the WebApiConfig.cs File

using System.Web.Http;
using Dispatch.Infrastructure;
using System.Web.Http.Routing.Constraints;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

508

 config.Routes.MapHttpRoute(
 name: "ChromeRoute",
 routeTemplate: "api/today/{action}",
 defaults: new { controller = "today" },
 constraints: new {
 useragent = new UserAgentConstraint("Chrome"),
 action = new RegexRouteConstraint("daynumber|othermethod")
 }
);

 config.Routes.MapHttpRoute(
 name: "NotChromeRoute",
 routeTemplate: "api/today/DayOfWeek",
 defaults: new { controller = "today", action = "daynumber" }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

I have added an action variable segment to the route template and used the RegexRouteConstraint class to limit
the range of values that will match the route to daynumber and othermethod.

Tip ■ there is no othermethod action defined by the Today controller. as i explained earlier, the routing system has
no insight into the data it extracts from the request, and this extends to constraints and default values. the UrL system
doesn’t know that special attention is paid to the action route variable by the action method selection process and so
has no means—or interest—in ensuring that the constrained values are useful.

Notice that I have assigned the RegexRouteConstraint object to a property called action in the dynamic object
used to set the constraints property. This is how you tell the routing system which route data variable the constraint
applies to.

The effect of my constraint is to prevent the route matching the request sent by the client I created at the start
of the chapter if Chrome is used—that’s because there is no combination of user-agent and URL that the client can
produce that will match the combined constraints. As a consequence, all requests made from the client in Chrome
to the Today controller will be matched by the NotChromeRoute and directed to the DayNumber action, as shown in
Figure 20-8.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20 ■ UrL roUting: part i

509

Summary
In this chapter, I explained how URL routing fits into the dispatch process and showed you how to create
convention-based routes to match requests. I showed you how basic matching is configured with a routing template
and changed through default values and constraints. In the next chapter, I describe how to create direct routes, where
the route is specified by applying attributes to controllers or action methods.

Figure 20-8. The effect of a route constraint

www.it-ebooks.info

http://www.it-ebooks.info/

511

Chapter 21

URL Routing: Part II

In this chapter, I continue describing the Web API URL routing feature, focusing on direct routes, which are defined by
applying attributes to controllers and action methods. I also show you different ways in which you can customize the
routing process. Table 21-1 summarizes this chapter.

Preparing the Example Project
I am going to carry on using the Dispatch project, but I am going to remove the custom routes that I added in
Chapter 20 so that the application has only the default routing configuration defined in the WebApiConfig.cs file,
as shown in Listing 21-1.

Table 21-1. Chapter Summary

Problem Solution Listing

Define a direct route. Apply the Route attribute to one or more action
methods or to the controller itself.

1, 2, 10, 11

Define a common prefix that will be used in all
of the direct routes in a controller.

Apply the RoutePrefix attribute to the
controller class.

3

Define an optional segment in a direct route. Add a question mark to the segment name and
define a default parameter name.

4, 5

Define a default segment in a direct route. Assign a value to the segment in the route
template.

6

Constrain a direct route. Add a constraint shorthand to the segment in the
route template.

7, 8, 16–20

Change the precedence of direct routes. Set the Order property of the Route attribute. 9

Handle a request matched by a contention-based
route without a controller.

Create a custom route handler. 12, 13

Pass information from the route to other
components.

Use data tokens. 14, 15

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

512

Listing 21-1. The Contents of the WebApiConfig.cs File

using System.Web.Http;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

Removing the custom routes means that the client I added in Chapter 20 is unable to target the action methods
in the Today controller because the default convention-based route doesn’t capture an action value and there are
multiple actions that have been decorated with the HttpGet attribute. To see the effect of removing the custom
routes, start the application and navigate to the /Home/Today URL using the browser. Clicking the Get Day button will
produce a 500 (Internal Server Error) message, as shown in Figure 21-1.

Understanding Direct Routing
Direct routes are applied using attributes to the controller class and action methods, rather than in the WebApiConfig.cs
file. Direct routing supports all of the same features as convention-based routing—including route templates, fixed
and variable segments, defaults, and constraints—but they are applied directly to the controller class. In the sections
that follow, I show you how to create direct routes and demonstrate how they work. Table 21-2 puts direct routing
in context.

Figure 21-1. The effect of removing custom routesfrom the example application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

513

SeLeCtING CONVeNtION-BaSeD Or DIreCt rOUtING

the difference between the two styles of routing is how individual routes are defined. as you saw in Chapter 20,
convention-based routing puts all of the routes in the WebApiConfig.cs file. By contrast, direct routing defines
routes through the use of attributes.

there is no technical difference in the routes that are created or the way that they are evaluated, and when it
comes to choosing a style of routing, you should pick whichever one feels right to you. For me, this is
convention-based routing because i like to keep the different parts of the application separate, but for many
others, the attraction of direct routing is that you can see how routes relate to action methods by looking at the
controller classes.

there are programmers who firmly believe that one approach to routing is superior to the other, but they are
mistaking their preferences for a perceived benefit that doesn’t exist, regardless of which routing style they
advocate. You can match any pattern of UrLs using either technique, and you can safely ignore anyone who
argues otherwise.

Don’t worry if you don’t have a preference for one style of routing. Web api allows convention-based and direct
routing to coexist in an application, and you can easily experiment to see what works best for you. if you don’t
know where to start, then i recommend you start with convention-based routing. if you find yourself staring blankly
at the routes you end up with in the WebApiConfig.cs file trying to remember what you were aiming for, then
give direct routing a try. or, if you try direct routing but you are forever surprised by the way requests are matched
because you have forgotten where you applied the attributes, then convention-based routing is worth a go.

the bottom line is that both techniques work the same behind the scenes and produce the same result: one or
more routes that are used to match requests. the path you follow to generate those routes is entirely up to you,
and you should take the time to experiment until you find an approach that you feel comfortable with.

Creating a Direct Route
At the heart of the direct routing feature is the Route attribute, which is defined by the RouteAttribute class in the
System.Web.Http namespace. The Route attribute defines the properties shown in Table 21-3.

Table 21-2. Putting Direct Routing in Context

Question Answer

What is it? Direct routing allows routes to be defined by applying attributes to action methods
or controller classes.

When should you use it? See the “Selecting Convention-Based or Direct Routing” sidebar.

What do you need to know? Features such as optional segments, default segment values, and segment
constraints are all applied to the route template.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

514

There are only three properties, but as you will learn, direct routing manages to pack a lot of functionality into
them, especially the routing template.

Applying the Route Attribute
To create a direct route, simply apply the Route attribute to an action method and define a route template that will
match the URLs you are interested in. Multiple instances of the Route attribute can be applied to an action method,
and you can apply the attribute to as many action methods as you require. Listing 21-2 shows the addition of the
Route attribute to the action methods in the Today controller.

Listing 21-2. Defining Direct Routes in the TodayController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {

 public class TodayController : ApiController {

 [HttpGet]
 [Route("api/today/dayofweek")]
 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }

 [HttpGet]
 [Route("api/today/dayofweek/{day}")]
 public string DayOfWeek(int day) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 }

 [HttpGet]
 [Route("getdaynumber")]
 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

I have applied the Route attribute to all three action methods in the controller. I have used the simplest form of
the attribute, which takes a route template as its argument. The first two route templates I have defined (for the two
versions of the DayOfWeek method) match the kind of URL pattern that I demonstrated in Chapter 20: there is an api
prefix, followed by fixed and variable segments.

Table 21-3. The Properties Defined by the Route Attribute

Name Description

Name Specifies the name of the route. Route names are used when generating outgoing URLs.

Template Specifies the route template that will be used to match requests. See the next section for details.

Order Specifies the order in which routes are applied; see the “Ordering Direct Routes in a Controller” section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

515

The third use of the Route attribute—on the DayNumber method—follows a different pattern, just to demonstrate
that you can define route templates that match any kind of URL, even if the route template pattern is not consistent
with the others defined by the controller.

Notice that I don’t have to specify the controller or action route data values. The configuration process that
locates the Route attribute and sets up the direct routes uses the context in which the attribute has been applied to
generate the information required for the controller and action method selection processes.

Note ■ Behind the scenes, Web api doesn’t actually set the controller and action route data values for direct
routes. Direct routes use the data tokens feature, which allows data to be passed from a route to other components in the
system outside of the standard route data. a data token is defined that contains a reference to the action method that the
route applies to, which means the method doesn’t have to be located from the route data values. this is an optimization
because the direct route system has to locate the action methods to find the Route attribute instances, and using route
data would mean rendering this information to controller and action values, which would later be used to locate the
action method once again. the drawback of this approach is that the meaning of the data tokens is hard-coded into the
default classes that select controllers and action methods, which means you have to replicate the behavior in custom
implementations.

To test the new route, start the application and use the browser to navigate to the /Home/Today URL. When you
click the Get Day button, the URL requested by the client will be matched against one of the routes generated from the
Route attribute, and the corresponding action method will be used to handle the request, as illustrated by Figure 21-2.

Defining a Common Prefix
The RoutePrefix attribute can be applied to a controller to define a common prefix for routes defined with the Route
attribute, which can help simplify the use of the attribute. In Listing 21-3, you can see how I have added the
RoutePrefix attribute to the Today controller.

Figure 21-2. The effect of creating direct routes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

516

Listing 21-3. Applying a Common Prefix in the TodayController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {

 [RoutePrefix("api/today")]
 public class TodayController : ApiController {

 [HttpGet]
 [Route("dayofweek")]
 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }

 [HttpGet]
 [Route("dayofweek/{day}")]
 public string DayOfWeek(int day) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 }

 [HttpGet]
 [Route("~/getdaynumber")]
 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

I have used the RoutePrefix attribute to define a common prefix of api/today and updated the template used for
the Route attributes I applied to the DayofWeek methods.

The route template that I defined for the DayNumber method doesn’t share a common prefix with the other direct
routes in the controller. To prevent the prefix from being applied, I have updated the route template so that it begins
with ~/, like this:

...
[Route("~/getdaynumber")]
...

Defining Optional Segments
Direct routes support optional segments directly in the route template, which provides a more natural syntax than
is available in convention-based routing. In Listing 21-4, you can see how I have made the id segment optional in a
route and used this to collapse together two action methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

517

Listing 21-4. Defining an Optional Segment in the TodayController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {

 [RoutePrefix("api/today")]
 public class TodayController : ApiController {

 //[HttpGet]
 //[Route("dayofweek")]
 //public string DayOfWeek() {
 // return DateTime.Now.ToString("dddd");
 //}

 [HttpGet]
 [Route("dayofweek/{day?}")]
 public string DayOfWeek(int day = -1) {
 if (day != -1) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 } else {
 return DateTime.Now.ToString("dddd");
 }
 }

 [HttpGet]
 [Route("~/getdaynumber")]
 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

The overall effect of an optional segment is the same in a direct route, but there are some important
implementation differences. First, the segment is marked as optional by appending a ? character after the variable
name so that the day segment becomes the day? segment, like this:

...
 [Route("dayofweek/{day?}")]
...

I also have to set a default value on the action method parameter, as follows:

...
public string DayOfWeek(int day = -1) {
...

The route that the Route attribute generates will match URLs with a day segment (such as /api/today/dayofweek/2)
and without (such as /api/today/dayofweek). For URLs that do not contain a day segment, the route data will not contain
a day value, and the default parameter value will be used instead.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

518

Caution ■ the route won’t match UrLs properly if you define an optional route template segment but forget to set a
default parameter value.

In the listing, I have assigned a default parameter value of -1 to the day parameter, and I check for this value to see
whether I should return today’s name or the name of a specific day of the week.

There is, however, a problem with this approach, which is that I can’t tell whether I have received a value of -1
because the client requested a URL without a day segment or because the day segment was provided, but with a value
of -1. This may seem like a subtle distinction, but a URL with a day segment of -1 (meaning /api.today/dayofweek/-1)
is something that I should deal with using an error since there is no corresponding day of the week. (I explain how to
handle this kind of error using the model validation feature in Chapter 18.) The action method shown in the listing
handles badly formed requests by ignoring the problem and pretending that a different URL has been sent, which is
likely to lead to confusion. Listing 21-5 shows how I have revised the action method to take better advantage of the
direct routing optional segment.

Listing 21-5. Handling an Optional Segment in the TodayController.cs File

...
[HttpGet]
[Route("dayofweek/{day?}")]
public IHttpActionResult DayOfWeek(int day = -1) {
 if (RequestContext.RouteData.Values.ContainsKey("day")) {
 return day != -1
 ? Ok(Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString())
 : (IHttpActionResult)BadRequest("Value Out of Range");
 } else {
 return Ok(DateTime.Now.ToString("dddd"));
 }
}
...

In this implementation of the action method, I obtain the IHttpRouteData object via the RequestContext.RouteData
property and check to see whether there is a day routing variable. (The RequestContext property is defined by the
ApiController class, which is the base for the Today controller and which I describe in Chapter 22.)

I have changed the return type of the action method to IHttpActionResult, which allows me to send an error
response when the request URL includes a day segment that is -1 and a success response otherwise.

Tip ■ i am showing you only how to differentiate between a default parameter value and a value provided by the client
in this example. See Chapter 18 for details of how to validate data properly.

Defining a Default Segment Value
Direct routes also define default segment values within the route template. Listing 21-6 shows how I have changed the
optional segment defined in the Today controller to one that has a default value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

519

Listing 21-6. Defining a Default Segment Value in the TodayController.cs File

...
[HttpGet]
[Route("dayofweek/{day=-1}")]
public string DayOfWeek(int day) {
 if (day != -1) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 } else {
 return DateTime.Now.ToString("dddd");
 }
}
...

The default value is defined by using the equal sign after the segment name followed by the default value,
expressed literally, like this:

...
[Route("dayofweek/{day=-1}")]
...

Defining a default value means that I don’t need to define a default parameter value, but it also means that I can’t
tell whether the request contained a matching segment (which is the same behavior that default segment values the
convention-based routes provide), so I have returned to the simpler implementation of the action method.

Tip ■ there is one important difference between a default segment value defined in a route and a default parameter
value used for an optional segment: the default segment value is processed through the parameter/model binding
processes that i described in part 2. this can be useful if you are using bindings to validate data, but it also means
there is no compile-time checking of the default value. take care to test that your default values are valid, regardless of
whether they are defined in direct or convention-based routes.

Applying a Constraint to a Direct Route
In addition to default and optional segments, direct route templates are also used to apply constraints. As I explained
in Chapter 20, the System.Web.Http.Routing.Constraints namespace contains classes that can be used to constrain
the range of URLs that a route will match. Listing 21-7 shows how I have applied one of the constraints to the day
segment variable in the direct route I defined in the Today controller.

Listing 21-7. Constraining a Route in the TodayController.cs File

...
[HttpGet]
[Route("dayofweek/{day:int=-1}")]
public string DayOfWeek(int day) {
 if (day != -1) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

520

 } else {
 return DateTime.Now.ToString("dddd");
 }
}
...

Caution ■ as i explained in Chapter 20, constraints should be used only to manage the set of UrLs that a route will
match and not to validate the data that the client sends. See Chapter 18 for details of the model validation feature,
which is how data should be validated.

The constraint is applied by using a colon (the : character) after the segment name, followed by a shorthand
reference for the constraint that is required. Each of the constraint classes has a shorthand name, and int, which
I used in the listing, applies the IntRouteConstraint class, which has the effect of matching only the URLs where
the day segment can be parsed to an int value.

...
[Route("dayofweek/{day:int=-1}")]
...

I applied the constraint alongside the default value in this example, but this is not required, and default values
and constraints are independent of one another. Table 21-4 lists the shorthand values and the classes they represent.

Table 21-4. The Shorthand References for Constraint Classes Used in Direct Route Templates

Short Hand Class Description

alpha AlphaRouteConstraint Matches a route when the segment variable contains only
alphabetic characters

bool BoolRouteConstraint Matches a route when the segment variable contains
only true or false

datetime DateTimeRouteConstraint Matches a route when the segment variable can be parsed as a
DateTime object

decimal
double
float
int
long

DecimalRouteConstraint
DoubleRouteConstraint
FloatRouteConstraint
IntRouteConstraint
LongRouteConstraint

Matches a route when the segment variable can be parsed as a
decimal, double, float, int, or long value

maxlength
minlength

MaxLengthRouteConstraint
MinLengthRouteConstraint

Matches a route when the segment variable is a string with a
maximum or minimum length

max
min

MaxRouteConstraint
MinRouteConstraint

Matches a route when the segment variable is an int with a
maximum or minimum value

range RangeRouteConstraint Matches a route when the segment variable is an int within
a range of values

regex RegexRouteConstraint Matches a route when the segment variable matches a regular
expression

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

521

Parameters to configure constraints are defined literally within the route template. In Listing 21-8, you can see
how I have applied the range constraint to limit the range of values that the day segment will match.

Listing 21-8. Using a Direct Route Constraint with Parameters in the TodayController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {

 [RoutePrefix("api/today")]
 public class TodayController : ApiController {

 [HttpGet]
 [Route("dayofweek")]
 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }

 [HttpGet]
 [Route("dayofweek/{day:range(0, 6)}")]
 public string DayOfWeek(int day) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 }

 [HttpGet]
 [Route("~/getdaynumber")]
 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

I have used the range shorthand to apply the RangeRouteConstraint class to the day segment, and the
parameters I have specified will allow the route to match a URL if the segment value is an int between 0 and 6.
Constraining the route means I can’t use an optional segment (the two are counter functional), so I have restored the
version of the DayOfWeek method that takes no parameters.

Ordering Direct Routes in a Controller
As I explained in Chapter 20, the URL routing system enumerates the routes in the application until it finds one
that can match the current request. No effort is made to find the best match—just the first one, after which all of the
untested routes are ignored. When using convention-based routing, the order in which the routes are added to the
HttpRouteCollection class is used to specify the order in which routes are tested against requests.

For direct routing, the routes defined by the Route attribute are automatically sorted so that the most specific
routes are registered first, irrespective of the order in which the action methods are defined in the controller class.

To work out the order in which direct routes in a controller are applied, the URL routing feature calculates the
precedence of each segment in the route template of each direct route. The precedence is a decimal value, which is
then used to sort the routes so that the lowest values match first. For each segment, a score is awarded based on the
segment type, as described in Table 21-5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

522

The scores are concatenated (not summed) to form a single decimal value. To explain how this works, Table 21-6
shows the segments from one of the direct routes in the Today controller, along with the segment types and scores.
(Notice that the segments defined by the RoutePrefix attribute are included.)

Table 21-6. The Scores for an Example Direct Route

Segment Segment Type Score

api Fixed segment 1

today Fixed segment 1

dayofweek Fixed segment 1

day:range(0, 6) Variable segment with a constraint 2

Table 21-7. The Precedence Values for the Direct Routes in the Today Controller

Route Precedence

api/today/dayofweek 1.11

api/today/dayofweek/{day:range(0, 6)} 1.112

getdaynumber 1.0

Table 21-5. The Scores Assigned to Direct Route Segment Types

Segment Type Score

Fixed segment 1

Variable segment with a constraint 2

Variable segment without a constraint 3

Catchall segment with a constraint 4

Catchall segment without a constraint 5

The individual scores are concatenated to form the precedence value 1.112 (the first score is always expressed as
a whole number and subsequent scores as decimal fractions). Table 21-7 shows all of the routes defined in the Today
controller and their precedence values.

The lowest-precedence routes are used to match requests first, which produces the following route order:

 1. /getdaynumber (precedence 1.0)

 2. /api/today/dayofweek (precedence 1.11)

 3. /api/today/dayofweek/{day} (precedence 1.112)

The precedence system usually creates a useful ordering of routes, but you can get odd results if a controller defines
two routes that have the same precedence because Web API compares the route templates as alphabetic strings.

Using the alphabet to resolve route ordering isn’t especially helpful, but you can use the Order property defined
by the Route attribute to take control of the order in which routes are checked, as demonstrated in Listing 21-9.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

523

Listing 21-9. Applying the Order Property to the Route Attribute in the TodayController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {

 [RoutePrefix("api/today")]
 public class TodayController : ApiController {

 [HttpGet]
 [Route("dayofweek")]
 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }

 [HttpGet]
 [Route("dayofweek/{day:range(0, 6)}")]
 public string DayOfWeek(int day) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 }

 [HttpGet]
 [Route("~/getdaynumber", Order=1)]
 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

Routes are assigned an Order value of 0 by default, and the routes with the lowest Order values are checked
first. By setting the Order property to 1, I have demoted the route defined for the DayNumber method, producing the
following route order:

 1. /api/today/dayofweek (order 0, precedence 1.11)

 2. /api/today/dayofweek/{day} (order 0, precedence 1.112)

 3. /getdaynumber (order 1, precedence 1.0)

Note ■ the Order value is checked first, but if there are routes with the same Order value, then the precedence score
is taken into account.

Creating a Controller-wide Direct Route
In the previous section, I applied the Route attribute to individual action methods to create direct routes, but you
can also apply the attribute to the controller class to create a direct route that applies to any action method for which
a direct route has not already been defined. Listing 21-10 shows how I applied the Route attribute to the Today
controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

524

Listing 21-10. Applying the Route Attribute to the Controller in the TodayController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {

 [RoutePrefix("api/today")]
 [Route("{action=DayOfWeek}")]
 public class TodayController : ApiController {

 [HttpGet]
 //[Route("dayofweek")]
 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }

 [HttpGet]
 [Route("dayofweek/{day:range(0, 6)}")]
 public string DayOfWeek(int day) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 }

 [HttpGet]
 //[Route("~/getdaynumber", Order=1)]
 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

I have applied the Route attribute to the class with a template of {action=DayOfWeek}, which is combined with
the RoutePrefix template to create this template:

api/today/{action=DayOfWeek}

By providing a default value for the action variable, I have created a route that will match URLs that specify
action methods (such as /api/today/daynumber and /api/today/dayofweek). The route template will also match a
URL that doesn’t specify an action method (/api/today) and will use the DayOfWeek method by default.

I have left the Route attribute applied to the DayOfWeek method that takes a parameter, which means that it will
not be covered by the controller-wide Route attribute. However, if I apply the Route attribute to a controller, I generally
prefer to define all the routes at that level because I end up forgetting that there are method-specific routes defined as
well. Listing 21-11 shows how I consolidated all of the direct routes in the Today controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

525

Listing 21-11. Consolidating the Direct Routes in the TodayController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {

 [RoutePrefix("api/today")]
 [Route("{action=DayOfWeek}")]
 [Route("{action=DayOfWeek}/{day:range(0, 6)}")]
 public class TodayController : ApiController {

 [HttpGet]
 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }

 [HttpGet]
 public string DayOfWeek(int day) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 }

 [HttpGet]
 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

Tip ■ this is my personal practice, and i suspect it arises because i am trying to re-create the centralization of
convention-based routing while using the Route attribute. You need not adopt this convention if you are comfortable with
defining direct routes throughout the application.

Customizing URL Routing
As you have learned, the default behavior of the routing system provides a lot of flexibility to manage the API that web
services present to their clients. That said, if you find you are unable to create the behavior that you want, there are
several ways in which you can customize the routing process, as I describe in the following section.

Using a Route-Specific Message Handler
If you are using convention-based routing, you can specify a message handler that will be used to process a request
when it is matched by the route, allowing a request to be dealt with outside of the standard dispatch handler chain.
(This feature is not available for direct routing.) Listing 21-12 shows the contents of the CustomRouteHandler.cs file,
which I added to the Infrastructure folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

526

Listing 21-12. The Contents of the CustomRouteHandler.cs File

using System.Net;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;

namespace Dispatch.Infrastructure {
 public class CustomRouteHandler : HttpMessageHandler {

 protected override Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request, CancellationToken cancellationToken) {

 return Task.FromResult<HttpResponseMessage>(
 request.CreateResponse(HttpStatusCode.OK, "Today"));
 }
 }
}

Tip ■ i find route-specific message handlers useful when i need to support a legacy api that doesn’t quite fit into the
Web api model, where it can be useful to redirect the client to other UrLs or return fixed responses for certain requests.
otherwise, i use technique sparingly because it changes the normal flow of requests through the application and creates
a special category of requests that will need to be tested thoroughly for every new release.

When I showed you how to add a message handler to the dispatch chain in Chapter 19, I derived my custom class
from the DelegatingHandler class so that Web API could provide a reference to the next handler in the chain.

There is no chain when you set a handler for a route, so I have derived the CustomRouteHandler class
directly from HttpMessageHandler. I have implemented the SendAsync method so that I create and return an
HttpResponseMessage with the 200 (OK) status code and the string Today as the result.

Registering the Route and Handler
When defining a route, a custom handler can be specified using a version of the MapHttpRoute extension method,
as shown in Listing 21-13.

Listing 21-13. Creating a Route with a Custom Handler in the WebApiConfig.cs File

using System.Web.Http;
using Dispatch.Infrastructure;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.Routes.MapHttpRoute(
 name: "CustomHandler",
 routeTemplate: "api/{controller}/{action}",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

527

 defaults: null,
 constraints: null,
 handler: new CustomRouteHandler());

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

I have defined a routing template that will match all three-segment URLs that start with /api. The null values tell
the routing system that I don’t want to use default values or constraints. The final argument is the handler that should
be used to process the request when the route matches, which is an instance of the CustomRouteHandler class that I
defined in the previous section.

To test the custom handler, start the application and use the browser to navigate to the /Home/Today URL. When
you click the Get Day button, the client will send an Ajax request to the /api/today/dayofweek URL. The URL will be
matched by the new route, and the CustomRouteHandler class will be used to send the Today response to the client,
as illustrated by Figure 21-3.

Using Data Tokens
Routes can be defined with data tokens, which are expressed as a Dictionary<string, object> and are used to
provide additional information to objects that will process the request. I am not a fan of using data tokens—for reasons
I explain in the sidebar “The Problem with Data Tokens”—and I recommend you approach them with caution.

Listing 21-14 shows how I have redefined the route with a custom message handler in the WebApiConfig.cs
file so that it defines data tokens. There is no version of the MapHttpRoute extension method that allows data tokens
to be specified, so I have to use the CreateRoute and Add methods defined by the HttpRouteCollection object, as
described in Chapter 20.

Figure 21-3. Using a custom message handler in a route

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

528

Listing 21-14. Defining a Route with Data Tokens in the WebApiConfig.cs File

using System.Web.Http;
using Dispatch.Infrastructure;
using System.Collections.Generic;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.Routes.Add(
 "CustomHandler",
 config.Routes.CreateRoute(
 routeTemplate: "api/{controller}/{action}",
 defaults: null,
 constraints: null,
 dataTokens: new Dictionary<string, object> {
 { "response", "Tomorrow" }
 },
 handler: new CustomRouteHandler()));

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

The Dictionary that I used to set the dataToken parameter of the CreateRoute method contains a single key,
response. Listing 21-15 shows how I use this key in the CustomRouteHandler class to set the data in the response to
the client.

Listing 21-15. Consuming Data Tokens in the CustomRouteHandler.cs File

using System.Net;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;

namespace Dispatch.Infrastructure {
 public class CustomRouteHandler : HttpMessageHandler {

 protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage
 request, CancellationToken cancellationToken) {

 string responseString
 = (string)request.GetRequestContext()
 .RouteData.Route.DataTokens["response"];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

529

 return Task.FromResult<HttpResponseMessage>(
 request.CreateResponse(HttpStatusCode.OK, responseString));
 }
 }
}

Data tokens are defined for the route, rather than for each request that the route matches, and they are accessed
through the DataTokens property defined by the IHttpRoute interface, which I described in Chapter 20. To get the
IHttpRoute implementation object that matched the request, I call the GetRequestContext extension method on the
HttpRequestMessage object to get an instance of the HttpRequestContext class and then read the Route property.

the prOBLeM WIth Data tOKeNS

the built-in handlers and routing classes use data tokens to communicate with one another. one example is
precedence information for direct routes, which i described earlier in this chapter. the problem with data tokens
is that they creating a coupling between a route handler and other components, generally, the classes that select
the controller and action method that will handle the request. this coupling makes it harder to create custom
implementations of Web api interfaces without understanding the purpose and meaning of the data tokens, which
are undocumented. in the case of direct route precedence, you either need to spend some time with the debugger
and the source code to figure out how they work, which is what i did for this chapter, or re-create the feature from
scratch, which requires more work and testing. My advice is to avoid data tokens in your own code and check for
their use carefully when you are creating a custom implementation of a Web api interface.

You can see the effect of the data token by starting the application and navigating to the /Home/Today URL with the
browser. When you click the Get Day button, the client will send a request that will be matched by the route defined in
Listing 21-14, and the custom handler will read the token value to produce the result, as illustrated by Figure 21-4.

Applying Custom Constraints to Direct Routes
In Chapter 20, I showed you how to apply a custom constraint to a convention-based route, but direct routes
apply constraints in the route template, which is a problem because there are no built-in shorthand names for
custom classes.

Figure 21-4. Using a data token

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

530

Fortunately, it is a simple matter to define a new shorthand name. To demonstrate how this works, I have defined
a new constraint by adding the SpecificValueConstraint.cs file to the Infrastructure folder and using it to define
the class shown in Listing 21-16.

Listing 21-16. The Contents of the SpecificValueConstraint.cs File

using System.Collections.Generic;
using System.Net.Http;
using System.Web.Http.Routing;

namespace Dispatch.Infrastructure {

 public class SpecificValueConstraint : IHttpRouteConstraint {
 private int targetValue;

 public SpecificValueConstraint(int value) {
 targetValue = value;
 }

 public bool Match(HttpRequestMessage request, IHttpRoute route,
 string parameterName, IDictionary<string, object> values,
 HttpRouteDirection routeDirection) {

 int candidateValue;

 return (values.ContainsKey(parameterName))
 && int.TryParse(values[parameterName].ToString(), out candidateValue)
 && targetValue == candidateValue;
 }
 }
}

This constraint checks that a segment variable is a specified int value and will prevent the route from matching
the request unless it is.

Registering and Using the Constraint Shorthand Name
In Listing 21-17, you can see how I have created a shorthand name for the constraint in the WebApiConfig.cs file.

Listing 21-17. Registering a Shorthand Constraint Name in the WebApiConfig.cs File

using System.Web.Http;
using Dispatch.Infrastructure;
using System.Collections.Generic;
using System.Web.Http.Routing;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 //config.Routes.Add(
 // "CustomHandler",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

531

 // config.Routes.CreateRoute(
 // routeTemplate: "api/{controller}/{action}",
 // defaults: null,
 // constraints: null,
 // dataTokens: new Dictionary<string, object> {
 // { "response", "Tomorrow" }
 // },
 // handler: new CustomRouteHandler()));

 DefaultInlineConstraintResolver resolver
 = new DefaultInlineConstraintResolver();
 resolver.ConstraintMap.Add("specval", typeof(SpecificValueConstraint));
 config.MapHttpAttributeRoutes(resolver);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

Tip ■ notice that i have commented out the convention-based route that uses a custom handler so that it doesn’t
preempt the direct routes defined on the Today controller.

The DefaultInlineConstraintResolver class is used to resolve shorthand constrain names and defines a
property called ConstraintMap that returns a dictionary used to map shorthand names to constraint types.

In the listing, I create a new instance of the DefaultInlineConstraintResolver class and use the ConstraintMap.Add
method to define a new shorthand name, specval, to represent the SpecificValueConstraint class. I then call the
MapHttpAttributeRoutes method to set up the direct routes, passing in the DefaultInlineConstraintResolver object
as the argument. The final step is to apply the constraint to a direct route using the shorthand name I defined in
Listing 21-17. In Listing 21-18, you can see how I update the direct routes in the Today class.

Listing 21-18. Using a Custom Constraint in the TodayController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {

 [RoutePrefix("api/today")]
 [Route("{action=DayOfWeek}")]
 [Route("{action=DayOfWeek}/{day:specval(2)}")]
 public class TodayController : ApiController {

 // ...action methods omitted for brevity...
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

532

With this change, the custom constraint will prevent the highlighted route from matching unless the day segment
variable is 2.

Applying a Route-wide Custom Constraint
The custom constraint in the previous section operates on a single variable segment, which fits into the direct route
model of applying constraints within the route template. It doesn’t work, however, for constraints that are not specific
to a segment, such as the UserAgentConstraint class that I defined in Chapter 20. This constraint applies to the entire
route, which means I can’t use it in the route template.

The Web API URL system includes the abstract RouteFactoryAttribute class, which can be used to create
routes that don’t fit into the standard direct routing system. The RouteFactoryAttribute class defines the virtual
properties shown in Table 21-8, which can be overridden in derived classes.

Table 21-8. The Virtual Properties Defined by the RouteFactoryAttribute Class

Name Description

Constraints Returns the set of constraints applied to the route

DataTokens Returns the data token for the route

Order Returns the Order value that will be used to sort the routes

To apply the UserAgentConstraint to a direct route, I added a class file called
UserAgentConstraintRouteAttribute.cs to the Infrastructure folder and used it to define the class shown in
Listing 21-19.

Listing 21-19. The Contents of the UserAgentConstraintRouteAttribute.cs File

using System.Collections.Generic;
using System.Web.Http.Routing;

namespace Dispatch.Infrastructure {
 public class UserAgentConstraintRouteAttribute : RouteFactoryAttribute {

 public UserAgentConstraintRouteAttribute(string template)
 : base(template) {
 }

 public override IDictionary<string, object> Constraints {
 get {
 IDictionary<string, object> constraints
 = base.Constraints ?? new Dictionary<string, object>();
 constraints.Add("useragent", new UserAgentConstraint("Chrome"));
 return constraints;
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21 ■ UrL roUting: part ii

533

The UserAgentConstraintRouteAttribute class derives from RouteFactoryAttribute and overrides the
Constraints property to return the set of constraints defined by the base class (or creates a new dictionary if
required). I added a new instance of the UserAgentConstraint class to the collection, like this:

...
constraints.Add("useragent", new UserAgentConstraint("Chrome"));
...

You can use any key to register the constraint object as long as it doesn’t correspond to a variable segment name
in the route template. Listing 21-20 shows how I replaced the Route attribute with UserAgentConstraintRoute in the
Today controller.

Listing 21-20. Using a Custom Route Attribute in the TodayController.cs File

using System;
using System.Web.Http;
using Dispatch.Infrastructure;

namespace Dispatch.Controllers {

 [RoutePrefix("api/today")]
 [Route("{action=DayOfWeek}")]
 [UserAgentConstraintRoute("{action=DayOfWeek}/{day:specval(2)}")]
 public class TodayController : ApiController {

 // ...action methods omitted for brevity...
 }
}

The effect is to apply the UserAgentConstraint to the route, in addition to the per-segment constraints defined in
the route template.

Summary
In this chapter, I described how Web API direct routes works, allowing you to define routes on action methods or
controllers, rather than in the WebApiConfig.cs file. I explained how the Route attribute is used to create direct routes,
how to define optional segments, how to define segments with default values, and how constraints can be applied.
I finished this chapter by showing you how to customize the routing process. In the next chapter, I continue describing
the dispatch process and explain how controllers and action methods are used to handle requests.

www.it-ebooks.info

http://www.it-ebooks.info/

535

Chapter 22

Controllers and Actions

In this chapter, I continue describing the Web API dispatch process and focus on controllers and action methods.
I explain how controllers work in Web API and describe the dispatch process implemented by the default controller
class, ApiController. Along the way, I show you how to resolve a common routing problem, explain how requests
are mapped to action methods in RESTful Web API controllers, and show you how to customize request dispatching.
Table 22-1 summarizes this chapter.

Table 22-1. Chapter Summary

Problem Solution Listing

Create a controller. Define a class that implements the IHttpController
interface and use the services collection to access Web
API features such as parameter and model binding.

1–5

Create a controller that follows the action
method model without having to handle the
request directly.

Define a class that is derived from ApiController. 6

Specify the HTTP verbs that an action can
handle.

Use the RESTful naming convention or apply an
HTTP verb attribute.

7

Avoid routing conflicts between controllers
that follow the RESTful naming convention
and those that do not.

Use direct routing or restrict convention-based
routes (either with a constraint or with a different
prefix).

8–10

Customize the way that action methods are
invoked.

Create an implementation of the
IHttpActionInvoker interface.

11

Customize the way that action methods are
selected.

Create an implementation of the
 IHttpActionSelector interface.

12

Apply a custom configuration to a controller. Create an implementation of the
IControllerConfiguration interface.

13–14

Preparing the Example Project
I will continue working with the Dispatch project from the previous chapter, but to prepare for this chapter, I am going to
tidy up the URL routes I defined. Listing 22-1 shows the Today controller, from which I have removed the direct routes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

536

Listing 22-1. Removing the Direct Routes from the TodayController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {

 public class TodayController : ApiController {

 [HttpGet]
 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }

 [HttpGet]
 public string DayOfWeek(int day) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 }

 [HttpGet]
 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

Instead of direct routes, I have defined a convention-based route in the WebApiConfig.cs file that allows the
action methods in the Today controller to be reached, and I have removed the custom constraints and other additions
from Chapter 21, as shown in Listing 22-2.

Listing 22-2. Revising the URL Routing Configuration in the WebApiConfig.cs File

using System.Web.Http;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.Routes.MapHttpRoute(
 name: "ActionMethods",
 routeTemplate: "api/{controller}/{action}/{day}",
 defaults: new { day = RouteParameter.Optional }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

537

Understanding Controllers
Controllers are the classes where the world of Web API delivers HttpRequestMessages into your custom application
logic so that you can transform them into HttpResponseMessages. This transformation will usually involve
interactions with the model, which is another of the big components in the Model View Controller pattern.
As I explained in Chapter 4, web services don’t have views because they deliver data back to the client, rather than
components for a user interface (although some people regard the media type formatters to be the equivalent of a
view because they transform the data in a way that can be consumed by the client).

Figure 22-1 shows the dispatch process as I left it in Chapter 20, and in this chapter I dig into the details of how an
HttpRequestMessage object is processed, starting with the definition of a Web API controller and then turning to the
default implementation classes that are used in most Web API applications.

Figure 22-1. The Web API dispatch process

Table 22-2 puts controllers into context.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

538

Creating a Controller
Controllers are defined by the IHttpController interface in the System.Web.Http.Controllers namespace. Here is
the definition of the IHttpController interface:

using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;

namespace System.Web.Http.Controllers {
 public interface IHttpController {
 Task<HttpResponseMessage> ExecuteAsync(HttpControllerContext controllerContext,
 CancellationToken cancellationToken);
 }
}

As I explained in Chapter 19, the HttpControllerDispatcher class calls the ExecuteAsync method in order
to receive a Task that will yield an HttpResponseMessage when it completes. The arguments to the ExecuteAsync
method are an HttpControllerContext object, which is used to provide information about the request and the overall
application, and a CancellationToken, which is used to signal cancellation for long-lived processes. As a reminder,
Table 22-3 describes the properties defined by the HttpControllerContext class.

Table 22-3. The Properties Defined by the HttpControllerContext Class

Name Description

Configuration Returns the HttpConfiguration object that should be used to service the request. As I
explain in Chapter 22, controllers can be given their own configuration to work with.

Controller Returns the IHttpController instance. This is not entirely useful when the
HttpControllerContext is being passed an argument to the controller.

ControllerDescriptor Returns the HttpControllerDescriptor that led to the controller being instantiated.

Request Returns the HttpRequestMessage that describes the current request.

RequestContext Returns the HttpRequestContext that provides additional information about the
request.

RouteData Returns the IHttpRouteData object that contains the routing data for the request.
See Chapters 20 and 21 for details.

Table 22-2. Putting Controllers into Context

Question Answer

What is it? Controllers contain the logic required to handle a request and are the point at which
the HttpResponseMessage object is created so it can be relayed back along the
dispatcher chain and used to create a response for the client.

When should you use it? Controllers are used by the HttpControllerDispatcher class and fully integrated
into the request pipeline. No specific action is required to use controllers.

What do you need to know? Controllers are defined by the IHttpController interface, but most applications are
better served by deriving from the ApiController class, which takes care of a lot of
behind-the-scenes work.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

539

Most projects will use the default implementation of the IHttpController interface—the ApiController
class—to create web services because there are lots of useful built-in features. But it is easy enough to create a custom
implementation, and it helps put the role of the controller in context within the dispatch process. Listing 22-3 shows
the contents of the CustomController.cs file, which I added to the Controllers folder.

Listing 22-3. The Contents of the CustomController.cs File

using System;
using System.Net;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Controllers;
using System.Web.Http.Routing;

namespace Dispatch.Controllers {
 public class CustomController : IHttpController {

 public Task<System.Net.Http.HttpResponseMessage> ExecuteAsync(
 HttpControllerContext context, CancellationToken cancellationToken) {

 return Task<HttpResponseMessage>.Factory.StartNew(() => {

 IHttpRouteData rd = context.RouteData;
 object result = null;
 if (rd.Values.ContainsKey("action")) {

 switch (rd.Values["action"].ToString().ToLowerInvariant()) {
 case "dayofweek":
 if (rd.Values.ContainsKey("day")) {
 int dayValue;
 if (int.TryParse((string)rd.Values["day"],
 out dayValue)) {
 result = DayOfWeek(dayValue);
 } else {
 return context.Request.CreateErrorResponse(
 HttpStatusCode.BadRequest, "Cannot parse data");
 }
 } else {
 result = DayOfWeek();
 }
 break;
 case "daynumber":
 result = DayNumber();
 break;
 default:
 return context.Request.CreateErrorResponse(
 HttpStatusCode.NotFound, "Cannot parse data");
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

540

 return result == null
 ? context.Request.CreateResponse(HttpStatusCode.OK)
 : context.Request.CreateResponse(HttpStatusCode.OK, result);
 });
 }

 ///////////////////////////////
 // Action Methods Start Here //
 ///////////////////////////////

 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }

 public string DayOfWeek(int day) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 }

 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

This class implements the same action methods as the Today controller that I added to the project. The difference
is that my new controller has to take responsibility for implementing the ExecuteAsync method, selecting and
invoking the action method, and generating an HttpResponseMessage that can be returned to the client.

To test the new controller, I need to change the URL that the client requests, as shown in Listing 22-4.

Listing 22-4. Changing the Request URL in the today.js File

var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function () {
 $.ajax("/api/custom/dayofweek/1", {
 type: "GET",
 success: function (data) {
 gotError(false);
 response(data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

541

Notice that I have changed the segment that will match the name of the controller and added a segment that
will be mapped to the day variable by the route I added in Listing 22-3. I have done this so I can demonstrate how my
manual parameter binding works—and how this can be improved upon in later examples.

To test the new controller, start the application and use the browser to navigate to the /Home/Today URL. Click
the Get Day button, and the client will send a request, which will be matched by the route I defined at the start of the
chapter; this leads to the ExecuteAsync method of my custom controller class being invoked. The result is created and
sent back to the client, as shown in Figure 22-2. Since the client always specifies the same day, the result will always be
Monday.

Figure 22-2. Sending a request to a custom implementation of the IHttpController interface

Using Built-in Services and Features
When you implement a controller directly from the IHttpController interface, you lose the built-in features provided
by the ApiController class (which I describe in the next section), but you can still use the core Web API services and
features, such as model binding. This means you don’t have to reinvent important features, although there can be a lot
of work to get to the point where a feature can be used. In Listing 22-5, I have modified the Custom controller class to
use the model binding feature to get the argument value required to call the DayOfWeek action method.

Listing 22-5. Using the Built-in Parameter Binding Feature in the CustomController.cs File

using System;
using System.Net;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Controllers;
using System.Web.Http.ModelBinding;
using System.Web.Http.Routing;
using System.Web.Http;
using System.Reflection;

namespace Dispatch.Controllers {
 public class CustomController : IHttpController {

 public Task<System.Net.Http.HttpResponseMessage> ExecuteAsync(
 HttpControllerContext context, CancellationToken cancellationToken) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

542

 return Task.Run<HttpResponseMessage>(async () => {

 IHttpRouteData rd = context.RouteData;
 object result = null;
 if (rd.Values.ContainsKey("action")) {

 switch (rd.Values["action"].ToString().ToLowerInvariant()) {
 case "dayofweek":
 if (rd.Values.ContainsKey("day")) {
 int dayValue = await GetValue<int>("day", context,
 cancellationToken);
 result = DayOfWeek(dayValue);
 } else {
 result = DayOfWeek();
 }
 break;
 case "daynumber":
 result = DayNumber();
 break;
 default:
 return context.Request.CreateErrorResponse(
 HttpStatusCode.NotFound, "Cannot parse data");
 }
 }

 return result == null
 ? context.Request.CreateResponse(HttpStatusCode.OK)
 : context.Request.CreateResponse(HttpStatusCode.OK, result);
 });
 }

 private async Task<T> GetValue<T>(string name, HttpControllerContext ctx,
 CancellationToken token) {

 HttpControllerDescriptor ctrlDescriptor = new HttpControllerDescriptor(
 ctx.Configuration, "Custom", this.GetType());
 MethodInfo methodInfo
 = GetType().GetMethod("DayOfWeek", new Type[] { typeof(int)});

 IActionValueBinder binder
 = ctx.Configuration.Services.GetActionValueBinder();
 HttpActionBinding binding = binder.GetBinding(
 new ReflectedHttpActionDescriptor(ctrlDescriptor, methodInfo));
 HttpActionContext actionCtx = new HttpActionContext(ctx, new
 ReflectedHttpActionDescriptor(ctrlDescriptor, methodInfo));

 await binding.ExecuteBindingAsync(actionCtx, token);

 return actionCtx.ActionArguments.ContainsKey(name)
 ? (T)Convert.ChangeType(actionCtx.ActionArguments[name], typeof(T))
 : default(T);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

543

 ///////////////////////////////
 // Action Methods Start Here //
 ///////////////////////////////

 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }

 public string DayOfWeek(int day) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 }

 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

The GetValue method I added to the controller uses parameter binding to get the int value required to call the
DayOfWeek method. To get the value, I have to create a number of classes to provide the context needed to process
the request. These classes are created behind the scenes when you use the ApiController, but the advantage of this
approach is that it can be applied to all method parameters, rather than needing to hard-code knowledge of the action
methods in the ExecuteAsync method. I am not going to go into detail about the implementation of the GetValue
method because—as I explain in the next section—there is little reason to implement this functionality in a real project.

IMpLeMeNtING NeW KINDS OF CONtrOLLer

the Custom controller i defined in listing 22-3 and listing 22-5 show you how you can create a custom
implementation of the IHttpController interface and still benefit from Web api features such as parameter and
model binding. that said, the controller follows the model provided by the ApiController class that i have been
using as the base class for all of my web service controllers so far in this book: a request is matched to action
methods—some of which require arguments—that produce data or HttpResponseMessage objects that can be
returned to the client.

re-creating this model in a custom implementation of the IHttpController interface isn’t a good idea when
there is a fully featured and well-tested alternative in the ApiController class, which i describe in the next
section. the only time it makes sense to implement the IHttpController interface directly is when you require a
completely different approach for transforming HttpRequestMessage objects into HttpResponseMessage objects.
i occasionally have to create a custom implementation as a wrapper around legacy code that can’t readily be
exposed through action methods, but this is a rare occurrence. For most applications, the ApiController class
should be used as the base for controllers.

Understanding the ApiController Dispatch Process
The ApiController class, defined in the System.Web.Http namespace, is the base class used for most Web API
controllers. The ApiController class implements the IHttpController interface and provides two important areas
of functionality: dispatching requests to action methods and helping developers to keep action methods as simple as
possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

544

Action methods are the basic unit of logic used to process a request to create a result, expressed as a standard
C# method. The ApiController class makes it possible to use C# methods as actions through its implementation
of the IHttpController.ExecuteAsync method, which takes care of locating an action method for the request,
using parameter and model binding to get the method arguments, and processing the method result to create an
HttpResponseMessage object that can be returned through the message handler chain and, ultimately, sent to the
client. It is this process that I describe in the sections that follow. Table 22-4 puts the ApiController dispatch process
in context.

Table 22-4. Putting the ApiController Dispatch Process in Context

Question Answer

What is it? The ApiController class is the built-in implementation of the IHttpController
interface and adds support for important convenience features such as action
methods, action results, and filters.

When should you use it? You should use the ApiController class as the base for all of your controllers.
Implement the IHttpController interface directly only if you need to create a
completely different approach to handling requests.

What do you need to know? The ApiController class relies on implementations of the IHttpActionSelector
and IHttpActionInvoker interfaces to select and invoke action methods. You
can change the way that the ApiController class behaves by creating custom
implementations, which I demonstrate in the “Customizing the Controller Dispatch
Process” section.

As you may expect, there are a number of key dispatch tasks that the ApiController delegates to
implementations of interfaces that are obtained from the services collection. I describe each interface in turn in
the sections that follow and describe the customization opportunities in the “Customizing the Controller Dispatch
Process” section. To provide an overview of the dispatch process, Figure 22-3 shows a revised diagram of the overall
request dispatch process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

545

Preparing the Example Controller
To describe the dispatch process, I need a controller that is derived from the ApiController class. Listing 22-6 shows
how I have changed the Custom controller so that it is derived from ApiController, rather than implementing the
IHttpController interface directly.

Listing 22-6. Deriving from the ApiController Class in the CustomController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {
 public class CustomController : ApiController {

Figure 22-3. Adding ApiController to the request dispatch process

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

546

 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }

 public string DayOfWeek(int day) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 }

 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

The change I have highlighted in the listing is the change from implementing the IHttpController interface to
deriving from the ApiController class. Since I am creating a derived controller, I have removed the implementation
of the ExecuteAsync method, the GetValue method that I used to access the parameter binding feature, and the
namespaces required by both.

To test the effect of the changes, start the application and navigate to the /Home/Today URL with the browser.
When you click the Get Day button, the client will display a 405 (Method Not Allowed) response, as shown in
Figure 22-4.

Figure 22-4. The effect of deriving from the ApiController class

As I explained briefly in Chapter 19, the ApiController class selects action methods using a specific sequence.
In the sections that follow, I describe the sequence that is used and explain why it doesn’t match the request from the
client to the action methods defined by the Custom controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

547

Understanding the Action Selection Process
The ApiController class delegates the selection of the action method for a request to an implementation of the
IHttpActionSelector interface, which is defined in the System.Web.Http.Controllers namespace. Here is the
definition of the IHttpActionSelector interface:

using System.Linq;

namespace System.Web.Http.Controllers {
 public interface IHttpActionSelector {

 HttpActionDescriptor SelectAction(HttpControllerContext controllerContext);

 ILookup<string, HttpActionDescriptor> GetActionMapping(HttpControllerDescriptor
 controllerDescriptor);
 }
}

The SelectAction method is called when the controller needs to identify the action method that will be used
to process the request. The parameter to the SelectAction method is an HttpControllerContext object, which
describes the controller that is handling the request. (I described the HttpControllerDescriptor class in Chapter 19,
but Table 22-5 recaps the properties that it defines.)

Table 22-5. The Properties Defined by the HttpControllerContext Class

Name Description

Configuration Returns the HttpConfiguration object that should be used to service the request. As I
explain in the “Creating a Controller-Specific Configuration” section, controllers can be
given their own configuration to work with.

Controller Returns the IHttpController instance that is handling the request.

ControllerDescriptor Returns the HttpControllerDescriptor that led to the controller being instantiated.
See Chapter 22 for details.

Request Returns the HttpRequestMessage that describes the current request.

RequestContext Returns the HttpRequestContext that provides additional information about the
request.

RouteData Returns the IHttpRouteData object that contains the routing data for the request.
See Chapters 20 and 21 for details.

Tip ■ the GetActionMapping method returns information about the set of action methods that can be selected from
the specified controller. this method is used by the direct routing system—which i described in Chapter 21—so that each
action method can be inspected for Route attributes. it is also useful when creating a custom IHttpActionSelector
implementation, which i described in the “Creating a Custom ihttpactionselector implementation” section.

The result from the SelectAction method is an HttpActionDescriptor object, which defines the properties and
methods described in Table 22-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

548

Understanding the Default Action Method Selection Process
The default implementation of the IHttpActionSelector interface is the ApiControllerActionSelector class, which
is defined in the System.Web.Http.Controllers namespace. The process that the ApiControllerActionSelector
class follows to select an action method is described in Table 22-7. I have taken some liberties in describing the
process to make it easier to follow.

Table 22-6. The Properties and Methods Defined by the HttpActionDescriptor Class

Name Description

ActionBinding Returns an HttpActionBinding that describes how the parameters defined by the
action method will be bound to values from the request.

ActionName Returns the name of the action method.

Configuration Returns the HttpConfiguration object for the action method. See the “Creating
a Controller-Specific Configuration” section for details about how to create
controller-specific configurations.

ControllerDescriptor Returns the HttpControllerDescriptor object that describes the controller that
contains the action method. See Chapter 19.

ExecuteAsync(controller,
arguments, cancelToken)

Executes the action method. The arguments are an HttpControllerContext
object; an IDictionary<string, object> that contains the arguments for the
action method, indexed by name; and a CancellationToken that can be monitored
for cancellation in action methods that take time to complete.

GetCustomAttributes<T>() Returns a collection of attributes of type T.

GetFilterPipeline() Returns a collection of FilterInfo objects that describe the filters that have been
applied to the action method. See Chapters 23 and 24 for details of filters.

GetFilters() Returns a collection of IFilter implementation objects that represent the filters
applied to the action method. See Chapters 23 and 24 for details.

GetParameters() Returns a collection of HttpParameterDescriptor objects that describe the
parameters defined by the action method.

ResultConverter Returns an implementation of the IActionResultConverter interface that will
convert the response from the action method into an HttpResponseMessage object.

ReturnType Returns the Type produced by the action method when it is executed.

SupportedHttpMethods Returns a collection of HttpMethod values that specify which HTTP methods the
action method can support.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

549

The process starts with all of the potential action methods defined by the controller and eliminates the ones that
can’t handle the request at each stage. At the end of the final selection step, there should be exactly one action method
remaining, which the ApiControllerActionSelector class describes using an HttpActionDescriptor object.

Tip ■ if there are no suitable action methods, then the selector hasn’t been able to match the request to one of the
methods defined by the controller. if there is more than one method left, then the selector has been unable to differentiate
between the action methods and doesn’t know which method should be used. Both outcomes are a problem, and both
will result in an error message being sent to the client. i describe Web api error handling in Chapter 25.

Understanding the RESTful Naming Convention
One of the most important aspects of the selection process is the way that the name of the action method is used to
figure out which HTTP methods the method can handle. This is the basis of how Web API makes creating a RESTful
web service simple. When I created the example project in Chapter 19, I defined the Products controller, as follows:

using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using Dispatch.Models;

namespace Dispatch.Controllers {
 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },

Table 22-7. The Selection Process Used by the ApiControllerActionSelector Class

Step Description

1 Reflection is used to identify candidate action methods. For a method to be selected at this stage, it must
be a normal method (not a constructor, for example), must be defined in a class that is derived from
ApiController, and must not be annotated with the NonAction attribute.

2 The candidate action methods are inspected for the Route attribute to see whether the request can be
mapped directly. If direct routing has been used, action methods whose direct route does not match the
request are discarded.

3 The route data is inspected to see whether an action value has been extracted from the request. If so, the
set of candidate action methods is checked to see whether there are matches for the name. Candidates that
do not match the name are discarded if an action value is provided.

4 The names of the candidate action methods are checked to see whether they follow the Web API RESTful
convention. I describe this convention in the “Understanding the RESTful Naming Convention” section,
but the simple version is that the method name is checked to see whether it contains an HTTP verb.
For example, a method called GetProducts is assumed to be able to handle GET requests. The naming
convention is used to discard candidate action methods that do not support the request HTTP verb.

5 Where the naming convention is not used, the HTTP verb attributes, such as HttpGet and HttpPost, are
used to discard any candidate actions that do not support the requested HTTP verb.

6 The number and type of parameters are used to discard any candidate action methods that cannot be
matched to the routing data, as described in Chapters 20 and 21.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

550

 new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 public IEnumerable<Product> Get() {
 return products;
 }

 public Product Get(int id) {
 return products.Where(x => x.ProductID == id).FirstOrDefault();
 }

 public Product Post(Product product) {
 product.ProductID = products.Count + 1;
 products.Add(product);
 return product;
 }
 }
}

I have used the simplest possible naming scheme and have used HTTP verbs as the action method names.
The selection process looks at the names to figure out which method should be targeted for the request HTTP verb.
Methods that have the same name—such as the Get methods in the Products controller—are disambiguated by the
parameters they define, which are mapped against values in the routing data, as described in Chapters 20 and 21. The
Products controller is relatively simple, but when combined with the default route defined in the WebApiConfig.cs
file, it produces the RESTful web service API described in Table 22-8.

Table 22-8. The RESTful Web Service Defined by the Product Controller

HTTP Verb URL Action Method

GET /api/products Get()

GET /api/products/2 Get(int)

POST /api/products Post(product)

Tip ■ the restful naming convention works only for the Get, post, pUt, and delete verbs. You will need to apply an
http verb attribute for other request types. see the “explicitly specifying http Verbs” section for details.

i like to keep the names i use in restful controllers as simple as possible, which is why i used just the http verb names
in the Products controller. You can use more friendly names if you prefer, and the ApiControllerActionSelector
class will still select your action methods as long as their name begins with one of the verbs. a common alternative is
to include the name of the model class in the method name, such that Get() would be replaced with GetProducts(),
Get(id) with GetProduct(id) or GetProductById(id), and so on. the ApiControllerActionSelector class does not
take into account any part of the action method name other than the http verb, which means you are free to adopt any
naming scheme that you find easy to work with.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

551

Explicitly Specifying HTTP Verbs
As part of the selection process, the ApiControllerActionSelector class checks to see which HTTP verbs candidate
action methods can support. For controllers that follow the RESTful naming convention, the HTTP verb is taken from
the method name: an action method called Get or GetProducts is assumed to be able to handle HTTP get requests.

For non-RESTful controllers, details of which HTTP verbs are supported must be explicitly specified, and it is for
this reason that sending a request to the Custom controller results in a 405 (Method Not Allowed) response, as shown
in Figure 22-4. (Remember that HTTP verbs are also known as HTTP methods.)

Support for HTTP verbs is specified by applying attributes that implement the IActionHttpMethodProvider
interface, which is defined in the System.Web.Http.Controllers namespace. Here is the definition of the interface:

using System.Collections.ObjectModel;
using System.Net.Http;

namespace System.Web.Http.Controllers {

 public interface IActionHttpMethodProvider {

 Collection<HttpMethod> HttpMethods { get; }
 }
}

The interface defines the HttpMethods get-only property, which returns a collection of HttpMethod values
that specify the verbs that an action method supports. Web API includes a set of attributes in the System.Web.Http
namespace that implement the IActionHttpMethodProvider interface and use the HttpMethods property to return
the HttpMethod values that represent most commonly used HTTP verbs, as listed in Table 22-9.

Table 22-9. The Web API Attributes That Implement the IActionHttpMethodProvider Interface

Name Description

AcceptVerbs Declares that the action method supports one or more HTTP verbs (see the text following the table)

HttpGet Declares that the action method supports the GET verb

HttpPost Declares that the action method supports the POST verb

HttpDelete Declares that the action method supports the DELETE verb

HttpPut Declares that the action method supports the PUT verb

HttpPatch Declares that the action method supports the PATCH verb

HttpOptions Declares that the action method supports the OPTIONS verb

HttpHead Declares that the action method supports the HEAD verb

The attributes whose name starts with Http declare support for a single HTTP verb and are defined for the most
commonly used verbs. Use the AcceptVerbs attribute if you want to declare support for less commonly used verbs or
multiple verbs. In Listing 22-7, you can see how I have applied attributes to the Custom controller.

Note ■ the HEAD verb is a little odd because it asks the web service to process the request as it would normally but
send back only the headers. supporting the HEAD verb in a web service controller is unusual, and i have done so only to
demonstrate how verb attributes are used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

552

Listing 22-7. Specifying HTTP Verbs in the CustomController.cs File

using System;
using System.Web.Http;

namespace Dispatch.Controllers {

 public class CustomController : ApiController {

 [AcceptVerbs("GET", "HEAD")]
 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }

 [HttpGet]
 [HttpHead]
 public string DayOfWeek(int day) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 }

 [HttpGet]
 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

I have used the AcceptVerbs attribute to specify that the parameterless DayOfWeek method can handle GET and
HEAD requests. When using the AcceptVerbs attribute, the verbs are specified as strings. The AcceptVerbs method is
the simplest way to declare that an action method supports one of the verbs for which is there no predefined attribute.

Caution ■ Most web services require only a small number of verbs (usually Get, post, pUt, and delete), and using
other verbs—especially less well-known ones like patCh or pUrGe—is likely to cause problems, especially if you are
delivering a web service for which third-party developers will write clients. i recommend careful consideration if you find
yourself needing to support a verb for which there is no built-in attribute.

I have also specified that the DayOfWeek method that takes an int parameter supports the GET and HEAD verbs,
but I have done so by applying two of the built-in verbs. I recommend you try to avoid creating action methods that
support multiple verbs that have different meanings, but this technique can be useful if you want to treat POST and
PUT the same way, which is a common web service convention (as described in Chapter 4).

Tip ■ if you apply verb attributes to action methods that follow the restful naming convention, then the name of
the method will not be taken into account during the action method selection process. or, put another way, the verbs
specified by the attributes take precedence over the verb specified by the method name. i recommend relying on just the
method name, since a mismatch between the method name and the supported http verb causes confusion.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

553

For the DayNumber method, I have used the HttpGet attribute to specify support for GET requests. This is the
usual approach to using the verb attributes, such that one attribute is applied to each action method.

USING COMMON SeNSe tO reSOLVe CLaSheS IN phILOSOphY

some developers have a mild obsession about the don’t repeat Yourself (drY) principle, which aims to reduce
duplication by ensuring that every operation is written just once (see http://en.wikipedia.org/wiki/Don't_
repeat_yourself). this is an excellent principle—and one i follow myself—but it can be taken too far, and i
often encounter controllers that contain a single action method to which all the verb attributes have been applied.
When i ask why this has been done, the answer is always “because we follow drY.”

When taken to an extreme, drY starts to interfere with the principles of the Web api model, which encourages
distinct action methods for each operation that the web service provides, unless those operations are essentially
indistinguishable. that means there will always be a degree of duplication since most action methods will
need to access the model repository, validate user data, and handle errors. duplication can be reduced by
defining nonaction methods that contain common code, but collapsing action methods together in the name of
deduplication causes long-term maintenance problems as the web service evolves because all of the request
handling code is squashed together, making changes difficult to apply and test.

drY is a good principle to follow, but it would be better expressed as don’t repeat Yourself Unless doing
so prevents long-term problems. if you find that your controllers look like the direct implementation of the
IHttpController interface that i created at the start of the chapter, then dial back on the deduplication and use
common sense to strike a balance between the principles and patterns that you follow.

Now that I have specified the HTTP verbs that the action methods in my non-RESTful controller support,
the default process is able to select methods to handle requests. To see the effect of the verb attributes, start the
application, use the browser to navigate to the /Home/Today URL, and click the Get Day button. Unlike the error
message displayed in Figure 22-4, the client will receive a 200 (OK) response and the requested data, as shown in
Figure 22-5.

Figure 22-5. The effect of applying HTTP verb attributes to a non-RESTful controller

www.it-ebooks.info

http://en.wikipedia.org/wiki/Don't_repeat_yourself
http://en.wikipedia.org/wiki/Don't_repeat_yourself
http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

554

Understanding the RESTful/Non-RESTful Routing Problem
Before continuing to describe the ApiController dispatch process, I am going to switch topics and describe a
common problem that I deliberately introduced into the example project, explain what causes it, and illustrate how it
can be avoided.

Previously, I added a route to the WebApiConfig.cs file that specified an action variable so that I could target
requests to the Today controller and, more recently, the Custom controller. At the time I noted that adding the route
caused a problem, which I can describe now that I have explained how action methods are selected and how the
RESTful naming convention works.

Understanding the Problem
To see the problem, start the application, use the browser to navigate to the /Home/Index URL, and click each of
the Get All, Get One, and Post buttons in turn. The Get All and Post buttons will work as expected—the client will
request the /api/products URL, and the HTTP verb will be used to select the (parameterless) Get method or the
Post method. When the Get One button is clicked, the client will request the /api/products/2 URL, and Web API will
respond with a 404 (Not Found) error, as shown in Figure 22-6.

Figure 22-6. A problem with a RESTful controller

As a reminder, here is the routing configuration for the example application:

using System.Web.Http;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

555

 config.Routes.MapHttpRoute(
 name: "ActionMethods",
 routeTemplate: "api/{controller}/{action}/{day}",
 defaults: new { day = RouteParameter.Optional }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

This is a common problem when mixing Web API controllers that follow the RESTful naming convention with
those that don’t. For RESTful controllers, the action method selection relies on the action method name starting with
the HTTP verb that the action supports, using this routing template:

...
routeTemplate: "api/{controller}/{id}"
...

The non-RESTful controllers rely on the other route, which defines an action variable to match requests:

...
routeTemplate: "api/{controller}/{action}/{day}",
...

The non-RESTful route matches requests for RESTful controllers. A request for a URL such as /api/products
works because the non-RESTful route template will match only three- or four-segment URLs and so the request is
passed on to the RESTful route, which will match two- or three-segment URLs (the final segment for both templates is
optional).

For a three-segment URL such as /api/products/2—which is what the client sends when the Get One button is
clicked—the non-RESTful route matches the request and assigns 2 as the value of the action variable. The request
is passed through the Web API dispatch process until it reaches the ApiControllerActionSelector class, which
detects the presence of the action value in the route data (step 3 in Table 22-7) but can’t match it to a method in the
ProductsController class and returns the 404 (Not Found) result.

Solving the Problem with Route Specificity
There are two ways to solve this problem. The first is to create more specific routes, either by constraining
convention-based routes or by using direct routes. This approach works well in applications that contain a lot of one
kind of controller (RESTful or non-RESTful) and only a small number of the other kind. In Listing 22-8, you can see
how I have narrowed the scope of the route for the non-RESTful controllers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

556

Listing 22-8. Narrowing the Non-RESTful Route in the WebApiConfig.cs File

using System.Web.Http;
using System.Web.Http.Routing.Constraints;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.Routes.MapHttpRoute(
 name: "ActionMethods",
 routeTemplate: "api/{controller}/{action}/{day}",
 defaults: new { day = RouteParameter.Optional },
 constraints: new { controller = new RegexRouteConstraint("today|custom")}
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

I have added a constraint to the first route so that it will match only those requests whose second segment—the
controller segment—is either today or custom. This ensures that requests for the RESTful Products controller won’t
be matched and will be routed correctly. To test the change, start the application, navigate to the /Home/Index URL
with the browser, and click the Get One button. Rather than the error shown in Figure 22-6, you will see a Success
response, and the client will display the details of a data object.

Caution ■ this problem cannot be solved by re-ordering the routes in the WebApiConfig.cs file, which just has the
effect of changing the requests that are mismatched but doesn’t address the underlying problem.

Solving the Problem with a Route Template Prefix
I do not like constraining routes in this way because it means that there is a list of controller names that has to be
kept synchronized with the classes in the application—something that adds to the testing burden and that can cause
problems once the application is deployed. Direct routes are a more elegant solution to the problem, but I prefer not
to use them, as I explained in Chapter 20.

The approach I prefer to take is to create a separate prefix for one category of controller so that, for example,
RESTful controllers are reached through URLs with the normal /api prefix and non-RESTful controllers are reached
through a different prefix, such as /api/nonrest. Listing 22-9 shows the changes I made to the WebApiConfig.cs file
to implement this change.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

557

Listing 22-9. Changing the Non-RESTful Controller Route Template in the WebApiConfig.cs File

using System.Web.Http;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.Routes.MapHttpRoute(
 name: "ActionMethods",
 routeTemplate: "api/nrest/{controller}/{action}/{day}",
 defaults: new { day = RouteParameter.Optional }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

This change means that the non-RESTful route will match URLs with four or five segments and the RESTful route
will match two- and three-segment URLs, ensuring that requests won’t be matched by the wrong route. The drawback
of this technique is that it requires the client to make requests with the right prefix, as shown in Listing 22-10.

Listing 22-10. Changing the URL Prefix in the today.js File

var response = ko.observable("Ready");
var gotError = ko.observable(false);

var sendRequest = function () {
 $.ajax("/api/nrest/custom/dayofweek/1", {
 type: "GET",
 success: function (data) {
 gotError(false);
 response(data);
 },
 error: function (jqXHR) {
 gotError(true);
 response(jqXHR.status + " (" + jqXHR.statusText + ")");
 }
 });
};

$(document).ready(function () {
 ko.applyBindings();
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

558

Understanding Filters
Having selected a method through the IHttpActionSelector interface, the ApiController classes executes the
filters that have been applied to the method. As with the MVC framework, Web API filters inject additional logic into
the request dispatch process and are used to implement cross-cutting concerns, which are functionality that is used
throughout the application but doesn’t fit neatly into the MVC pattern without breaking the separation-of-concerns
principle.

Tip ■ Filters support a design pattern called aspect-oriented programming, which is described at
http://en.wikipedia.org/wiki/Aspect-oriented_programming.

Web API filters are defined through the IFilter interface, which is defined in the System.Web.Http.Filters
namespace. The IFilter interface isn’t used directly but provides the base from which the interfaces that describe the
five different kinds of Web API filter are defined, as described in Table 22-10.

Table 22-10. The Web API Filter Types and Interfaces

Filter Type Interface Description

Authentication IAuthenticationFilter This kind of filter is used to require users or clients to be
authenticated before action methods can be executed.

Authorization IAuthorizationFilter This kind of filter is used to restrict access to action methods to
specific users or groups.

Action IActionFilter This kind of filter is used to manipulate the request or response.

Exception IExceptionFilter This kind of filter is used to handle exceptions thrown by the
action method or another kind of filer.

Override IOverrideFilter This kind of filter is used to tailor the behavior of other filters for
individual action methods.

Caution ■ the Web api filter interface names are the same as the equivalent interfaces in the MVC Framework.
Be careful when creating filters because it is easy to get the namespaces mixed up and create an MVC filter rather than
one for Web api.

I describe filters in detail in Chapters 23 and 24, but I wanted to introduce them in this chapter because they are
part of the ApiController dispatch process. Filters are supported by the ApiController class and are not delegated
to an interface like some of the other dispatch tasks, which means they are not available when you create a controller
from the IHttpController interface.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

559

Understanding the Action Method Execution Process
At this point, the ApiController—or its delegates—has selected an action method and prepared the filters that have
been applied to it. The next step is to execute the action method and obtain the HttpResponseMessage object that will
be passed back along the dispatch chain and used to send the response to the client.

Action method execution is delegated to an implementation of the IHttpActionInvoker interface, which is
defined as follows:

using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;

namespace System.Web.Http.Controllers {

 public interface IHttpActionInvoker {

 Task<HttpResponseMessage> InvokeActionAsync(HttpActionContext actionContext,
 CancellationToken cancellationToken);
 }
}

The IHttpActionInvoker interface defines the InvokeActionAsync method, which is required to asynchronously
execute the action described by the HttpActionContext argument (which is the result of the selection process) and
return an HttpResponseMessage that can be used to send the response to the client.

The HttpActionContext argument provides the means to execute the action method through
its ActionDescriptor property, which returns an instance of the HttpActionDescriptor class. The
HttpActionDescriptor, in turn, defines the ExecuteAsync method, which performs parameter and model binding,
executes the selected action method, and generates the result.

The default implementation of the IHttpActionInvoker interface is the ApiControllerActionInvoker class,
defined in the System.Web.Http.Controllers namespace. This class is responsible for converting the result of the action
method into an HttpResponseMessage object and is the component that allows the ApiController class to support
built-in C# types and the IHttpActionResult interface and its implementations, which I described in Chapter 11.

Customizing the Controller Dispatch Process
There are several ways in which the ApiController dispatch process can be customized, and I describe them in the
following sections. The default behavior will suit most applications, but if you do perform customizations, then make
sure you test thoroughly and that you really can’t get what you need through other features, such as filters (which I
describe in Chapters 23 and 24).

The ApiController class provides a set of properties that provide access to context objects that are useful for
creating customizations. The ApiController context properties are described in Table 22-11.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

560

You can use these properties in your action methods as well, but this isn’t usually required since action methods
in a web service controller are generally focused on getting data to or from the repository. Action methods don’t
usually interact directly with the HttpRequestMessage and HttpResponseMessage objects and instead rely on
parameter/model binding and result conversion to get data from the request and create a result. Table 22-12 puts
customizing the ApiController dispatch process into context.

Table 22-12. Putting Customizing the ApiController Dispatch Process in Context

Question Answer

What is it? The ApiController class relies on the IHttpActionSelector and
IHttpActionInvoker interfaces to select and execute action methods. Custom
implementations of these interfaces allow you to change the dispatch process.

When should you use it? The built-in implementations are suitable for almost all web services, and custom
implementations should be created with caution and tested thoroughly.

What do you need to know? You can selectively apply custom implementations by creating a controller-specific
configuration, as described in the “Creating a Controller-Specific Configuration”
section.

Table 22-11. The Context Properties Defined by the ApiController Class

Name Description

ActionContext Returns an HttpActionContext object that describes the currently executing action and
that provides many of the context objects that the ApiController class exposes through
the properties in this table

Configuration Returns the HttpConfiguration object that should be used to process the request

ControllerContext Returns the HttpControllerContext for this request, as described in Chapter 19

ModelState Returns the ModelStateDictionary object, used by the model validation process that I
describe in Chapter 18

Request Returns the HttpRequestMessage object that describes the current request

RequestContext Returns the HttpRequestContext object for the request

User Returns an implementation of the IPrincipal interface that identifies the user associated
with the current request, as described in Chapters 23 and 24

Creating a Custom IHttpActionInvoker Implementation
The IHttpActionInvoker interface has two responsibilities: it executes the action method, and it converts the result it
produces into an HttpResponseMessage object. There is no real value in changing the way that methods are invoked,
but creating a custom implementation of the IHttpActionInvoker interface can be a useful way of providing special
handling for return types. Listing 22-11 shows the contents of the CustomActionInvoker.cs class file that I added to
the Infrastructure folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

561

Listing 22-11. The Contents of the CustomActionInvoker.cs File

using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http;
using System.Web.Http.Controllers;

namespace Dispatch.Infrastructure {
 public class CustomActionInvoker : IHttpActionInvoker {

 public async Task<HttpResponseMessage> InvokeActionAsync(HttpActionContext
 actionContext, CancellationToken cancellationToken) {

 object result = await actionContext.ActionDescriptor.ExecuteAsync(
 actionContext.ControllerContext, actionContext.ActionArguments,
 cancellationToken);

 if (result is HttpResponseMessage) {
 return (HttpResponseMessage)result;
 } else if (result is IHttpActionResult) {
 return await ((IHttpActionResult)result).ExecuteAsync(cancellationToken);
 } else if (actionContext.ActionDescriptor.ReturnType != typeof(string)) {
 return actionContext.ActionDescriptor.ResultConverter.Convert(
 actionContext.ControllerContext, result);
 } else {
 return new ValueResultConverter<string[]>().Convert(
 actionContext.ControllerContext, new string[] { (string)result });
 }
 }
 }
}

This implementation of the IHttpActionInvoker executes the action method and checks the result that the
method produces. It handles four types of result type.

If the action method result is an •	 HttpResponseMessage object, then the CustomActionInvoker
class returns the object without modification as the result of the InvokeActionAsync method.

If the action method result is an implementation of the •	 IHttpActionResult interface,
then the CustomActionInvoker class calls the ExecuteAsync method to create an
HttpResponseMessage object, which is returned as the result of the InvokeActionAsync
method. (I described the IHttpActionResult interface and its ExecuteAsync method in
Chapter 19.)

If the result is a •	 string, then the CustomActionInvoker class creates a string array with the
result as the only element and uses a result converter to create the HttpResponseMessage that
I need as the result of the InvokeActionAsync method.

For all other result types, the •	 CustomActionInvoker class uses the result converter provided
by the HttpActionContext.ControllerContext property to create the HttpResponseMessage
object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

562

At the heart of my custom implementation is the use of result converters, which take a result type and create
an HttpResponseMessage that can be returned through the dispatch process. Result converters are defined by the
IActionResultConverter interface.

namespace System.Web.Http.Controllers {
 public interface IActionResultConverter {
 HttpResponseMessage Convert(HttpControllerContext controllerContext,
 object actionResult);
 }
}

The Convert method accepts an HttpControllerContext object and the result from the action method
and is required to return an HttpResponseMessage. There are two built-in Web API implementations of the
IActionResultConverter interface, the ValueResultConverter and VoidResultConverter classes, both of which are
defined in the System.Web.Http.Controllers namespace.

The built-in implementations are simple. The ValueResultConverter class calls the HttpRequestMessage.
CreateResponse extension method I described in Chapter 11 to produce an HttpResponseMessage object with a 200
(OK) status code and, in doing so, encodes the result data using the media type formatters I described in Part 2.

The VoidResultConverter class also calls the CreateResponse extension method, but with a 204 (No Content)
status code. As you might imagine from the name, the VoidResultConverter is used when action methods are
defined with the C# void keyword.

The ValueResultConverter class is strongly typed, and that means I have to create an instance of
ValueResultConverter<string[]> in my custom IHttpActionInvoker because the object returned by the
HttpActionContext.ActionDescriptor.ResultConverter property has been set up to handle the declared result
type of the action method.

...
return new ValueResultConverter<string[]>().Convert(
 actionContext.ControllerContext, new string[] { (string)result });
...

I have to create an instance only when I want an HttpResponseMessage that contains data of a type that is
different from the one returned by the action method.

Note ■ i am not going to register or test the CustomActionInvoker class until the “Creating a Controller-specific
Configuration” section, where i show you how to apply it to a single controller class.

Creating a Custom IHttpActionSelector Implementation
A custom implementation of the IHttpActionSelector interface allows you to take control of the way that requests
are matched to an action method. Listing 22-12 shows the contents of the CustomActionSelector.cs file that I added
to the Infrastructure folder.

Listing 22-12. The Contents of the CustomActionSelector.cs File

using System;
using System.Linq;
using System.Net;
using System.Reflection;
using System.Web.Http;
using System.Web.Http.Controllers;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

563

namespace Dispatch.Infrastructure {
 public class CustomActionSelector : IHttpActionSelector {

 public ILookup<string, HttpActionDescriptor>
 GetActionMapping(HttpControllerDescriptor descriptor) {
 return descriptor.ControllerType.GetMethods()
 .Where(x => x.IsPublic
 && !x.IsSpecialName
 && x.GetCustomAttribute<NonActionAttribute>() == null)
 .Select(x => (HttpActionDescriptor)
 new ReflectedHttpActionDescriptor(descriptor, x))
 .OrderBy(x => x.GetParameters().Count)
 .ToLookup(x => x.ActionName, StringComparer.OrdinalIgnoreCase);
 }

 public HttpActionDescriptor SelectAction(HttpControllerContext context) {
 if (context.RouteData.Values.ContainsKey("action")) {
 string actionName = (string)context.RouteData.Values["action"];
 return GetActionMapping(context.ControllerDescriptor)
 [actionName].First();
 } else {
 throw new HttpResponseException(HttpStatusCode.NotFound);
 }
 }
 }
}

There are few compelling requirements for a custom implementation of the IHttpActionSelector interface,
which is why the CustomActionSelector class does something that would not be useful in a real project: it selects
action methods by name, and if there are multiple methods with the same name, then the one with the fewest
parameters is used.

The IHttpActionSelector interface provides information about action methods through the abstract
HttpActionDescriptor class. You can create a concrete implementation of HttpActionDescriptor, but it is simpler to
use the ReflectedHttpActionDescriptor class, which performs all the reflection required to create and populate the
HttpActionDescriptor properties.

I use the GetActionMapping method to create an enumeration of the action methods available in the specified
controller and filter that enumeration in the SelectAction method based on the value of the action routing variable.

Note ■ i don’t implement the restful naming convention in my custom IHttpActionSelector implementation, which
means that only requests that can be matched by a route template that has an action variable segment are supported.

Creating a Controller-Specific Configuration
The custom implementations of the IHttpActionInvoker and IHttpActionSelector interfaces that I created in the
previous section are not especially useful. In fact, they work well only with the Custom controller, which has action
methods that return string values (which is what I look for in the CustomActionInvoker class) and methods with the
same name but different numbers of parameters (which is what the CustomActionSelector handles).

If I replaced the default implementations in the services collection with my custom classes in the WebApiConfig.cs
file, they would be applied to all controllers. In the case of the CustomActionInvoker class, this means that requests to
controllers relying on the RESTful naming convention would not be routed correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

564

I can resolve this problem by creating a configuration that uses my custom classes and applying it selectively to
the controllers whose action method selection and execution I want to change. This is done by creating an attribute
class that implements the IControllerConfiguration interface, defined as follows:

namespace System.Web.Http.Controllers {

 public interface IControllerConfiguration {

 void Initialize(HttpControllerSettings controllerSettings,
 HttpControllerDescriptor controllerDescriptor);
 }
}

The interface defines the Initialize method, which is used to populate an HttpControllerSettings object
passed as a method parameter. The other parameter is an HttpControllerDescriptor object, which provides
context information about the controller that is being processed (and which I described in Chapter 19). The
HttpControllerSettings class is used to override configuration settings using the properties defined in Table 22-13.

Table 22-13. The Properties Defined by the HttpControllerSettings Class

Name Description

Formatters Returns the collection of media type formatters (see Part 2)

ParameterBindingRules Returns the collection of parameter binding rules (see Part 2)

Services Returns the collection of services (see Part 2)

Creating a Custom IControllerConfiguration Interface
There is no default implementation of the IControllerConfiguration, but it is easy to create one. Listing 22-13 shows
the contents of the CustomControllerConfigAttribute.cs class file that I added to the Infrastructure folder.

Listing 22-13. The Contents of the CustomControllerConfigAttribute.cs File

using System;
using System.Web.Http.Controllers;

namespace Dispatch.Infrastructure {

 public class CustomControllerConfigAttribute : Attribute, IControllerConfiguration {

 public void Initialize(HttpControllerSettings controllerSettings,
 HttpControllerDescriptor controllerDescriptor) {

 controllerSettings.Services.Replace(typeof(IHttpActionSelector),
 new CustomActionSelector());
 controllerSettings.Services.Replace(typeof(IHttpActionInvoker),
 new CustomActionInvoker());
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22 ■ Controllers and aCtions

565

Custom implementations of the IControllerConfiguration interface are derived from the Attribute
class so they can be applied to controller classes. My implementation of the Initialize method uses the
HttpControllerDescriptor method to replace the default implementations of the IHttpActionSelector and
IHttpActionInvoker interfaces with instances of my custom classes.

Listing 22-14 shows how I have applied the CustomControllerConfigAttribute attribute to the Custom
controller.

Listing 22-14. Applying the CustomControllerConfigAttribute in the CustomController.cs File

using System;
using System.Web.Http;
using Dispatch.Infrastructure;

namespace Dispatch.Controllers {

 [CustomControllerConfig]
 public class CustomController : ApiController {

 [AcceptVerbs("GET", "HEAD")]
 public string DayOfWeek() {
 return DateTime.Now.ToString("dddd");
 }

 [HttpGet]
 [HttpHead]
 public string DayOfWeek(int day) {
 return Enum.GetValues(typeof(DayOfWeek)).GetValue(day).ToString();
 }

 [HttpGet]
 public int DayNumber() {
 return DateTime.Now.Day;
 }
 }
}

The effect of applying the CustomControllerConfig attribute is that the custom selector and invoker classes are
used to handle requests that target the Custom controller, while other requests for other controllers will be handled by
the default implementations.

Tip ■ this is not specific to the ApiController class. Custom configurations can be applied to any IHttpController
implementation.

Summary
In this chapter, I described how Web API controllers work and, in particular, the dispatch process that the default
controller base class provides. I explained how action methods are selected and invoked, touched upon request filters,
and demonstrated how the default dispatch process can be customized. In Chapter 23, I begin describing filters,
which allow extra logic to be injected into the dispatch process.

www.it-ebooks.info

http://www.it-ebooks.info/

567

Chapter 23

Filters Part I

I touched on filters in Chapter 20 so that I could describe the dispatch process that the ApiController class
implements. In this chapter, I describe how filters work in depth and demonstrate how they can be used to add
cross-cutting concerns to a Web API application. Table 23-1 summarizes this chapter.

Table 23-1. Chapter Summary

Problem Solution Listing

Add logic to the dispatch pipeline. Define an action filter by defining an attribute that implements
the IActionFilter interface. Apply the attribute to the action
method or controller where the logic is required.

1–2

Create an action method without
having to manage continuation
functions.

Derive the class from the ActionFilterAttribute class. 3

Terminate the request handling process
in a filter.

Create a short-circuiting filter that generates an
HttpResponseMessage object rather than invoking the
continuation function. If using the attribute base classes, then set
the HttpActionContext.Response property.

4–6

List the filters that have been applied to
an action method.

Enumerate the filter pipeline. 7, 8, 14

Apply a filter to all of the action
methods in an application.

Define a global filter. 9, 10

Associate a user identity with a request. Create an authentication filter. 11–13

Preparing the Example Project
I am going to continue using the Dispatch project I created in Chapter 19. No changes are required for this chapter.

Understanding Filters
Filters inject extra logic into the ApiController dispatch process and provide a simple and elegant mechanism to
implement features that operate across multiple components in the MVC pattern, known as cross-cutting concerns. The
most common uses for filters are applying authentication and authorization, handling errors, and measuring performance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

568

Filters are attributes that implement the IFilter interface, which is defined in the System.Web.Http.Filters
namespace. Here is the definition of the interface:

namespace System.Web.Http.Filters {
 public interface IFilter {
 bool AllowMultiple { get; }
 }
}

The only member defined by the interface is the AllowMultiple property, which specifies whether more than
one instance of a specific filter can be used. It is unusual to work directly with the IFilter interface because there
is a set of interfaces, all of which are derived from IFilter, that define different kinds of filter. Table 23-2 lists these
interfaces and describes how they are used.

Table 23-2. The Web API Filter Types and Interfaces

Filter Type Interface Description

Authentication IAuthenticationFilter This kind of filter is used to require users or clients to be
authenticated before action methods can be executed.

Authorization IAuthorizationFilter This kind of filter is used to restrict access to action methods to
specific users or groups. See Chapter 24 for details.

Action IActionFilter This kind of filter is used to manipulate the request or response.

Exception IExceptionFilter This kind of filter is used to handle exceptions thrown by the action
method or another kind of filer. See Chapter 24 for details.

Override IOverrideFilter This kind of filter is used to tailor the behavior of other filters for
individual action methods. See Chapter 24 for details.

Note ■ Filters should not be used to perform tasks that belong in an action method, which essentially means not
creating filters that process a request in order to interact with the repository and generate results. Using filters to replace
or supplement action methods makes it harder to isolate specific functions for unit testing.

There are corresponding abstract attribute classes that implement each of the interfaces listed in the table,
and they are the simplest way to get started with filters, although I will show you how to work directly from the filter
interfaces as well. I describe action and authentication filters in this chapter and the other types in Chapter 24.
Table 23-3 puts filters in context.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

569

Working with Action Filters
Action filters allow extra logic to be executed before and after an action method has been executed. This means you
have the opportunity to change the HttpRequestMessage and HttpResponseMessage objects or perform tasks that
span the action method execution, such as timing the dispatch process, which is the standard example for action
filters (although I’ll show you some other uses later in the chapter). Action filters are defined by the IActionFilter
interface, which is defined as follows:

using System.Diagnostics.CodeAnalysis;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Controllers;

namespace System.Web.Http.Filters {

 public interface IActionFilter : IFilter {

 Task<HttpResponseMessage> ExecuteActionFilterAsync(
 HttpActionContext actionContext,
 CancellationToken cancellationToken,
 Func<Task<HttpResponseMessage>> continuation);
 }
}

In the sections that follow, I’ll show you how action filters work and the different ways to create action filters. In
Figure 23-1, I have updated the dispatch process diagram to show the relationship between an action filter and the
action method. (I have shown only part of the diagram in the figure, but I’ll show the complete view of the process
later in the chapter.)

Table 23-3. Putting Filters in Context

Question Answer

What are they? Filters allow extra logic to be inserted into the dispatch process before and after the
execution of the action method. Filters can also short-circuit the dispatch process
to prevent action methods—and other filters—from being executed. See the
“Creating a Short-Circuiting Action Filter” section for details.

When should you use them? Filters should be used only to contain logic that doesn’t belong in the controller or
data model as described by the MVC pattern in Chapter 4.

What do you need to know? Filters can be applied as attributes to action methods and controllers or applied
globally through the WebApiConfig.cs file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

570

The important point to note about the diagram is that the action filter is invoked before the action method is
invoked and afterward, when HttpResponseMessage has been created and is making its way back along the chain of
components. Table 23-4 puts action filters into context.

Figure 23-1. Action filters and action methods in the ApiController dispatch process

Table 23-4. Putting Action Filters in Context

Question Answer

What are they? Action filters provide a mechanism to modify the HttpRequestMessage and
HttpResponseMessage objects before and after the action method is executed.

When should you use them? Action filters should be used with caution and only to perform tasks that do not
contain business logic, operate on the data model, or perform authentication or
authorization (which are handled by other filter types).

What do you need to know? In Web API, action filters combine the functionality of action and result filters in
the MVC framework.

Creating an Action Filter by Implementing IActionFilter
As I explained in the previous section, the IActionFilter interface defines one method: ExecuteActionFilterAsync.
This method looks more complex than it really is because the goal of the interface is to let you define work to be
performed before and after the action method is invoked. The best way to explain how this works is with an example,
and Listing 23-1 shows the contents of the TimeAttribute.cs file, which I added to the Infrastructure folder.

Listing 23-1. The Contents of the TimeAttribute.cs File

using System;
using System.Diagnostics;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Controllers;
using System.Web.Http.Filters;

namespace Dispatch.Infrastructure {
 public class TimeAttribute : Attribute, IActionFilter {

 public async Task<HttpResponseMessage> ExecuteActionFilterAsync(
 HttpActionContext actionContext,
 CancellationToken cancellationToken,
 Func<Task<HttpResponseMessage>> continuation) {

 Stopwatch sw = Stopwatch.StartNew();

 HttpResponseMessage result = await continuation();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

571

 long elapsedTicks = sw.ElapsedTicks;
 result.Headers.Add("Elapsed-Time", elapsedTicks.ToString());
 System.Diagnostics.Debug.WriteLine("Elapsed time: {0} ticks, {1} {2}",
 elapsedTicks, actionContext.Request.Method,
 actionContext.Request.RequestUri);
 return result;
 }

 public bool AllowMultiple {
 get { return false; }
 }
 }
}

The TimeAttribute class is an action filter: it is derived from the Attribute class, and it implements the
IActionFilter interface. This filter uses the StopWatch class to measure the amount of time taken to execute the
action method. (This is a simplification of what is really being measured, as I explain in the “Understanding Filter
Scope” section.)

Tip ■ the StopWatch class is a high-resolution timer that is useful for measuring small amounts of time, such as
the invocation of a single method. the elapsedTicks property i read in listing 23-1 returns the number of ticks since
the timer was started, where a tick is the smallest duration that the StopWatch class can measure on the current
system. the length of a tick will differ between systems, and the Frequency field tells you how many ticks there are
per second on the current hardware. i am happy working with ticks in this chapter because my focus is on how filters
work, but for more details of high-resolution timings, see
http://msdn.microsoft.com/en-us/library/system.diagnostics.stopwatch.aspx.

To perform my measurement, I need to take advantage of the opportunity to perform work before and after the
action method is executed. Before the execution, I need to start a timer. After the execution, I need to read the value
of the timer and report on the elapsed time, which I do by adding a header to the HttpResponseMessage object and by
writing a message to the Visual Studio Ouput window.

The first thing you do when the ExecuteActionFilterAsync method is executed is to perform the work you want
to do before the action. The filter in Listing 23-1 uses the StopWatch class to measure time, so the only work that I have
to do is create and start a new instance of the timer, which I do in a single step like this:

...
Stopwatch sw = Stopwatch.StartNew();
...

Following the statements to be performed before the action method is invoked, you await the Task that the
Func<Task<System.Net.Http.HttpResponseMessage>> parameter produces. This is a gnarly type: it is a function that,
when invoked, returns a Task that yields an HttpResponse message. Or, to put another way, invoking the continuation
parameter executes the action method, which the action filter invokes to get an HttpResponse message, like this:

...
HttpResponseMessage result = await continuation();
...

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/system.diagnostics.stopwatch.aspx
http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

572

When the continuation Task has completed, the action filter can manipulate the response. For this action filter,
that means adding a header to the HttpResponse message, as well as writing out a message to the Visual Studio
Output window.

...
long elapsedMs = sw.ElapsedMilliseconds;
result.Headers.Add("Elapsed-Time", elapsedMs.ToString());
System.Diagnostics.Debug.WriteLine("Elapsed time: {0} ms, {1} {2}",
 elapsedMs, actionContext.Request.Method, actionContext.Request.RequestUri);
return result;
...

Tip ■ the result returned by the ExecuteFilterAsync method is a Task that will yield an HttpResponseMessage
object when it completes. i used the async and await keywords in my method implementation, which means i am able to
return an HttpResponseMessage object and rely on the .Net runtime to convert it into a Task<HttpResponseMessage>.

If you need more information about the request, such as details of the controller, the action method, or its
parameters, then you can obtain it through the HtpActionContext object that is passed as a parameter to the
IActonFilter.ExecuteFilterAsync method. The HttpActionContext class defines the properties shown in Table 23-5.
In the action filter, I use the Request property to get the HttpRequestMessage object so that I can get the HTTP verb
and URL from the request.

Table 23-5. The Properties Defined by the HttpActionContext ClassHttpActionContext Class

Name Description

ActionArguments Returns a Dictionary<string, object> that maps the names of the action method
arguments to their types.

ActionDescriptor Returns an HttpActionDescriptor object that describes the action method that is going to
be invoked.

ControllerContext Returns an HttpControllerContext object that describes the controller in which the action
method is defined.

ModelState Returns a ModelStateDictionary object used in the model validation process, which I
describe in Chapter 18.

Request Returns the HttpRequestMessage object that describes the current request.

RequestContext Returns the HttpRequestContext object that provides supplementary information about the
request.

Response Returns the HttpResponseMessage object that will be used to product the response to the
client. This is only set during a short-circuit of the dispatch process, as described in the
“Creating a Short-Circuiting Action Filter” section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

573

Applying an Action Filter
Action filters are applied as attributes, either to individual action methods or to a controller class. Applying a filter to
a controller is equivalent to applying it to each and every action method in the controller, and you can see how I have
applied the Time attribute from the previous section to the Products controller in Listing 23-2. (You can also apply
filters globally, in which case they are applied to all action methods in all controllers—see the “Understanding Filter
Scope” section for details.)

Tip ■ i have applied the filter to a restful controller, but they work on any Web api controller that is derived
from the ApiController class. Filters are not available when you create your own controllers directly from the
IHttpController interface.

Listing 23-2. Applying a Filter to the ProductsController.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using Dispatch.Models;
using Dispatch.Infrastructure;

namespace Dispatch.Controllers {

 [Time]
 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 public IEnumerable<Product> Get() {
 return products;
 }

 public Product Get(int id) {
 return products.Where(x => x.ProductID == id).FirstOrDefault();
 }

 public Product Post(Product product) {
 product.ProductID = products.Count + 1;
 products.Add(product);
 return product;
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

574

You can test the action filter by starting the application, navigating to the /Home/Index URL, and clicking each
of the Get All, Get One, and Post buttons in turn. In addition to a header in the response, the action filter will write
messages to the Visual Studio Output window, like this:

Elapsed time: 147 ticks, GET http://localhost:49412/api/products/
Elapsed time: 132 ticks, GET http://localhost:49412/api/products/2
Elapsed time: 89 ticks, POST http://localhost:49412/api/products/

You will see different durations displayed, based on how many ticks your hardware can measure each second and
how fast requests can be processed.

Using the Convenience Action Filter Base Class
Not every developer is comfortable having the before and after statements defined in the same method. An alternative
approach—and the most common way to create action filters—is to derive from the ActionFilterAttribute class,
which implements the ExecuteActionFilterAsync to call separate before and after methods that allow you to
separate your code statements. The ActionFilterAttribute class defines the methods described in Table 23-6.

Table 23-6. The Methods Defined by the ActionFilterAttribute Class

Name Description

OnActionExecutingAsync Invoked before the action method is executed

OnActionExecutedAsync Invoked after the action method is executed

Note ■ there are two additional methods, OnActionExecuting and OnActionExecuted, that are invoked by the base
implementation of the methods shown in the table. these methods allow you to write filter code without having to worry
about using Task objects and the async and await keywords. there is no advantage in using these pseudo-synchronous
methods, and i strongly recommend you avoid their use.

In Listing 23-3, you can see how I have updated the TimeAttribute class so that it is derived from the
ActionFilterAttribute class. (This is similar to the filter I created in Chapter 22.)

Listing 23-3. Deriving from the ActionFilterAttribute Class in the TimeAttrribute.cs File

using System.Diagnostics;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Controllers;
using System.Web.Http.Filters;

namespace Dispatch.Infrastructure {
 public class TimeAttribute : ActionFilterAttribute {
 private static readonly string propKey =
 "Dispatch.Infrastructure.TimeAttribute.StopWatch";

 public override Task OnActionExecutingAsync(HttpActionContext actionContext,
 CancellationToken cancellationToken) {

www.it-ebooks.info

http://localhost:49412/api/products/
http://localhost:49412/api/products/2
http://localhost:49412/api/products/
http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

575

 return Task.Factory.StartNew(() => {
 actionContext.Request.Properties.Add(propKey, Stopwatch.StartNew());
 });
 }

 public override Task OnActionExecutedAsync(HttpActionExecutedContext
 actionExecutedContext, CancellationToken cancellationToken) {

 return Task.Factory.StartNew(() => {
 if (actionExecutedContext.Request.Properties.ContainsKey(propKey)) {
 Stopwatch sw =
 ((Stopwatch)actionExecutedContext.Request.Properties[propKey]);
 long elapsedTicks = sw.ElapsedTicks;
 actionExecutedContext.Response.Headers.Add("Elapsed-Time",
 elapsedTicks.ToString());
 System.Diagnostics.Debug.WriteLine(
 "Elapsed time: {0} ticks, {1} {2}", elapsedTicks,
 actionExecutedContext.Request.Method,
 actionExecutedContext.Request.RequestUri);
 }
 });
 }
 }
}

Deriving a filter from the ActionFilterAttribute class allows you to separate out the before and after code into
separate methods, but it adds its own complexities.

Tip ■ Working directly with the IActionFilter interface produces code that i think is simpler and more elegant, but in
projects that other developers will maintain, i use the ActionFilterAttribute class because the use of before and after
methods is a lot more approachable than the use of the async and await keywords, which are still not widely embraced
or understood in corporate development teams.

To improve performance, instances of filters classes are used to handle multiple requests and may be used to
handle requests concurrently. That means you must avoid using instance variables as state data if you need to pass
context information from the OnActionExecutingAsync method to the OnActionExecutedAsync method. In my
example action filter, the context that I need is the StopWatch object, which is started in OnActionExecutingAsync and
read in OnActionExecutedAsync.

You can use the HttpRequestMessage.Properties property to access a collection that is used to store
 request-specific state data. The HttpRequestMessage object persists throughout the dispatch process, which
means you can use it store objects before the action method is executed, like this:

...
actionContext.Request.Properties.Add(propKey, Stopwatch.StartNew());
...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

576

and then retrieve them after the action method has been executed, like this:

...
Stopwatch sw = ((Stopwatch)actionExecutedContext.Request.Properties[propKey]);
...

The state data is available to any other Web API component that handles the request. This means you need to
ensure that the key that you use to store the state data is unlikely to be duplicated elsewhere. I base my state data key
names on the class that stores them, like this:

...
private static readonly string propKey =
 "Dispatch.Infrastructure.TimeAttribute.StopWatch";
...

State Data prOBLeMS

the HttpRequestMessage.Properties collection is useful because the Web api programming model doesn’t
provide the state data features that are available in the legacy asp.Net platform.

the HttpRequestMessage object isn’t the only class that defines a Properties collection. similar
collections are available throughout the Web api class hierarchy, including the HttpActionDescriptor,
HttpControllerDescriptor, and HttpConfiguration classes.

Using these property collections is fine when the state data is stored and retrieved by the same object, as is the
case with the action filter in listing 23-3. the other use for these collections is to pass data from one component
to another—something i recommend you avoid.

the problem is that state data contained in properties collections creates a tight coupling between the component
that stores the data and the component that retrieves it. in this situation, you have to use both components in your
application—and that makes it difficult to create custom implementations of individual interfaces without figuring
out the private meaning of the state data and re-creating or replacing it.

i recommend you avoid using this kind of state data unless it is contained within a single class. in fact, i think that
using the property collections to coordinate components is such a dangerous technique that i have omitted the
Properties property from all of the classes i describe in this book.

The ActionFilterAttribute class provides the OnActionExecutedAsync method with context information
through the HttpActionExecutedContext class. In addition to the context available through the HttpActionContext
class, the HttpActionExecutedContext class provides details of any exception that was thrown by the continuation
class. I explain how to handle exceptions using filters in Chapter 24 and more broadly in Chapter 25. Table 23-7 shows
the properties defined by the HttpActionExecutedContext class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

577

Table 23-7. The Properties Defined by the HttpActionExecutedContext Class

Name Description

ActionContext This returns the HttpActionContext that ApiController passes to the
ExecuteActionFilterAsync method.

Exception This property is set to any exception that occurs in executing the continuation task.

Request This returns the HttpRequestMessage object associated with the response.

Response This returns the HttpResponseMessage object that has been generated by the continuation task.

In the TimeAttribute class, I use the HttpActionExecutedContext.Request property to get the
HttpRequestMessage and HttpResponseMessage objects. The HttpRequestMessage object gives me access to
the StopWatch object I stored as state data and the request URL and verb that I include in the message written to the
Visual Studio Output window. The HttpResponseMessage object allows me to add a header to the response.

...
actionExecutedContext.Response.Headers.Add("Elapsed-Time", elapsedTicks.ToString());
System.Diagnostics.Debug.WriteLine("Elapsed time: {0} ticks, {1} {2}",
 elapsedTicks, actionExecutedContext.Request.Method,
 actionExecutedContext.Request.RequestUri);
...

Creating a Short-Circuiting Action Filter
Action filters don’t have to be passive observers of the dispatch process; they can also be active participants—
although you must be careful not to use an action filter to perform work that should be defined in the action method.
As a demonstration, I added the CounterAttribute.cs file to the Infrastructure folder and used it to define the
action filer shown in Listing 23-4.

Listing 23-4. The Contents of the CounterAttribute.cs File

using System;
using System.Diagnostics;
using System.Net;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Controllers;
using System.Web.Http.Filters;

namespace Dispatch.Infrastructure {

 public class CounterAttribute : Attribute, IActionFilter {
 private static int counter = 0;
 private static int limit;

 public CounterAttribute(int requestLimit) {
 limit = requestLimit;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

578

 public Task<HttpResponseMessage> ExecuteActionFilterAsync(
 HttpActionContext actionContext,
 CancellationToken cancellationToken,
 Func<Task<HttpResponseMessage>> continuation) {

 if (counter < limit) {
 Debug.WriteLine("Request {0} of {1}", counter, limit);
 counter++;
 return continuation();
 } else {
 HttpResponseMessage response = actionContext.Request.
 CreateErrorResponse(HttpStatusCode.ServiceUnavailable,
 "Limit Reached");
 return Task.FromResult<HttpResponseMessage>(response);
 }
 }

 public bool AllowMultiple {
 get { return false; }
 }
 }
}

I have implemented this filter directly from the IActionFilter interface and defined a counter that specifies
the maximum number of requests that are allowed, after which error messages are returned to the client. This isn’t
something you would do in a real project, but it lets me demonstrate some important action filter techniques.
(I demonstrate how to create the same effect when deriving from the ActionFilterAttribute class in the “Deriving
the Filter from the ActionFilterAttribute Class” section.)

Caution ■ it can be tempting to patch up troublesome action methods by applying action filters. this is fine as a quick
fix, but i recommend doing so sparingly and ensuring that you make the time to go back into the code and integrate the
logic where it belongs: the action method or the model. relying on action filters to perform work that belongs in the action
method makes it harder to perform unit testing because you can no longer test just the action method—you must test
the combined functionality of the filter and the action method together. it also makes the code harder for other developers
to manage because understanding how a request is handled requires figuring out how the action method and the action
filter interact.

In the ExecuteActionFilterAsync method, I check to see whether the current request exceeds the
specified limit. If the limit has not been reached, then I invoke the continuation function to create the
Task<HttpResponseMessage>, which I return as the method result. This is the normal request dispatch process, and it
leads to the action method being invoked.

If the request has exceeded the limit, then I create an HttpResponseMessage object with the 503 (Service
Unavailable) status code and return it as the result of the ExecuteActionFilterAsync method, without having
invoked the continuation function. This is the short-circuit—the action generates the response for the request and, in
doing so, prevents the action method from being invoked, as illustrated by Figure 23-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

579

When the request limit has been reached, the action filter starts to short-circuit the dispatch process and
generates the HttpResponseMessage directly.

Testing the Short-Circuiting Filter
To test the filter, I need to apply it to the controller class, as shown in Listing 23-5.

Listing 23-5. Applying a Filter to the ProductsController.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using Dispatch.Models;
using Dispatch.Infrastructure;

namespace Dispatch.Controllers {

 [Time]
 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 [Counter(3)]
 public IEnumerable<Product> Get() {
 return products;
 }

 public Product Get(int id) {
 return products.Where(x => x.ProductID == id).FirstOrDefault();
 }

 public Product Post(Product product) {
 product.ProductID = products.Count + 1;
 products.Add(product);
 return product;
 }
 }
}

Figure 23-2. Short-circuiting the dispatch process with an action filter

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

580

I have applied the filter directly to the parameterless Get action method, rather than to the entire controller.
To perform the test, start the application and use the browser to navigate to the /Home/Index URL. Click the Get All
button four times, and you will see messages similar to these in the Visual Studio Output window:

Request 0 of 3
Elapsed time: 86870 ticks, GET http://localhost:49412/api/products/
Request 1 of 3
Elapsed time: 3196 ticks, GET http://localhost:49412/api/products/
Request 2 of 3
Elapsed time: 2220 ticks, GET http://localhost:49412/api/products/
Elapsed time: 7077 ticks, GET http://localhost:49412/api/products/

For the fourth and subsequent requests, the client will display the 503 (Service Unavailable) message, as
illustrated by Figure 23-3.

Figure 23-3. The effect of a short-circuiting action filter

Deriving the Filter from the ActionFilterAttribute Class
The technique for creating a short-circuiting filter that is derived from the ActionFilterAttribute class is slightly
different because you are not responsible for executing the continuation function. Listing 23-6 shows how I revised
the CounterAttribute class so that it is derived from ActionFilterAttribute.

Listing 23-6. Deriving from the ActionFilterAttribute Class in the CounterAttribute.cs File

using System;
using System.Diagnostics;
using System.Net;
using System.Net.Http;
using System.Threading;

www.it-ebooks.info

http://localhost:49412/api/products/
http://localhost:49412/api/products/
http://localhost:49412/api/products/
http://localhost:49412/api/products/
http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

581

using System.Threading.Tasks;
using System.Web.Http.Controllers;
using System.Web.Http.Filters;

namespace Dispatch.Infrastructure {

 public class CounterAttribute : ActionFilterAttribute {
 private static int counter = 0;
 private static int limit;

 public CounterAttribute(int requestLimit) {
 limit = requestLimit;
 }

 public override Task OnActionExecutingAsync(HttpActionContext actionContext,
 CancellationToken cancellationToken) {

 return Task.Factory.StartNew(() => {
 if (counter < limit) {
 Debug.WriteLine("Request {0} of {1}", counter, limit);
 counter++;
 } else {
 actionContext.Response = actionContext.Request.CreateErrorResponse(
 HttpStatusCode.ServiceUnavailable, "Limit Reached");
 }
 });
 }
 }
}

I only need to override the OnActionExecutingAsync method because I need to intercept requests before they get
to the action method. To stop the action method from being executed, I create an HttpResponseMessage object and
use it to set the HttpActionContext.Response method, like this:

...
actionContext.Response = actionContext.Request.CreateErrorResponse(
 HttpStatusCode.ServiceUnavailable, "Limit Reached");
...

The ActionFilterAttribute class implementation checks to see whether the HttpActionContext.Response
property has been set after the OnActionExecutingAsync method has been called. If the Response property is
null, then the OnActionExecutedAsync method is called as normal. If the Response property isn’t null, then
the HttpResponseMessage object to which it has been set is used as the result of its ExecuteActionFilterAsync
implementation, which creates the short-circuit effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

582

Understanding the Filter Pipeline
If you are especially sharp-eyed, you will have noticed something in the output from the two action filters in the
previous section that gives a hint about the way in which filters are executed. Before I move on to describe the other
kinds of filer, I am going to dig into the details of how filters are ordered into a filter pipeline when they are executed.
Here is the output from the previous example:

Request 0 of 3
Elapsed time: 86870 ticks, GET http://localhost:49412/api/products/
Request 1 of 3
Elapsed time: 3196 ticks, GET http://localhost:49412/api/products/
Request 2 of 3
Elapsed time: 2220 ticks, GET http://localhost:49412/api/products/
Elapsed time: 7077 ticks, GET http://localhost:49412/api/products/

The clue is the highlighted statement, which shows that the Time filter is still processing requests even though
the Counter filter is returning 503 (Service Unavailable) responses. This is because the Time filter appears before the
Counter filter in the dispatch pipeline, as shown in Figure 23-4.

Figure 23-4. The sequence of action filters in the request pipeline

Table 23-8. Putting the Filter Pipeline in Context

Question Answer

What is it? The filter pipeline provides information about the filters that apply to an action
method, sorted by scope.

When should you use it? The filter pipeline is of interest only for diagnostic purposes or when
adding support for filters to controllers that are derived directly from the
IHttpController interface, rather than the ApiController class.

What do you need to know? The filter pipeline takes into account the effect of scope on the order in which
filters will be executed but not the way that the ApiController class organizes
filters by type. I show you how to re-order the pipeline at the end of this chapter.

Filters are organized into a specific sequence, and the Time filter appears before the Counter filter in the filter
pipeline. Even though the Counter filter is short-circuiting the dispatch process, the HttpResponseMessage object that it
creates is passed back along the pipeline to the filters that appear before it. Table 23-8 puts the filter pipeline into context.

Displaying the Filter Pipeline
You can get insight into the filter pipeline through the HttpActionContext.GetFilterPipeline method, which
returns an enumeration of FilterInfo objects. Each FilterInfo object provides the details of one filter using the
properties shown in Table 23-9.

www.it-ebooks.info

http://localhost:49412/api/products/
http://localhost:49412/api/products/
http://localhost:49412/api/products/
http://localhost:49412/api/products/
http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

583

The simplest way to examine the filter pipeline is to create a custom implementation of the IHttpActionSelector
interface by deriving from the ApiControllerActionSelector class and overriding the SelectAction method to
display information about the filters. Listing 23-7 shows the contents of the PipelineActionSelector.cs file, which I
added to the Infrastructure folder.

Listing 23-7. The Contents of the PipelineActionSelector.cs File

using System.Collections.Generic;
using System.Diagnostics;
using System.Web.Http.Controllers;
using System.Web.Http.Filters;

namespace Dispatch.Infrastructure {
 public class PipelineActionSelector : ApiControllerActionSelector {

 public override HttpActionDescriptor SelectAction(HttpControllerContext
 controllerContext) {

 HttpActionDescriptor action = base.SelectAction(controllerContext);

 IEnumerable<FilterInfo> filters = action.GetFilterPipeline();

 foreach (FilterInfo filter in filters) {
 Debug.WriteLine("Scope {0} Type: {1}",
 filter.Scope, filter.Instance.GetType().Name);
 }

 return action;
 }
 }
}

I still rely on the base implementation of the SelectionAction method, but I also write out a message that
describes each filter. Listing 23-8 shows how I registered the PipelineActionSelector class as the implementation of
the IHttpActionSelector interface that Web API will use.

Table 23-9. The Properties Defined by the FilterInfo Class

Name Description

Instance Returns the filter object, which implements the IFilter interface.

Scope Returns the scope of the filter, expressed using a value from the FilterScope enumeration. See the
“Understanding Filter Scope” section for details.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

584

Listing 23-8. Registering a Custom Action Selector in the WebApiConfig.cs File

using System.Web.Http;
using System.Web.Http.Controllers;
using Dispatch.Infrastructure;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.Routes.MapHttpRoute(
 name: "ActionMethods",
 routeTemplate: "api/nrest/{controller}/{action}/{day}",
 defaults: new { day = RouteParameter.Optional }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Services.Replace(typeof(IHttpActionSelector),
 new PipelineActionSelector());
 }
 }
}

To test the custom action selector and get details of the filter pipeline, start the application and use the browser
to navigate to the /Home/Index URL. Click the Get All button, and you will see messages similar to these in the Visual
Studio Output window:

Scope Controller Type: TimeAttribute
Scope Action Type: CounterAttribute
Request 0 of 3
Elapsed time: 87523 ticks, GET http://localhost:49412/api/products/

In the sections that follow, I’ll explain why the filters are organized this way. As I continue to describe different
kinds of filter, I’ll revisit the pipeline and demonstrate how they are organized.

Note ■ the filter pipeline doesn’t completely reflect the order in which other types of filter are executed, but i will
revise the code at the end of the chapter to sort the filters by type.

Understanding Filter Scope
There are three ways in which a filter can be applied, which determines the requests to which it is applied to, known
as the filter’s scope. The FilterScope enumeration defines a value for each scope, as described in Table 23-10.

www.it-ebooks.info

http://localhost:49412/api/products/
http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

585

Filters are first ordered by type and then by scope. I listed the different filter types in Table 23-2, but here is the
order in which the three most commonly used types are executed:

 1. Authentication filters

 2. Authorization filters

 3. Action filters

This order is enforced by the ApiController class and cannot be changed by implementing he interfaces that
I described in Chapter 22. Unlike the MVC framework, there is no way to control the execution order of filters of the
same type with the same scope.

Note ■ there are two other kinds of filter—error filter and override filters—that operate differently and that i describe
in Chapter 24.

In the dispatch process, the ApiController sorts the filters in the pipeline by type and then sorts them by scope.
This is why the Time filter appears in the filter pipeline before the Counter filter—it is been applied to the controller,
and controller-scoped filters take precedence over those that have been applied directly to an action method.

Tip ■ the effect of the scope precedence rules means that my Time filter isn’t measuring just the execution of
the action method; it is also measuring the amount of time it takes to execute any filters that appear subsequently
in the filter pipeline.

Creating a Global Filter
I have demonstrated controller- and action method–scoped filters; to complete the set, I need to show you how
to create a global feature. Listing 23-9 shows the contents of the SayHelloAttribute.cs file, which I added to the
Infrastructure folder.

Listing 23-9. The Contents of the SayHelloAttribute.cs File

using System.Diagnostics;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Controllers;
using System.Web.Http.Filters;

Table 23-10. The Values Defined by the FilterScope Enumeration

Scope Description

Global The filter is executed for all requests.

Controller The filter is executed for requests that target any action method defined by the controller to
which it has been applied.

Action The filter is executed for requests that target the action method to which it has been applied.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

586

namespace Dispatch.Infrastructure {
 public class SayHelloAttribute : ActionFilterAttribute {

 public string Message { get; set; }

 public override Task OnActionExecutingAsync(HttpActionContext actionContext,
 CancellationToken cancellationToken) {

 Debug.WriteLine("SayHello: {0}", (object)Message ?? "Hello");
 return Task.FromResult<object>(null);
 }
 }
}

This file contains a filter that simply writes a message to the Visual Studio Output window so that I can
demonstrate filter precedence.

Note ■ the fact is that there are not many general-purpose uses for action filters beyond logging and measuring
performance. this is a feature that it is important to understand but becomes important only when you need to integrate
functionality that doesn’t fit neatly into the Web api/MVC model.

Global filters are registered in the WebApiConfig.cs file, as shown in Listing 23-10.

Listing 23-10. Registering a Global Filter in the WebApiConfig.cs File

using System.Web.Http;
using System.Web.Http.Controllers;
using Dispatch.Infrastructure;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.Routes.MapHttpRoute(
 name: "ActionMethods",
 routeTemplate: "api/nrest/{controller}/{action}/{day}",
 defaults: new { day = RouteParameter.Optional }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

587

 config.Services.Replace(typeof(IHttpActionSelector),
 new PipelineActionSelector());

 config.Filters.Add(new SayHelloAttribute { Message = "Global Filter" });
 }
 }
}

To test the global filter, start the application and use the browser to navigate to the /Home/Index URL. Click the
Get All button, and you will see messages similar to the following in the Visual Studio Output window:

Scope Global Type: SayHelloAttribute
Scope Controller Type: TimeAttribute
Scope Action Type: CounterAttribute
SayHello: Global Filter
Request 0 of 3
Elapsed time: 83963 ticks, GET http://localhost:49412/api/products/

I have highlighted the important messages. The first shows that the SayHelloAttribute is the first filter in the
pipeline, and the second confirms this by showing that output from the filter appears before the other filter messages.

Tip ■ although i created my global filter as an attribute, this is not required because the filter isn’t being applied
directly to a controller or action method. i prefer to create filter attributes, however, because it means that i can easily
change the scope of a filter without having to modify its code.

Working with Authentication Filters
Authentication filters, as their name suggests, allow you to ensure that action methods are invoked only by clients
that have been authenticated. Most Web API applications will use the ASP.NET Identity platform to perform
authentication, and you saw how filters are used to apply ASP.NET Identity in Chapter 6. Table 23-11 puts
authentication and filters in context.

Table 23-11. Putting Authentication Filters in Context

Question Answer

What are they? Authentication filters are responsible for inspecting an HTTP request and identifying
the user identity associated with it. Requests with which no user can be associated
are short-circuited.

When should you use them? Apply an authentication filter when you want to restrict access to one or more action
methods to requests made by users who are known to the application.

What do you need to know? Authentication filters will allow access to all users as long as the request contains
valid credentials. Use an authorization filter if you want to restrict access to specific
users, as described in Chapter 24.

www.it-ebooks.info

http://localhost:49412/api/products/
http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

588

Authentication filters are invoked first irrespective of scope and before any other kind of filter and the action
method. When authentication fails, the dispatch process is short-circuited, and an HttpResponseMessage is produced
from the authentication filter without any other filter—or the target action method—being invoked.

Caution ■ in this section, i create some insecure filters solely to demonstrate how these types of filter work. Do not
use these filters in a real project. More generally, think long and hard before creating your own authentication
code—stick to the built-in support provided by asp.Net unless you are truly an expert in writing secure code. it is all too
easy to make a simple mistake that exposes your web service to attackers. i have been writing software for decades
(certainly longer than i care to recount), and i still hesitate before writing custom security code. You should, too.

Preparing for Authentication
If your application needs to tailor the functionality and content delivered to different users, then you need some
way of managing the users’ identities and security credentials. This is usually handled through the ASP.NET Identity
system (or its predecessor, ASP.NET Membership), but I don’t want to get into the details of Identity beyond the
description I gave for the SportsStore application, so for this chapter, I will define a user manager class that I will use
to authenticate and authorize users using static data. Listing 23-11 shows the contents of the StaticUserManager.cs
class file that I added to the Infrastructure folder.

Listing 23-11. The Contents of the StaticUserManager.cs File

using System.Collections.Generic;
using System.Linq;
using System.Security.Principal;

namespace Dispatch.Infrastructure {
 public class StaticUserManager {
 private static Dictionary<string, string[]> roles;

 static StaticUserManager() {
 roles = new Dictionary<string, string[]>();
 roles.Add("admin", new string[] { "admins", "users" });
 roles.Add("bob", new string[] { "users" });
 }

 public static IPrincipal AuthenticateUser(string user, string pass) {
 if (roles.ContainsKey(user) && pass == "secret") {
 return new StaticUser(user, roles[user]);
 }
 return null;
 }
 }

 public class StaticUser: IIdentity, IPrincipal {
 private string[] roles;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

589

 public StaticUser(string name, string[] rolesList) {
 Name = name;
 AuthenticationType = "Basic";
 IsAuthenticated = true;
 roles = rolesList;
 }

 public string AuthenticationType { get; private set; }
 public bool IsAuthenticated { get; private set; }
 public string Name { get; private set; }

 public IIdentity Identity {
 get { return this; }
 }

 public bool IsInRole(string role) {
 return roles.Any(x => x == role);
 }
 }
}

ASP.NET uses two interfaces to identity users, IPrincipal and IIdentity, both of which are defined in the
System.Security.Principal namespace. The IIdentity interface is used to represent a specific user and defines the
properties shown in Table 23-12.

Table 23-12. The Properties Defined by the IIdentity Interface

Name Description

AuthenticationType Returns a string that specifies the type of authentication used to create the identity

IsAuthenticated Returns true if the user has been authenticated

Name Returns the name of the user

Table 23-13. The Properties Defined by the IPrincipal Interface

Name Description

Identity Returns an implementation of the IIdentity interface that describes the user

IsInRole(role) Returns true if the user has been assigned to the specified role and false otherwise

The IPrincipal interface is a wrapper around an IIdentity object and provides information about the roles to
which a user belongs (roles are used for authorization, as I explain in Chapter 24). The IPrincipal interface defines
the property and method shown in Table 23-13.

User management systems usually provide their own implementations of these interfaces, and in Listing 23-11,
I have defined the StaticUser class, which implements both interfaces. The StaticUserManager class provides a static
AuthenticateUser method that accepts a username and password as its parameters and returns an instance of the
StaticUser class for known users. I have defined two users and some roles, creating the user set shown in Table 23-14.
I use the roles in Chapter 24, when I describe authorization filters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

590

Caution ■ i have hard-coded the usernames, passwords, and roles into the StaticUserManager class, which is fine
for a simple example but causes problems in a real project because it means you have to deploy a new version of the
application each time there is a new user or a change to an existing one.

Understanding Authentication Filters
Authentication filters are responsible for establishing the identity of the user who has made the request. Web API
doesn’t specify how the user is identified, which means that authentication filters can be used to integrate any user
management system into your web service. For most applications, the ASP.NET Identity system is the best way to
handle authentication (and authorization, which I describe in Chapter 24), but even so, it is useful to be able to
understand how the Web API authentication process works, especially when you don’t get the results you expect in
your own projects.

Authentication filters are defined by the IAuthenticationFilter interface, which is defined as follows:

using System.Threading;
using System.Threading.Tasks;

namespace System.Web.Http.Filters {

 public interface IAuthenticationFilter : IFilter {

 Task AuthenticateAsync(HttpAuthenticationContext context,
 CancellationToken cancellationToken);

 Task ChallengeAsync(HttpAuthenticationChallengeContext context,
 CancellationToken cancellationToken);
 }
}

Authentication filters are a little odd. The AuthenticateAsync method is called before the request is processed
by other filters, and its job is to identify the user associated with the request or to create an IHttpActionResult object
that reports an error to the client.

Note ■ in an MVC Framework application, authentication failures are usually handled by redirecting the client to the
login Url for the application. this technique doesn’t work for http web services, where the client cannot be assumed
capable of parsing htMl or prompting the user for their credentials. Web services can be used to authenticate users—as
i demonstrate in Chapter 24—but failed authentication should be handled by returning a 401 (Unauthorized) response to
the client.

Table 23-14. The Users, Passwords, and Roles Defined by the StaticUser Class

User Password Roles

admin secret admins, users

bob secret users

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

591

The oddity is that the IHttpActionResult produced by the AuthenticateAsync method isn’t used to create the
response sent to the client. Instead, that is the responsibility of the ChallengeAsync method, which is invoked after
the request has been processed, even if the user has been properly authenticated. This will start to make sense with an
example—but not entirely since, as I say, authentication filters are odd.

UNDerStaNDING BaSIC http aUtheNtICatION

the example authentication filter that i describe in this section uses the basic authentication mechanism that is
defined as part of the http specification. it is incredibly simple to implement but isn’t widely used because it has
some profound limitations, especially when used without ssl.

to authenticate itself, the client adds an Authorization header to the request, like this:

Authorization: Basic YWRtaW46YWRtaW5TZWNyZXRY

the value of the header is the word Basic, followed by a Base64-encoded string that contains the username
and password separated by a colon (the : character). Decoding the string YWRtaW46YWRtaW5TZWNyZXRY reveals
admin:adminsecret, meaning that the client is authenticating itself as the user admin with a password of
adminSecret.

if the client sends a request without the Authorization header or with credentials that are incorrect (specifying
either a nonexistent user or an invalid password), then the web service will return a 401 (Unauthorized) response
that includes a WWW-Authenticate that specifies the Basic authentication mechanism, like this:

WWW-Authenticate: Basic

Basic authentication requires the client to send the user’s credentials to the web service with every request in a
format that is easily decoded. if you do find yourself using Basic authentication (and i sincerely hope that you do
not), then ensure that all of your requests are handled through ssl.

Creating an Authentication Filter
To demonstrate how authentication filters operate, I created a class file called CustomAuthenticationFilter.cs in
the Infrastructure folder and used it to create the filter shown in Listing 23-12.

Caution ■ this filter relies on the basic http authentication scheme, which is wholly inadequate for use in real
projects unless ssl is used. Use this example only to understand how the authentication filter mechanism works, and see
part 1 for details of how to use asp.Net identity to handle user authentication in real projects.

Listing 23-12. The Contents of the CustomAuthenticationFilter.cs File

using System;
using System.Net;
using System.Net.Http;
using System.Net.Http.Headers;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Filters;
using System.Web.Http.Results;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

592

namespace Dispatch.Infrastructure {
 public class CustomAuthenticationAttribute : Attribute, IAuthenticationFilter {

 public Task AuthenticateAsync(HttpAuthenticationContext context,
 CancellationToken cancellationToken) {

 context.Principal = null;
 AuthenticationHeaderValue authentication =
 context.Request.Headers.Authorization;
 if (authentication != null && authentication.Scheme == "Basic") {
 string[] authData
 = Encoding.ASCII.GetString(Convert.FromBase64String(
 authentication.Parameter)).Split(':');
 context.Principal
 = StaticUserManager.AuthenticateUser(authData[0], authData[1]);
 }

 if (context.Principal == null) {
 context.ErrorResult
 = new UnauthorizedResult(new AuthenticationHeaderValue[] {
 new AuthenticationHeaderValue("Basic") }, context.Request);
 }

 return Task.FromResult<object>(null);
 }

 public Task ChallengeAsync(HttpAuthenticationChallengeContext context,
 CancellationToken cancellationToken) {
 return Task.FromResult<object>(null);
 }

 public bool AllowMultiple {
 get { return false; }
 }
 }
}

There is a lot going on in this class, so I’ll break down the details in the sections that follow. As I get into the
details, the most important thing to remember is that the authentication filter is responsible for identifying the user
from the request and not obtaining the credentials from the user.

Tip ■ Do not implement an authentication filter in your projects until you have read Chapter 24, in which i explain how
to create a message handler to authenticate requests and refactor the filter to consume the data that it generates.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

593

Checking the Request
The job of the AuthenticateAsync method is to examine the request to see whether it contains the information
that is required to identify a user. Information about the request is provided through an instance of the
HttpAuthenticationContext class, which defines the properties shown in Table 23-15.

Table 23-15. The Properties Defined by the HttpAuthenticationContext Class

Name Description

ActionContext This property returns the HttpActionContext object that describes the action method that has
been selected to execute the request.

ErrorResult This is property is set to an implementation of the IHttpActionResult interface if the request
cannot be authenticated.

Principal This property is set to an implementation of the IPrincipal interface if the request has
been authenticated. Setting the Principal property causes the HttpContext.Principal
property to be set as well, which makes details of the authentication process available to other
components—including the authorization filters I described in Chapter 24.

Request This property returns the HttpRequestMessage object that describes the current request.

To create an effective authentication filter, the AuthenticateAsync must do one of the following:

If the request is authenticated, set the •	 HttpAuthenticationContext.Principal property to an
implementation of the IPrincipal interface.

If the request cannot be authenticated, set the •	 HttpAuthenticationContext.ErrorResult
property to an implementation of the IHttpActionResult interface that will produce a 401
(Unauthorized) result.

Web API doesn’t specify the mechanism that the AuthenticateAsync method uses to authenticate users, but
for web services, the most common techniques involve inspecting request cookies or headers. For HTTP basic
authentication, I need to look for the Authorization header, which I do like this:

...
context.Principal = null;
AuthenticationHeaderValue authentication = context.Request.Headers.Authorization;
if (authentication != null && authentication.Scheme == "Basic") {
 string[] authData = Encoding.ASCII.GetString(Convert.FromBase64String(
 authentication.Parameter)).Split(':');
 context.Principal = StaticUserManager.AuthenticateUser(authData[0], authData[1]);
}
...

The Authorization header is represented by the AuthenticationHeaderValue class, which parses the header
value and presents Scheme and Parameter properties. The Scheme property returns Basic when HTTP basic
authentication is used, and the Parameter property will return the Base64-encoded username and password, which I
decode and pass to the StaticUserManager class to authenticate the user and obtain the IPrincipal object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

594

Tip ■ Notice that i explicitly set the HttpAuthenticationContext.Principal property to null before attempting
to authenticate the request. if a Web api application is running on the traditional asp.Net platform, then the Principal
property may already be set by the time that the AuthenticateAsync method is called to represent credentials from
Windows or elsewhere. it is possible to locate and disable other sources of IPrincipal objects, but i find explicitly
setting the Principal property to null to be more reliable.

Getting the right value for the Principal value is important because I use it to check to see whether I need to
report an error through the ErrorResult property, like this:

...
if (context.Principal == null) {
 context.ErrorResult = new UnauthorizedResult(
 new AuthenticationHeaderValue[] { new AuthenticationHeaderValue("Basic") },
 context.Request);
}
...

If the call to the StaticUserManager.AuthenticateUser method hasn’t produced an IPrincipal or if the
method wasn’t called because the request didn’t contain the authentication information I require, then I set
the HttpAuthenticationContext.ErrorResult property to an instance of the UnauthorizedResult class. The
UnauthorizedResult class allows me to specify the WWW-Authenticate header, which tells the client which
authentication scheme should be used to authenticate the user.

Adding the Response Challenge
The ChallengeAsync method is call for every request, but there are two scenarios that have to be dealt with. The first
is that the AuthenticateAsync method has set a value for the HttpAuthenticationContext.ErrorResult property,
which has the effect of short-circuiting the dispatch process and invoking the ChallengeAsync method without
invoking any other filter or the action method.

The second scenario is that authentication succeeded, and the ChallengeAsync method is called so that the filter
has the change to modify the HttpResponse object, usually to make it easier to authenticate subsequent requests.

For my HTTP basic authentication scheme, I don’t have to take any action at all because I created the response
needed for failed authentications in the AuthenticateAsync method, which is how I prefer to create authentication
filters. You will sometimes encounter code where the IHttpActionResult is executed, checked for a status code,
and then replaced by a new result, but that isn’t really required. If you do need to modify the result, you can use the
HttpAuthenticationChallengeContext parameter, which defines the properties shown in Table 23-16.

Table 23-16. The Properties Defined by the HttpAuthenticationChallengeContext Class

Name Description

ActionContext This property returns the HttpActionContext object that describes the action method that
has been selected to execute the request.

Request This property returns the HttpRequestMessage object that describes the current request.

Result This property is used to specify the IHttpActionResult that will be executed to generate the
HttpResponseMessage object for the request.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

595

Applying and Testing the Authentication Filter
Authentication filters are applied just like any other filter and can be given global, controller, and action scope.
Listing 23-13 shows how I applied my example filter to the Products controller.

Listing 23-13. Applying an Authentication Filter in the ProductsController.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using Dispatch.Models;
using Dispatch.Infrastructure;

namespace Dispatch.Controllers {

 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 [Time]
 [Counter(3)]
 public IEnumerable<Product> Get() {
 return products;
 }

 [CustomAuthentication]
 public Product Get(int id) {
 return products.Where(x => x.ProductID == id).FirstOrDefault();
 }

 public Product Post(Product product) {
 product.ProductID = products.Count + 1;
 products.Add(product);
 return product;
 }
 }
}

I have applied the filter to the version of the Get method that takes a parameter. This has the effect of allowing
every other action method that is defined by the controller to be targeted by any request but restricts the Get action to
requests that have been authenticated.

Tip ■ an authentication filter doesn’t restrict access to specific users—that’s the job of authorization filters, which i
describe in Chapter 24. an authentication filter will grant access to any authenticated request, irrespective of the user
identity associated with it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

596

To test the filter, start the application and use the browser to navigate to the /Home/Index URL. First, click the Get
All or Post button to ensure that unauthenticated requests are handled correctly. To check the authentication process,
click the Get One button.

The client-side code will respond to the button press by sending an Ajax request to the /api/products/2 URL,
which the dispatch process will match to the Get method that accepts a parameter in the Products controller. The
AuthenticateAsync method defined by the CustomAuthentication filter will be invoked and, failing to find the
Authorization header, will return a 401 (Unauthorized) response to the client.

Almost all browsers have built-in support for basic authentication and will respond by prompting the user for
credentials on receipt of a 401 (Unauthorized) response that contains a WWW-Authenticate header set to Basic, as
illustrated by Figure 23-5.

Figure 23-5. Chrome prompting the user for credentials

Enter one of the usernames and passwords from Table 23-14 (either admin or bob with a password of secret), and
Chrome will resend its Ajax request to the /api/products/2 URL, but this time with the required header. The result
is that the authentication filter will set the IPrincipal object on the HttpRequestMessage object, and the dispatch
pipeline will not be short-circuited. Alternatively, you can click the Cancel button, in which case the 401 status code is
reported to the client-side JavaScript code, which will display the error.

Viewing the Filter Pipeline
If you look at the Visual Studio Output window, you will see that the PipelineActionSelector class that I created
earlier in the chapter has been writing out the filter pipeline for requests. For a request that targets the Get method to
which I applied the authentication filter, the output looks like this:

Scope Global Type: SayHelloAttribute
Scope Controller Type: TimeAttribute
Scope Action Type: CustomAuthenticationAttribute

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

597

There are three filters in the pipeline for this action method: the global SayHelloAttribute filter that I set up in
the “Creating a Global Filter” section, the TimeAttribute filter I created in the “Working with Action Filters” section,
and the CustomAuthenticationAttribute filter from the previous section.

The pipeline as returned by the HttpActionContext.GetFilterPipeline method takes into account the effect
that scope has on the order of the filters but not the effect of the filter type. As I explained earlier, the filters are
executed in this order:

 1. Authentication filters

 2. Authorization filters

 3. Action filters

There are two special kinds of filter—error and override filters—that I describe in Chapter 24, but for
now it is enough to focus on the three filter types in the list. Listing 23-14 shows how I have updated the
PipelineActionSelector class to process the filter pipeline and sort it by filter type.

Tip ■ remember that the filter pipeline is a list of the filters that will be executed only if none of the filters elects to
short-circuit the dispatch process.

Listing 23-14. Sorting the Pipeline by Filter Type in the PipelineActionSelector.cs File

using System.Collections.Generic;
using System.Diagnostics;
using System.Web.Http.Controllers;
using System.Web.Http.Filters;
using System.Linq;

namespace Dispatch.Infrastructure {
 public class PipelineActionSelector : ApiControllerActionSelector {

 public override HttpActionDescriptor SelectAction(HttpControllerContext
 controllerContext) {

 HttpActionDescriptor action = base.SelectAction(controllerContext);

 IEnumerable<FilterInfo> filters = action.GetFilterPipeline();

 IEnumerable<FilterInfo> orderedFilters =
 GetFilters<IAuthenticationFilter>(filters)
 .Concat(GetFilters<IAuthorizationFilter>(filters))
 .Concat(GetFilters<IActionFilter>(filters));

 foreach (FilterInfo filter in orderedFilters) {
 Debug.WriteLine("Scope {0} Type: {1}", filter.Scope,
 filter.Instance.GetType().Name);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23 ■ Filters part i

598

 return action;
 }

 private IEnumerable<FilterInfo> GetFilters<T>(IEnumerable<FilterInfo> filters) {
 return filters.Where(f => f.Instance is T);
 }
 }
}

I used LINQ to arrange filters by type, which produces the following messages in the Visual Studio Output
window when you start the application, navigate to the /Home/Index URL, and click the Get One button:

Scope Action Type: CustomAuthenticationAttribute
Scope Global Type: SayHelloAttribute
Scope Controller Type: TimeAttribute

Summary
In this chapter, I explained the role that filters play in the dispatch process and showed you two types of filters: action
filters and authentication filters. I demonstrated how to read the filter pipeline and explained how scope and filter
types are used to order filters for execution. In the next chapter, I continue describing the Web API support for filters
and show you how authorization, exception, and override filters work.

www.it-ebooks.info

http://www.it-ebooks.info/

599

Chapter 24

Filters Part II

In this chapter, I continue describing the Web API support for filters and demonstrate how authorization filters work.
I also show you two kinds of special filters: exception filters and override filters. Table 24-1 summarizes this chapter.

Table 24-1. Chapter Summary

Problem Solution Listing

Create an authorization filter. Implement the IAuthorizationFilter interface, derive from
the AuthorizationFilterAttribute class, or use the Authorize
attribute.

1, 5–9

Restrict access to an action
method.

Apply an authorization attribute to the action method or its
containing controller.

2–4

Handle an exception thrown by
an action method or another filter.

Create an exception filter by implementing the IExceptionFilter
interface or deriving from the ExceptionFilterAttribute class.

10–14

Disable the effect of a controller-
wide or global exception filter for
an action method.

Apply an override filter. 15–16

Preparing the Example Project
I am going to continue with the Dispatch project I created in Chapter 19 and have been building on throughout this
part of the book. No preparatory changes are required for this chapter.

Tip ■ You don’t have to re-create the project from Chapter 19 and apply all of the changes I have described since.
You can also download all of the source code organized by chapter from http://apress.com.

Reviewing Filters in the Dispatch Process
In Chapter 23, I explained how filters are wrapped around the action method so that they can execute logic before
and after it is executed. This provides the means to alter the request processed by the action method or the response
that will be sent to the client, and it allows for short-circuiting, where the dispatch process is terminated. The order in
which filters are executed depends on the type of filter and its scope. Table 24-2 shows the different filter types in the
order they are executed.

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

600

In this chapter, I describe the last of the convention filters (the authorization filter) and explain how two special
types of filters work (the exception and override filters). Authorization filters are executed after authentication filters
and before action filters, as illustrated by Figure 24-1.

Table 24-2. The Web API Filter Types and Interfaces

Filter Type Interface Description

Authentication IAuthenticationFilter This kind of filter is used to require users or clients to be
authenticated before action methods can be executed. See
Chapter 23.

Authorization IAuthorizationFilter This kind of filter is used to restrict access to action methods to
specific users or groups.

Action IActionFilter This kind of filter is used to manipulate the request or response.
See Chapter 23.

Exception IExceptionFilter This kind of filter is used to handle exceptions thrown by the
action method or another kind of filter.

Override IOverrideFilter This kind of filter is used to tailor the behavior of other filters for
individual action methods.

Figure 24-1. Filters in the dispatch process

Tip ■ I have used two common contractions in Figure 24-1 to fit everything on the page. AuthN is a contraction of
authentication, and AuthZ is a contraction of authorization.

Working with Authorization Filters
Authorization filters are used to restrict access to action methods to specific users. This may seem like a variation on
the authentication filters that I described in Chapter 23, but as you will see, authorization works differently.

In most applications, you will simply apply the Authorize attribute to your controllers and action methods
and rely on the ASP.NET Identity system to perform the authentication and authorization work, but in this section
I go behind the scenes and explain how this important kind of filter works. Table 24-3 puts authorization filters into
context.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

601

Understanding Authorization Filters
Authorization filters are defined by the IAuthorizationFilter interface, which is defined in the System.Web.Http.
Filters namespace and shares the same basic approach as action filters. Here is the IAuthorization interface:

using System.Diagnostics.CodeAnalysis;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Controllers;

namespace System.Web.Http.Filters {
 public interface IAuthorizationFilter : IFilter {

 Task<HttpResponseMessage> ExecuteAuthorizationFilterAsync(
 HttpActionContext actionContext, CancellationToken cancellationToken,
 Func<Task<HttpResponseMessage>> continuation);
 }
}

Web API doesn’t enforce any kind of restrictions on how requests are authorized or how information
about the user associated with the request is obtained. The most common approach is to read the value of the
HttpRequestContext.Principal property to get an IPrincipal object that can be compared to an authorization
policy. This approach allows authorization to be decoupled by authentication, meaning that the authentication
mechanism can be changed without affecting authorization.

Creating an Authorization Filter
Authorization filters are required to enforce an authorization policy before the action method is executed. If a request
complies with the policy—meaning that it is associated with a user who has been granted access to the action
method—then action filter does nothing. If the request doesn’t comply with the policy, the filter short-circuits the
dispatch process and returns a 401 (Unauthorized) response to the client. To demonstrate how an authorization filter
works, I added a class file called CustomAuthorizationAttribute.cs to the Infrastructure folder and used it to
define the filter shown in Listing 24-1.

Table 24-3. Putting Authorization Filters in Context

Question Answer

What are they? Authorization filters restrict action methods to specific users or the roles to which
they have been assigned.

When should you use them? The most common use for authorization filters is to prevent normal users from
gaining access to administrative functionality.

What do you need to know? Authorization filters generally rely on another component to authenticate
requests and then inspect the authenticated user for role membership. The
simplest way to perform authorization is to use the Authorize attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

602

Listing 24-1. The Contents of the CustomAuthorizationAttribute.cs File

using System;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Security.Principal;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Controllers;
using System.Web.Http.Filters;

namespace Dispatch.Infrastructure {

 public class CustomAuthorizationAttribute : Attribute, IAuthorizationFilter {
 private string[] roles;

 public CustomAuthorizationAttribute(params string[] rolesList) {
 roles = rolesList;
 }

 public Task<HttpResponseMessage> ExecuteAuthorizationFilterAsync(
 HttpActionContext actionContext,
 CancellationToken cancellationToken,
 Func<Task<HttpResponseMessage>> continuation) {

 IPrincipal principal = actionContext.RequestContext.Principal;
 if (principal == null || !roles.Any(role => principal.IsInRole(role))) {
 return Task.FromResult<HttpResponseMessage>(
 actionContext.Request.CreateResponse(HttpStatusCode.Unauthorized));
 } else {
 return continuation();
 }
 }

 public bool AllowMultiple {
 get { return false; }
 }
 }
}

Tip ■ You don’t have to create a filter directly from the interface. there is a built-in attribute class that applies
authorization, as I describe in the “Using the authorize attribute” section. the examples that follow explain how
authorization works, but you can jump right to the built-in attribute section if you just want to see how to restrict
access to your action methods.

The filter employs some of the techniques I described in Chapter 23 to authorize requests. The class constructor
takes an array of roles that will be granted access and uses the IPrincipal.IsInRole method to check to see whether
the authenticated user belongs to one of the permitted roles.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

603

If the user is in a permitted role, then the filter invokes the continuation function and returns the result. This is
often referred to as a pass-through, meaning that a request from an allowed user passes through the filter without any
modification.

If the user is not in a permitted role, then the filter short-circuits the dispatch process and returns an
HttpResponseMessage that yields a 401 (Unauthorized) status code to the client.

Tip ■ For simple applications, you might be tempted to perform authorization using individual account names rather
than roles, which you can do through the IIdentity associated with the IPrincipal object. Be careful, though: simple
applications often live longer than initially inspected and grow in unexpected directions. Working with roles, even when
there is only one user, often pays off in the long term.

Appling the Authorization Filter
Notice that the CustomAuthorizationAttribute in Listing 24-1 does not identity the user associated with the request
but relies on the HttpContext.Principal property having been set. The cost of loosely coupling authentication and
authorization is that authorization filters rely on there being another component to identify the user and create the
IPrincipal associated with the request. In Listing 24-2, you can see how I have paired the authentication attribute
from Chapter 23 with the authorization filter to restrict access to an action method defined by the Products controller.

Listing 24-2. Applying Authorization in the ProductsController.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using Dispatch.Infrastructure;
using Dispatch.Models;

namespace Dispatch.Controllers {

 [Time]
 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 [Counter(3)]
 public IEnumerable<Product> Get() {
 return products;
 }

 [CustomAuthentication]
 [CustomAuthorization("admins")]
 public Product Get(int id) {
 return products.Where(x => x.ProductID == id).FirstOrDefault();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

604

 public Product Post(Product product) {
 product.ProductID = products.Count + 1;
 products.Add(product);
 return product;
 }
 }
}

The CustomAuthentication filter sets up the IPrincipal for the request, which is then assessed by the
CustomAuthorization filter to make sure the user has been assigned to the admins role, which I specified as the
constructor parameter.

Testing the Authorization Filter
To test the authorization filter, start the application and use the browser to navigate to the /Home/Index URL. Click the
Get One button and, when prompted, enter the username bob and the password secret.

The browser will encode the credentials you have provided and resend the request to the server. The
authentication filter will create an IPrincipal object that represents the user bob and allow the request to continue
through the dispatch process. The authorization filter inspects the IPrincipal to see whether the user has been
assigned to the admins role. Table 24-4 lists the users and roles I defined in Chapter 23 and shows that bob isn’t part of
the admin role and therefore isn’t authorized to invoke the action method.

Table 24-4. The Users, Passwords, and Roles Defined by the StaticUser Class

User Password Roles

admin secret admins, users

bob secret users

The authorization filter short-circuits the request and returns a 401 (Unauthorized) response to the client.
Browsers that deal with basic authentication directly intercept the 401 response before it is passed to jQuery, which
means that you will be prompted for different credentials without ever seeing the error response.

Note ■ Browsers store http basic authentication credentials even when the history cache is cleared. to switch from
one user account to another, you will usually have to restart the browser, navigate to the /Home/Index Url, and click the
Get One button again.

Restart the browser, navigate to the /Home/Index URL, and click the Get One button again. This time, enter the
username admin and the password secret. These credentials are for a user who has been assigned to the admins role,
which means that the authorization filter will allow the request to pass to the next stage of the dispatch process.

Removing the Authentication Filter
The type ordering of filters ensures that the authentication filter runs before the authorization filter, even when they
have the same scope. (I explained filter scope in Chapter 23.) If you look at the Visual Studio Output window, you will
see that the pipeline information written out by the PipelineActionSelector class I created previously confirms the
authentication before authorization sequencing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

605

Scope Action Type: CustomAuthenticationAttribute
Scope Action Type: CustomAuthorizationAttribute
Scope Global Type: SayHelloAttribute
Scope Controller Type: TimeAttribute
SayHello: Global Filter
Elapsed time: 1497 ticks, GET http://localhost:49412/api/products/2

This ordering allows me to create an authorization filter that builds on the authentication process, without having

to worry about where the IPrincipal objects are coming from. The drawback of depending on an authentication filter
is that I have to make sure that I apply two filters every time I want to perform authorization.

A more common approach is to create a message handler that will perform authentication earlier in the dispatch
process so that the authorization filter can be applied on its own, without needing an accompanying authentication
filter. Listing 24-3 shows the contents of the AuthenticationDispatcher.cs file that I added to the Infrastructure
folder and used to define an authenticating message handler.

Listing 24-3. The Contents of the AuthenticationDispatcher.cs File

using System;
using System.Net;
using System.Net.Http;
using System.Net.Http.Headers;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace Dispatch.Infrastructure {
 public class AuthenticationDispatcher : DelegatingHandler {

 protected override async Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request,
 CancellationToken cancellationToken) {

 AuthenticationHeaderValue authentication = request.Headers.Authorization;
 if (authentication != null && authentication.Scheme == "Basic") {
 string[] authData =
 Encoding.ASCII.GetString(Convert.FromBase64String(
 authentication.Parameter)).Split(':');
 request.GetRequestContext().Principal
 = StaticUserManager.AuthenticateUser(authData[0], authData[1]);
 }

 HttpResponseMessage response = await base.SendAsync(request,
 cancellationToken);
 if (response.StatusCode == HttpStatusCode.Unauthorized) {
 response.Headers.Add("WWW-Authenticate", "Basic");
 }
 return response;
 }

 }
}

www.it-ebooks.info

http://localhost:49412/api/products/2
http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

606

This filter uses the same basic code I applied in the authentication filter in Chapter 24 but arranged in a different
way. I still check for the Authorization header and use it to authenticate the request if it is present, but I don’t
terminate the dispatch process for requests that cannot be validated. This allows requests to flow unhindered through
the application to reach action methods open to anyone but still provides the authorization filter with the information
it needs.

In addition to authenticating requests, the message handler inspects responses and adds a WWW-Authenticate
header to 401 (Unauthorized) responses to give the client the information it needs to try again. Listing 24-4 shows how
I registered the authenticating message handler in the WebApiConfig.cs file.

Listing 24-4. Registering a Message Handler in the WebApiConfig.cs File

using System.Web.Http;
using System.Web.Http.Controllers;
using Dispatch.Infrastructure;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.Routes.MapHttpRoute(
 name: "ActionMethods",
 routeTemplate: "api/nrest/{controller}/{action}/{day}",
 defaults: new { day = RouteParameter.Optional }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 config.Services.Replace(typeof(IHttpActionSelector),
 new PipelineActionSelector());

 config.Filters.Add(new SayHelloAttribute { Message = "Global Filter" });

 config.MessageHandlers.Add(new AuthenticationDispatcher());
 }
 }
}

I can now remove the authentication filter from the action method in the Products controller and rely on just the
authorization filter, as illustrated by Listing 24-5.

Listing 24-5. Removing the Authentication Filter from the ProductsController.cs File

...
//[CustomAuthentication]
[CustomAuthorization("admins")]
public Product Get(int id) {
 return products.Where(x => x.ProductID == id).FirstOrDefault();
}
...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

607

Tip ■ the authentication filter I created in Chapter 24 can still be useful because it restricts access to any
authenticated user, which is a common requirement, especially for paid-for services. In the “reworking the
authentication Filter” section, I revisit the authentication filter and rework it to take advantage of the message handler.

Retesting the Authorization Filter
The simplest way to test the effect of the message handler is to give the browser the basic credentials that you want to
test as part of the URL. Start the application and use the browser to request the following URL, taking care to change
the port number to correspond to the one your application is running on:

http://admin:secret@localhost:49412/Home/Index

The part of the URL that I have highlighted tells the browser to use the specified credentials if basic
authentication is required. Click the Get One button, and the client-side jQuery code will send an Ajax request to the
web service.

The request does not contain any credentials, so the authorization filter will short-circuit the dispatch process
and return a 401 (Unauthorized) response, to which the authentication message handler will add a WWW-Authenticate
header telling the client that basic authentication is required.

The browser will automatically resend the request using the credentials you provided in the URL without
notifying jQuery. The message handler will process the Authorization header and create the IPrincipal object,
which allows the authorization filter to validate the request.

To see the effect of a request from a user who is not allowed to access the action method, request the
following URL:

http://bob:secret@localhost:49412/Home/Index

Clicking the Get One button will repeat the sequence of requests but still produce a 401 (Unauthorized) result
because the bob has not been assigned to the admins role, which is the policy that the authorization filter enforces.

Using the Built-in Authorization Filter Attributes
Two built-in filter classes allow you to perform authorization without needing to implement a class directly
from the IAuthorizationFilter interface. The first is the AuthorizationFilterAttribute class, defined in
the System.Web.Http.Filters namespace; this class makes it possible to write a filter without worrying about
continuations, much like the ActionFilterAttribute class I described in Chapter 23 does for action filters. The
AuthorizationFilterAttribute class defines the method shown in Table 24-5.

Table 24-5. The Method Defined by the AuthorizationFilterAttribute Class

Name Description

OnAuthorizationAsync This method is overridden to implement the authorization policy.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

608

There is little reason to use the AuthorizationFilterAttribute class because the other built-in class, which
I describe in the next section, is simpler to work with; however, for completeness, Listing 24-6 shows how I have
reworked the CustomAuthorizationAttribute class so that it is derived from AuthorizationFilterAttribute.

Listing 24-6. Deriving from AuthorizationFilterAttribute in the CustomAuthorizationAttribute.cs File

using System.Linq;
using System.Net;
using System.Net.Http;
using System.Security.Principal;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Controllers;
using System.Web.Http.Filters;

namespace Dispatch.Infrastructure {

 public class CustomAuthorizationAttribute : AuthorizationFilterAttribute {
 private string[] roles;

 public CustomAuthorizationAttribute(params string[] rolesList) {
 roles = rolesList;
 }

 public override Task OnAuthorizationAsync(HttpActionContext actionContext,
 CancellationToken cancellationToken) {

 IPrincipal principal = actionContext.RequestContext.Principal;
 if (principal == null || !roles.Any(role => principal.IsInRole(role))) {
 actionContext.Response =
 actionContext.Request.CreateResponse(HttpStatusCode.Unauthorized);
 }
 return Task.FromResult<object>(null);
 }
 }
}

When deriving from the AuthorizationFilterAttribute class, the OnAuthorizationAsync method short-
circuits the dispatch process by setting the Response property of the HttpActionContext parameter. For requests that
pass the authorization policy, no response is set, and the request continues through the dispatch pipeline.

Using the Authorize Attribute
The reason that there is little reason to use the AuthorizationFilterAttribute class is because Web API includes
an Authorize filter that has built-in support for creating a policy to restrict access to specific users and roles without
needing any coding at all. The Authorize attribute defines the configuration properties shown in Table 24-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

609

The Authorize attribute works in the same way as the custom attributes I defined and relies on another—
unspecified—component in the dispatch process to authenticate the requests. Listing 24-7 shows how I have replaced
my custom authorization attribute with the built-in one in the Products controller.

Listing 24-7. Using the Built-in Authorize Attribute in the ProductsController.cs File

...
//[CustomAuthentication]
//[CustomAuthorization("admins")]
[Authorize(Roles="admins")]
public Product Get(int id) {
 return products.Where(x => x.ProductID == id).FirstOrDefault();
}
...

The effect is the same as for my custom filter but without the need to write any custom code.

Note ■ You might be wondering why I have taken the long way around to reach the point where I demonstrate the
simplest way to perform authorization checks. there are two reasons. First, the Authorize attribute relies on another
component to perform authentication, and I wanted to explain how to achieve this before introducing the Authorize
filter. second, by understanding how authorization works behind the scenes, you are less likely to be caught out when
the Authorize attribute doesn’t work the way you expect, which is not uncommon when working with user management
systems such as asp.Net Identity. these systems are complex and often counterintuitive, and the more you understand
about how they integrate into Web apI, the less likely you are to encounter problems.

Reworking the Authentication Filter
I want to tidy up one loose end before moving on: when the authentication filter that I created in Chapter 23 is
applied, authentication will be performed twice, once in the filter and again in message handler. Listing 24-8 shows
how I have revised the CustomAuthenticationFilter class so that it only enforces the policy of restricting access to
authenticated users and relies on the message handler to perform the authentication.

Listing 24-8. Revising the Authentication Policy in the CustomAuthenticationFilter.cs File

using System;
using System.Net.Http.Headers;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Filters;
using System.Web.Http.Results;

Table 24-6. The Properties Defined by the Authorize Attribute

Name Description

Roles A comma-separated list of roles that are allowed to access the action method

Users A comma-separated list of users who are allowed to access the action method

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

610

namespace Dispatch.Infrastructure {

 public class CustomAuthenticationAttribute : Attribute, IAuthenticationFilter {

 public Task AuthenticateAsync(HttpAuthenticationContext context,
 CancellationToken cancellationToken) {

 if (context.Principal == null
 || !context.Principal.Identity.IsAuthenticated) {
 context.ErrorResult
 = new UnauthorizedResult(new AuthenticationHeaderValue[] {
 new AuthenticationHeaderValue("Basic") }, context.Request);
 }

 return Task.FromResult<object>(null);
 }

 public Task ChallengeAsync(HttpAuthenticationChallengeContext context,
 CancellationToken cancellationToken) {
 return Task.FromResult<object>(null);
 }

 public bool AllowMultiple {
 get { return false; }
 }
 }
}

The filter no longer has any knowledge of the mechanism used to authenticate users and simply relies on the
IPrincipal objects that the message handler from Listing 24-3 associated with requests. Listing 24-9 shows how
I have applied the revised filter to the Products controller.

Listing 24-9. Applying the Revised Authentication Filter to the ProductsController.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using Dispatch.Infrastructure;
using Dispatch.Models;

namespace Dispatch.Controllers {

 [Time]
 [CustomAuthentication]
 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

611

 [Counter(3)]
 public IEnumerable<Product> Get() {
 return products;
 }

 //[CustomAuthentication]
 //[CustomAuthorization("admins")]
 [Authorize(Roles="admins")]
 public Product Get(int id) {
 return products.Where(x => x.ProductID == id).FirstOrDefault();
 }

 public Product Post(Product product) {
 product.ProductID = products.Count + 1;
 products.Add(product);
 return product;
 }
 }
}

The combined effect of the authentication and authorization filters is that requests from any authenticated user
can invoke Post and parameterless Get action methods, but only authenticated users who are assigned the admins
role are able to invoke the Get action method that accepts a parameter.

Working with Exception Filters
Exception filters are executed only if, as their name suggests, an exception is thrown by the action method or another
filter; they are used to translate that exception into a response that will be sent to the client. As I demonstrate, the
default Web API is to treat exceptions as problems within the server, but that isn’t always helpful. Table 24-7 puts
exception filters into context.

Table 24-7. Putting Exception Filters in Context

Question Answer

What are they? Exception filters are executed when an exception is thrown by the action method
or another filter.

When should you use them? Exception filters are useful for replacing the default response with one that gives
the client more information about the problem and what actions may be taken to
remedy it.

What do you need to know? Throwing an HttpResponseException bypasses the exception filters, as I explain
in Chapter 25.

Understanding the Default Behavior
Before I get into the detail of exception filters, I need to create a source of exceptions. Listing 24-10 shows the
modifications I made to the Products controller so that I can generate exceptions on demand. (I also removed the
filters from earlier examples to simplify the code.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

612

Listing 24-10. Throwing Exceptions in the ProductsController.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using Dispatch.Infrastructure;
using Dispatch.Models;

namespace Dispatch.Controllers {

 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 //new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 //new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 //new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 public IEnumerable<Product> Get() {
 return products;
 }

 public Product Get(int id) {
 return products[id];
 //return products.Where(x => x.ProductID == id).FirstOrDefault();
 }

 public Product Post(Product product) {
 product.ProductID = products.Count + 1;
 products.Add(product);
 return product;
 }
 }
}

I have commented out several of the statements that define data objects and changed the version of the Get
action method that accepts a parameter so that the value of the parameter is treated as an index into the data
collection.

To see the effect of the change, start the application, navigate to the /Home/Index URL with the browser, and click
the Get One button. The URL that the client requests when the Get One button is clicked is /api/products/2, which is
out of the data collection bounds. The overall effect is that the client receives a 500 (Internal Server Error), as shown in
Figure 24-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

613

If you use the F12 developer tools, you will see that the response from the web service is a JSON object that
contains details about the exception that was thrown, as follows:

{"Message" : "An error has occurred.",
"ExceptionMessage" : "Index was outside the bounds of the array.",
"ExceptionType":"System.IndexOutOfRangeException",
"StackTrace":"at Dispatch.Controllers.ProductsController.Get(Int32 id) in ..."}

I’ll come back to the JSON object and explain its use in Chapter 25, but for this chapter, the key point to note is

that the default behavior when an exception is thrown is to send a 500 (Internal Server Error) response.

Understanding Exception Filters
Treating all exceptions the same by sending a 500 (Internal Server Error) response is a catchall strategy that doesn’t
always make sense, especially if you are using code that uses exceptions to signal outcomes that are not server-side
problems. In the case of Products controller in the previous section, the client is requesting a data object that doesn’t
exist, and returning a 500 (Internal Server Error) response isn’t entirely helpful because it indicates that the request
couldn’t be processed because of some problem within the server, rather than a problem with the request. An exception
filter can be used to override the default behavior and return a more meaningful and useful response to the client.

Exception filters are derived from the IExceptionFilter interface, which is defined in the System.Web.Http.
Filters namespace. Here is the definition:

using System.Threading;
using System.Threading.Tasks;

namespace System.Web.Http.Filters {

 public interface IExceptionFilter : IFilter {

 Task ExecuteExceptionFilterAsync(HttpActionExecutedContext actionExecutedContext,
 CancellationToken cancellationToken);
 }
}

Figure 24-2. The default error-handling behavior

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

614

The ExecuteExceptionFilterAsync method is invoked when an exception has been thrown by the
action method or by another filter. Details of the exception are accessed through the Exception property of
the HttpActionExecutedContext parameter, which also defines the Response property that is used to set the
HttpResponseMessage that will be sent to the client. (I described the HttpActionExecutedContext class in Chapter 23.)

Creating an Exception Filter
Exception filters can create a new response, modify an existing one, or elect to do nothing at all. Listing 24-11 shows
the contents of the CustomExceptionAttribute.cs file that I added to the Infrastructure folder and used to define
an exception filter that will handle the exception thrown by the Products controller.

Listing 24-11. The Contents of the CustomExceptionAttribute.cs File

using System;
using System.Net;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Filters;

namespace Dispatch.Infrastructure {
 public class CustomExceptionAttribute : Attribute, IExceptionFilter {

 public Task ExecuteExceptionFilterAsync(HttpActionExecutedContext
 actionExecutedContext, CancellationToken cancellationToken) {

 if (actionExecutedContext.Exception != null
 && actionExecutedContext.Exception is ArgumentOutOfRangeException) {
 actionExecutedContext.Response =
 actionExecutedContext.Request.CreateErrorResponse(
 HttpStatusCode.BadRequest, "No data item");
 }
 return Task.FromResult<object>(null);
 }

 public bool AllowMultiple {
 get { return true; }
 }
 }
}

Unlike the other filter interfaces, there are no continuation functions or even method results required in the
ExecuteExceptionFilterAsync method. When the method is called, I check that the HttpActionExecutedContext.
Exception property has been set and that it is an instance of the exception that I am interested in: the
ArgumentOutOfRangeException class.

I create an HttpResponseMessage using the HttpRequestMessage.CreateError message extension method and
use it to set the HttpActionExecutedContext.Response property, which allows me to change the 500 (Internal Server
Error) response to a more helpful 401 (Bad Request) response. Listing 24-12 shows how I applied the exception filter
to the Products controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

615

Listing 24-12. Applying an Exception Filter in the ProductsController.cs File

...
[CustomException]
public Product Get(int id) {
 return products[id];
 //return products.Where(x => x.ProductID == id).FirstOrDefault();
}
...

Exception filters are applied just like other filter types and can be used for specific action methods or an entire
controller or registered as global filters so that they affect the entire application.

To see the effect, start the application, use the browser to navigate to the /Home/Index URL, and click the Get One
button. The new response is shown in Figure 24-3.

Figure 24-3. Using an exception filter to change the response

If you use the F12 developer tools, you will see that the string I passed to the CreateErrorResponse method like this:

...
actionExecutedContext.Request.CreateErrorResponse(HttpStatusCode.BadRequest,
 "No data item");
...

is used to create the JSON object that is included in the following response:

{"Message":"No data item"}

I return to the JSON object, and the broader Web API error handling, in Chapter 25.

Deriving the Filter from the ExceptionFilterAttribute Class
The ExceptionFilterAttribute class can be used as the base for exception filters, although since the
IExceptionFilter interface doesn’t require the use of continuation functions, the main benefit is consistency with
other types of custom filter. The ExceptionFilterAttribute class defines the method shown in Table 24-8.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

616

Listing 24-13 shows how I have updated the custom exception filter class so that it is derived from
ExceptionFilterAttribute. I have also made the class configurable so that it can be configured to map from
exception types to HTTP results when it is applied.

Listing 24-13. Changing the Base Type in the CustomExceptionAttribute.cs File

using System;
using System.Net;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Filters;

namespace Dispatch.Infrastructure {
 public class CustomExceptionAttribute : ExceptionFilterAttribute {

 public HttpStatusCode StatusCode { get; set; }
 public Type ExceptionType { get; set; }
 public string Message { get; set; }

 public override Task OnExceptionAsync(
 HttpActionExecutedContext actionExecutedContext,
 CancellationToken cancellationToken) {

 if (actionExecutedContext.Exception != null
 && actionExecutedContext.Exception.GetType() == ExceptionType) {
 actionExecutedContext.Response
 = actionExecutedContext.Request.CreateErrorResponse(StatusCode,
 Message);
 }
 return Task.FromResult<object>(null);
 }
 }
}

The basic technique in this filter is the same as when I derived directly from the IExceptionFilter interface,
except that I have extracted the exception type, the HTTP status code, and the message to be included in the JSON
object into properties. Listing 24-14 shows how I have changed the application of the filter to the Products controller
to set the property values.

Listing 24-14. Changing the Application of the Exception Filter in the ProductsController.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using Dispatch.Infrastructure;
using Dispatch.Models;

Table 24-8. The Method Defined by the ExceptionFilterAttribute Class

Name Description

OnExceptionAsync This method is overridden to handle exceptions thrown by the action method or by other filters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

617

using System.Net;
using System;

namespace Dispatch.Controllers {

 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 //new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 //new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 //new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 public IEnumerable<Product> Get() {
 return products;
 }

 [CustomException(ExceptionType=typeof(ArgumentOutOfRangeException),
 StatusCode=HttpStatusCode.BadRequest, Message="No such index")]
 public Product Get(int id) {
 return products[id];
 //return products.Where(x => x.ProductID == id).FirstOrDefault();
 }

 public Product Post(Product product) {
 product.ProductID = products.Count + 1;
 products.Add(product);
 return product;
 }
 }
}

Tip ■ If you are dealing with a lot of exceptions, then consider using the global error handling feature, which I describe
in Chapter 25.

Working with Override Filters
In Chapter 23, I explained that filters have scope. This is a useful feature that means you don’t have to apply a filter
to every single action method on which you want to apply. I also demonstrated how to create global filters that are
applied to all the action methods in the application.

A filter override allows you to disable one or more filters for an action method. This allows you to still benefit from
controller and global scopes but selectively disable filters to create different behaviors for specific action methods.
Table 24-9 puts overriding filters in context.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

618

Overriding Built-in Filter Types
Override filters implement the IOverrideFilter interface, which is defined in the System.Web.Http.Filters
namespace. Here is the interface:

namespace System.Web.Http.Filters {

 public interface IOverrideFilter : IFilter {

 Type FiltersToOverride { get; }
 }
}

The FiltersToOverride propertyreturns the type of filter that is to be overridden. To apply an override, use one
of the built-in filter classes that I have shown in Table 24-10. Each override filter attribute affects one type of filter.

Table 24-10. The Built-in Override Filter Attributes

Name Description

OverrideAuthenticationFilters Prevents authentication filters from being executed

OverrideAuthorizationFilters Prevents authorization filters from being executed

OverrideActionFilters Prevents action filters from being executed

OverrideExceptionFilters Prevents exception filters from being executed

Table 24-9. Putting Overriding Filters in Context

Question Answer

What are they? Override filters disable higher-scoped filters of a given type.

When should you use them? Use an override when you want to vary the filter pipeline for a single action
method so that controller-level and global filters won’t be executed.

What do you need to know? Override filters do not affect filters applied at the same scope, as demonstrated in
the “Redefining Filter Policies” section.

Tip ■ Unlike the other filter types, there is no benefit in creating a custom override filter. this is because the class that
ApiController uses to handle overrides (the FilterGrouping class) checks only for each filter type and not the types
they are derived from. this means it is possible to override filters that implement the IExceptionFilter interface, for
example, but not IFilter. the built-in override filter classes shown in the table encapsulate the complete range of func-
tionality that the IOverrideFilter interface can be used for.

Listing 24-15 shows how I applied an authorization filter to the Products controller so that it applies to all of the
action methods and then applies the OverrideAuthorizationFilters attribute to disable authorization for one of
them. (The authentication for requests is still being handled by the HTTP Basic authentication message handler that I
created earlier in the chapter.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

619

Listing 24-15. Overriding Controller-wide Authorization in the ProductsController.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using Dispatch.Infrastructure;
using Dispatch.Models;
using System.Net;
using System;

namespace Dispatch.Controllers {

 [Authorize(Roles="admins")]
 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 //new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 //new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 //new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 [OverrideAuthorization]
 public IEnumerable<Product> Get() {
 return products;
 }

 [CustomException(ExceptionType=typeof(ArgumentOutOfRangeException),
 StatusCode=HttpStatusCode.BadRequest, Message="No such index")]
 public Product Get(int id) {
 return products[id];
 //return products.Where(x => x.ProductID == id).FirstOrDefault();
 }

 public Product Post(Product product) {
 product.ProductID = products.Count + 1;
 products.Add(product);
 return product;
 }
 }
}

The effect of the Authorize attribute is to restrict all of the action methods in the Products controller so they can
be accessed only by authenticated users who have been assigned to the admins role.

The effect of applying the OverrideAuthorization attribute to the parameterless version of the Get action
method is to prevent execution of all authorization filters for that action method, which means that any request is able
to invoke the action.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

620

Redefining Filter Policies
The clever part of the override filters is that they affect filters only at the previous scope, which means you can
apply attributes of the overridden type at the same level as the override, and they will be executed. As an example,
Listing 24-16 shows how I have applied the Authorize attribute alongside the OverrideAuthorization attribute in
the Products controller.

Listing 24-16. Redefining Authorization in the ProductsController.cs File

using System.Collections.Generic;
using System.Linq;
using System.Web.Http;
using Dispatch.Infrastructure;
using Dispatch.Models;
using System.Net;
using System;

namespace Dispatch.Controllers {

 [Authorize(Roles="admins")]
 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 //new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 //new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 //new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 [OverrideAuthorization]
 [Authorize(Roles="users")]
 public IEnumerable<Product> Get() {
 return products;
 }

 [CustomException(ExceptionType=typeof(ArgumentOutOfRangeException),
 StatusCode=HttpStatusCode.BadRequest, Message="No such index")]
 public Product Get(int id) {
 return products[id];
 //return products.Where(x => x.ProductID == id).FirstOrDefault();
 }

 public Product Post(Product product) {
 product.ProductID = products.Count + 1;
 products.Add(product);
 return product;
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24 ■ FIlters part II

621

I have applied the Authorize filter to the Get method, specifying that only authenticated users who have been
assigned to the users role are allowed to invoke the action method. Without the OverrideAuthorization attribute,
the filter pipeline would contain both Authorize attributes, and they would be executed one after the other, creating a
combined effect of restricting access to those users who have been assigned to both the admins and users roles.

But with the OverrideAuthorization, the controller-scoped Authorize attribute is removed from the pipeline,
meaning that only the Authorize filter applied directly to the action method will be used: the effect is to restrict access
to the users role.

Summary
In this chapter, I finished describing the Web API support for filters by explaining how authentication and exception
filters work. I also demonstrated how override filters can be used to prevent the execution of filters that have been
applied at the global and controller scopes, allowing filtering to be disabled or redefined for an action method.

www.it-ebooks.info

http://www.it-ebooks.info/

623

Chapter 25

Error Handling

In this chapter, I complete my description of the Web API dispatch process by showing how errors are handled. I’ll
show you the different ways you can deal with problems that you anticipate during development and what happens
when unexpected problems arise. I explain how to control the response that is sent to the client and how to manage
and log unhandled exceptions for the entire application. Table 25-1 summarizes this chapter.

Table 25-1. Chapter Summary

Problem Solution Listing

Trigger the default error handling policy. Throw an exception from an action method or filter. 1–3

Throw an exception that generates a
specific result status code.

Throw an instance of HttpResponseException. 4

Return a response for error that has been
anticipated.

Return an implementation of the IHttpActionResult
interface.

5

Control the additional data that is sent to
the client when an error occurs.

Use an HttpError object. 6–9

Control how information is sent to the
client for an unhandled exception.

Set the HttpConfiguration.
IncludeErrorDetailPolicy property.

10

Receive additional error data at the client. Read the jqXHR.responseJSON property to get a
JavaScript object decoded from the response and
display the Message property, if it exists, to the user.

11

Change the default policy for dealing with
unhandled exceptions.

Create a global exception handler. 12–14

Log unhandled exceptions. Create a global exception logger. 15–16

Preparing the Example Project
I am going to continue working with the Dispatch project I created in Chapter 19. To prepare for this chapter, I have
the removed filters from the Products controller, as shown in Listing 25-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

624

Listing 25-1. The Contents of the ProductsController.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Web.Http;
using Dispatch.Infrastructure;
using Dispatch.Models;

namespace Dispatch.Controllers {

 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 //new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 //new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 //new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 public IEnumerable<Product> Get() {
 return products;
 }

 [LogErrors]
 public Product Get(int id) {
 return products[id];
 //return products.Where(x => x.ProductID == id).FirstOrDefault();
 }

 public Product Post(Product product) {
 product.ProductID = products.Count + 1;
 products.Add(product);
 return product;
 }
 }
}

I have applied a LogErrors attribute to one of the Get action methods in the Product controller. This is the
application of a simple exception filter that I defined by adding a LogErrorsAttribute.cs file to the Infrastructure
folder and defining the class shown in Listing 25-2.

Listing 25-2. The Contents of the LogErrorsAttribute.cs File

using System;
using System.Diagnostics;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.Filters;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

625

namespace Dispatch.Infrastructure {
 public class LogErrorsAttribute : Attribute, IExceptionFilter {
 public Task ExecuteExceptionFilterAsync(HttpActionExecutedContext
 actionExecutedContext, CancellationToken cancellationToken) {

 Debug.WriteLine(string.Format(
 "Exception Type: {0}", actionExecutedContext.Exception.Message));
 Debug.WriteLine(string.Format(
 "Exception Message: {0}", actionExecutedContext.Exception.GetType()));

 return Task.FromResult<object>(null);
 }

 public bool AllowMultiple {
 get { return false; }
 }
 }
}

The filter writes out the message and type of exceptions that it is asked to process, which I will use to highlight
differences in the way that some errors are processed. Finally, I have updated the WebApiConfig.cs file to comment
out the custom classes that I added in earlier chapters. Listing 25-3 shows the revised configuration.

Listing 25-3. The Contents of the WebApiConfig.cs File

using System.Web.Http;
using System.Web.Http.Controllers;
using Dispatch.Infrastructure;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.Routes.MapHttpRoute(
 name: "ActionMethods",
 routeTemplate: "api/nrest/{controller}/{action}/{day}",
 defaults: new { day = RouteParameter.Optional }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 //config.Services.Replace(typeof(IHttpActionSelector),
 // new PipelineActionSelector());
 //config.Filters.Add(new SayHelloAttribute { Message = "Global Filter" });
 //config.MessageHandlers.Add(new AuthenticationDispatcher());
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

626

Dealing with Errors
All web services will run into problems, but what separates the good applications from the bad is the way that you deal
with those problems and how you present them to the client and user.

In broad terms, there are two kinds of errors: the ones you anticipated during development and the ones that
catch you by surprise in production. Careful coding and thorough testing can help minimize surprises, but you can’t
foresee every issue. It is important to have a plan to deal with the problems you anticipate and have a fallback position
for responding to the ones you don’t see coming. Web API provides features for dealing with both kinds of problem, as
I explain in the sections that follow. Table 25-2 puts the Web API error handling support into context.

Table 25-2. Putting Error Handling in Context

Question Answer

What is it? Exception handling is the process of responding to problems and exceptions so that
they are presented to clients via HTTP responses.

When should you use it? You should handle as many problems as possible within action methods and filters
and rely on the default behavior as little as you can.

What do you need to know? You can change the default behavior by implementing a new global exception
handler, as I describe in the “Responding to Errors Globally” section.

Figure 25-1. The default Web API exception handling

Relying on the Default Behavior
The simplest way to deal with problems is to ignore them and let the default behavior take care of generating a
response for the client, which is to send a 500 (Internal Server Error) status code along with some diagnostic data.

To see the default behavior, start the application and use the browser to navigate to the /Home/Index URL. Click
the Get One button to send the Ajax request that will invoke the Get action method. The value of the id parameter
taken from the requested URL exceeds the number of data items available, which causes an exception to be thrown.
The exception is expressed to the client as a 500 (Internal Server) response, as shown in Figure 25-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

627

Relying on the default behavior is the least useful thing you can do, and it should be relied on only for unforeseen
problems. The issue is that the 500 (Internal Server Error) status code conveys no useful information to the client
except that the request could not be processed.

When I see a 500 status code, I am reminded of a car that my mother used to drive. It was an old Peugeot and had
a red STOP light on the dashboard that came on whenever the car detected a problem. The light would come on for
everything from an interior lightbulb blowing to a serious engine fault, and there was no way to tell whether it was safe
to continue and fix the problem tomorrow or whether you should pull to the side of the road and call a fire truck. The
500 status code is like the STOP light: it doesn’t convey any useful information beyond a problem having occurred. It
does not explain what caused the problem, how severe the problem is, or how the problem might be resolved.

To deal with the lack of context, Web API includes additional data in the response body, like this:

{"Message":"An error has occurred.",
 "ExceptionMessage":"Index was out of range. Must be non-negative and less than the
 size of the collection.\r\nParameter name: index",
 "ExceptionType":"System.ArgumentOutOfRangeException",
 "StackTrace":" at System.ThrowHelper.ThrowArgumentOutOfRangeException() at
 System.Collections.Generic.List`1.get_Item(Int32 index)\r\n at
 Dispatch.Controllers.ProductsController.Get(Int32 id) in ..."}

I explain how this part of the response is created and formatted in the “Using the HttpError Class” section, but for

now, it is enough to know that the client is sent four pieces of information.

A message that describes the problem•	

The message from the exception•	

The .NET type of the exception•	

The stack trace (which I have edited for brevity)•	

This appears more useful than it is in reality. The information is vague (“an error has occurred” is no more
informative than the response status code) and contains information that is only of use to the web service developer.

Finally, as you would expect from having read Chapter 24, the LogErrors exception filter that I applied at the start
of the chapter is executed, which produces the following messages in the Visual Studio Output window:

Exception Type: Index was out of range. Must be non-negative and less than the size of the collection.
Parameter name: index
Exception Message: System.ArgumentOutOfRangeException

Throwing a Special Exception
The default behavior is applied when an action method throws an exception (or fails to catch an exception thrown by
code it calls), but there is one type of exception that does not trigger the default behavior: HttpResponseException.
The constructor for the HttpResponseException class takes an HttpStatusCode parameter, which is used as the status
code for the HTTP response. Listing 25-4 shows how I applied the HttpResponseException to the Get action of the
Products controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

628

Listing 25-4. Applying the HttpResponseException in the ProductsController.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Web.Http;
using Dispatch.Infrastructure;
using Dispatch.Models;

namespace Dispatch.Controllers {

 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 //new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 public IEnumerable<Product> Get() {
 return products;
 }

 [LogErrors]
 public Product Get(int id) {
 Product product = products.Where(x => x.ProductID == id).FirstOrDefault();
 if (product == null) {
 throw new HttpResponseException(HttpStatusCode.BadRequest);
 }
 return product;
 }

 public Product Post(Product product) {
 product.ProductID = products.Count + 1;
 products.Add(product);
 return product;
 }
 }
}

I have taken a more nuanced approach to the implementation of the action method, using LINQ to try to locate
a Product object with the ID specified by the client. If there is no match, then I throw a new HttpResponseException
with the 400 (Bad Request) status code.

The way that HttpResponseException is handled by Web API is different from all other exceptions. Most
importantly, exception filters are not executed. This is because the ApiControllerActionInvoker class (which is
the default implementation of the IHttpActionInvoker interface, as I explained in Chapter 22) explicitly catches
instances of HttpResponseException and processes them to create an HttpResponseMessage object before the normal
error handling is executed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

629

Note ■ When you use the HttpResponseException, no context information—such as the stack trace—is included in
the response.

Using an Implementation of the IHttpActionResult Interface
For problems you are expecting—especially those caused by a problem with the request—you can follow the
standard approach available through the ApiController base class and return an object that implements the
IHttpActionResult interface. Listing 25-5 shows how I reworked the Get action method in the Products controller to
return this kind of result if the requested data object doesn’t exist.

Listing 25-5. Returning an IHttpActionResult in the ProductsController.cs File

...
[LogErrors]
public IHttpActionResult Get(int id) {
 Product product = products.Where(x => x.ProductID == id).FirstOrDefault();
 if (product == null) {
 return BadRequest("No such data object");
 }
 return Ok(product);
}
...

I find this approach feels less natural than using an HttpResponseException because the result from the action
method has to be IHttpActionResult in order to allow successful and error results to be produced, although this is
mitigated a little by the convenience methods that the ApiController class provides for creating results, such as Ok
and BadRequest. When you use convenience methods, such as BadRequest, the string argument is included in the
body of the response sent to the client, like this:

{"Message":"No such data object"}

To see this data, start the application, use the browser to navigate to the /Home/Index URL, and click the Get One

button. Using the F12 tools, you will be able to see that the response contains a JSON object with a Message property.

Using the HttpError Class
The content in the body of an error HTTP response is controlled by the HttpError class, which has been created and
populated behind the scenes in the previous examples. You can get more direct control over the way in which errors
are expressed to the client by creating an HttpResponseMessage object within the action method and providing an
HttpError object with the information you want included in the response body.

Tip ■ the HttpError object is subject to serialization through media type formatters, which i described in part 2.
this means the format will adapt to the client’s preferences, which is why the HttpError objects i create in this chapter
are all expressed as JSon. See part 2 for how objects are serialized and how the client specifies which formats it prefers
to deal with.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

630

I am showing you how to use the HttpError object to send data to the client for completeness, but the data
itself is of limited use. HTTP web service clients are required to deal only with the response status code, and there
is no standard for the body data and how it should be used. You should take care to ensure that the response status
code accurately reflects the nature of the problem and not rely on the client being able to parse and respond to any
additional information you have chosen to include.

Additional data can be helpful during development when you are responsible for creating the web service and
the client, but I find it more helpful to use the Visual Studio debugger and the browser F12 tools to figure out what is
happening when things go wrong. Table 25-3 puts the HttpError object into context.

Table 25-3. Putting the HttpError Class in Context

Question Answer

What is it? The HttpError class is used to send additional data to the client when something
goes wrong.

When should you use it? The HttpError class is used automatically when Web API handles
uncaught exceptions, but you can also create instances directly for use with
HttpResponseMessage objects.

What do you need to know? There is no agreed standard on how web services send error data to the client, and
the default data sent by Web API is generally of use only to developers.

Table 25-4. The Properties Defined by the HttpError Class

Name Description

ExceptionMessage Gets or sets a descriptive string, usually used to hold the message from the exception that
the HttpError represents.

ExceptionType Gets or sets the type of the exception that the HttpError represents, expressed as a string.

InnerException Gets or sets an HttpError that represents a nested error.

Message Gets or sets the user-readable message that describes the problem the HttpError object
represents, expressed as a string.

MessageDetail Gets or sets a message intended for the client developer that describes the error the
HttpError represents, expressed as a string.

ModelState Gets an HttpError that contains details of model validation errors. To set this property,
create a new instance of the HttpError class using the constructor that accepts a
ModelStateDictionary object. See the “Including Model State Errors in the HTTP
Response” section for a demonstration.

StackTrace Gets the stack trace for the error that the HttpError object represents, expressed as a string.

Using an Error Response and an HttpError Object
The HttpError class, which is defined in the System.Web.Http namespace, defines the properties shown in Table 25-4.

To take control of the data includes in the response body, you create an instance of HttpError, set the properties
you want to include, and then create an HttpResponseMessage that will convey the data back through the dispatch
chain and to the client. Listing 25-6 shows the use of the HttpError object in the Get action method of the Products
controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

631

Listing 25-6. Creating an Error Response in the ProductsController.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Web.Http;
using Dispatch.Infrastructure;
using Dispatch.Models;
using System.Net.Http;

namespace Dispatch.Controllers {

 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 //new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 public IEnumerable<Product> Get() {
 return products;
 }

 [LogErrors]
 public HttpResponseMessage Get(int id) {
 Product product = products.Where(x => x.ProductID == id).FirstOrDefault();
 if (product == null) {
 return Request.CreateErrorResponse(HttpStatusCode.BadRequest,
 new HttpError {
 Message = "No such data item",
 MessageDetail = string.Format("No item ID {0} was found", id)
 });
 }
 return Request.CreateResponse(product);
 }

 public Product Post(Product product) {
 product.ProductID = products.Count + 1;
 products.Add(product);
 return product;
 }
 }
}

In the listing, I use the CreateErrorResponse extension method on the HttpRequestMessage object to create an
HttpResponseMessage. The version of the CreateErrorResponse method that I used takes an HTTP status code and
an HttpError object, for which I set the Message and MessageDetail properties.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

632

You can see how the property values I set in Listing 25-6 are processed by invoking the action method. Start
the application, use the browser to navigate to /Home/Index, and click the Get One button. The URL that the client
requests will trigger the creation of the error response, and you will see the following data in the response in the
browser F12 tools:

{"Message":"No such data item","MessageDetail":"No item ID 2 was found"}

Adding Extra Information to the HttpError Object
Although the HttpError class defines the set of properties shown in Table 25-4, the class itself is derived from
Dictionary<string, object>, which means you can add arbitrary data to the response sent to the client. Listing
25-7 shows how I have modified the Get method in the Product controller to send additional information through the
HttpError object.

Listing 25-7. Adding Extra Error Information in the ProductsController.cs File

...
[LogErrors]
public HttpResponseMessage Get(int id) {
 Product product = products.Where(x => x.ProductID == id).FirstOrDefault();
 if (product == null) {
 HttpError error = new HttpError();
 error.Message = "No such data item";
 error.Add("RequestID", id);
 error.Add("AvailbleIDs", products.Select(x => x.ProductID));
 return Request.CreateErrorResponse(HttpStatusCode.BadRequest, error);
 }
 return Request.CreateResponse(product);
}
...

In this example, I set the Message property described in Table 25-4 and add two custom properties to provide
additional information about the error. I include the requested product ID that was received by the action method
(which can be useful to check to see whether there have been parameter/model binding errors as the request was
processed) and return a list of the IDs of the data objects that are available. Here is the data included in the HTTP
response:

{"Message":"No such data item","RequestID":2,"AvailbleIDs":[1,3,4]}

I don’t recommend including lists of valid IDs in real projects because there can be a lot of them to deal with, but it

provides a nice demonstration in this chapter of how you can pass arbitrary objects to the HttpError and leave them to
be serialized as part of the response (in this case, an IEnumerable<int> that is expressed as an array of numeric values).

Including Model State Errors in the HTTP Response
In Chapter 18, I explained how data validation errors are expressed through model state. You can include model state
data in an HttpError object, as shown by Listing 25-8.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

633

Listing 25-8. Adding Model State Data to the Error in the ProductsControllers.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Web.Http;
using Dispatch.Infrastructure;
using Dispatch.Models;
using System.Net.Http;

namespace Dispatch.Controllers {

 public class ProductsController : ApiController {
 private static List<Product> products = new List<Product> {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 //new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 public IEnumerable<Product> Get() {
 return products;
 }

 [LogErrors]
 public HttpResponseMessage Get(int id) {
 Product product = products.Where(x => x.ProductID == id).FirstOrDefault();
 if (product == null) {
 HttpError error = new HttpError();
 error.Message = "No such data item";
 error.Add("RequestID", id);
 error.Add("AvailbleIDs", products.Select(x => x.ProductID));
 return Request.CreateErrorResponse(HttpStatusCode.BadRequest, error);
 }
 return Request.CreateResponse(product);
 }

 public HttpResponseMessage Post(Product product) {
 if (!ModelState.IsValid) {
 HttpError error = new HttpError(ModelState, false);
 error.Message = "Cannot Add Product";
 error.Add("AvailbleIDs", products.Select(x => x.ProductID));
 return Request.CreateErrorResponse(HttpStatusCode.BadRequest, error);
 }
 product.ProductID = products.Count + 1;
 products.Add(product);
 return Request.CreateResponse(product);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

634

The HttpError class defines a constructor that accepts a ModelStateDictionary object, which can be obtained
through the ApiController.ModelState property. The second constructor argument specifies whether details of the
validation exceptions should be included in the HttpError object.

Tip ■ Be careful not to include model state data unless there is a validation error; otherwise, you will send data to the
client that simply confirms that the model state was valid. the purpose of error data is to explain what went wrong, not
what worked as expected.

To test the changes I made to the Post action method, I added some validation attributes to the Product class, as
shown in Listing 25-9 and which I described in Chapter 18.

Listing 25-9. Applying Validation Attributes in the Product.cs File

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Web.Http;

namespace Dispatch.Models {

 public class Product {

 [HttpBindNever]
 public int ProductID { get; set; }

 [Required]
 public string Name { get; set; }

 [Range(20, 500)]
 public decimal Price { get; set; }
 }
}

To test the effect of adding validation errors to the HTTP response, start the application, use the browser to
navigate to the /Home/Index URL, and click the Post button. The default Price value that the client sends is less than
the lower bound I applied with the Range validation attribute, which ensures that the model state will be invalid.

Using the F12 tools to see the response sent from the web service will reveal the data from the HttpError object,
as follows:

{"Message":"Cannot Add Product",
 "ModelState":{"product.Price":["The field Price must be between 20 and 500."]},
 "AvailbleIDs":[1,3,4]}

The properties that I set directly in the action method are sent alongside the validation errors that were detected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

635

Controlling Error Detail
Every predefined HttpError property except Message is considered to be detailed information and, as I explained at
the start of this section, is generally useful only to developers. You can control whether properties other than Message
are sent to the client through the HttpConfigutation.IncludeErrorDetailPolicy property, which is set to a value
from the IncludeErrorDetailPolicy enumeration, as listed in Table 25-5.

Table 25-5. The Values Defined by the IncludeErrorDetailPolicy Enumeration

Name Description

Always All of the HttpError property values are sent to the client.

Default Use the behavior defined by the customErrors configuration element in the Web.config file. Use this
value only if your application is hosted by ASP.NET, and use the LocalOnly value for other hosts.

LocalOnly All of the HttpError properties are sent to clients on the local machine, but only the Message property
is sent to other clients.

Never Only the Message property is sent, irrespective of where the client request originated or the host
configuration.

Listing 25-10 shows how I set the detail policy in the WebApiConfig.cs file.

Listing 25-10. Setting the Exception Detail Policy in the WebApiConfig.cs File

using System.Web.Http;
using System.Web.Http.Controllers;
using Dispatch.Infrastructure;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.Routes.MapHttpRoute(
 name: "ActionMethods",
 routeTemplate: "api/nrest/{controller}/{action}/{day}",
 defaults: new { day = RouteParameter.Optional }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 //config.Services.Replace(typeof(IHttpActionSelector),
 // new PipelineActionSelector());
 //config.Filters.Add(new SayHelloAttribute { Message = "Global Filter" });
 //config.MessageHandlers.Add(new AuthenticationDispatcher());

 config.IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never;
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

636

Caution ■ the IncludeErrorDetailPolicy setting affects the HttpError objects that Web api creates only when
dealing with a regular unhandled exception. it doesn’t have any effect on HttpError objects that you create directly,
where you can control the data sent to the client explicitly.

Displaying HttpError Information in the Client
If you are responsible for writing the client that consumes the Web API web service, then you can take advantage
of the HttpError information to increase the user’s understanding of what caused a problem, beyond the basic
characterization provided by the HTTP status code. Listing 25-11 demonstrates how to read the data from an error
returned in response to a jQuery Ajax request.

Caution ■ You should display only the Message property to users and ensure that the messages you send to the
client are meaningful and helpful to a typical end user. Keep technical details and information about the structure of
your application to a minimum and limited to the HttpError properties intended for developers.

Listing 25-11. Processing Error Information in the dispatch.js File

...
error: function (jqXHR) {
 gotError(true);
 products.removeAll();
 if (jqXHR.responseJSON && jqXHR.responseJSON.Message) {
 response(jqXHR.status + " (" + jqXHR.responseJSON.Message + ") ");
 } else {
 response(jqXHR.status);
 }
}
...

jQuery makes the response body as a JavaScript object parsed from the JSON data, available through the
argument passed to the error function. In this listing, I have replaced the status message text with the value of
the responseJSON.Message property, which corresponds to the HttpError.Message property I set in Listing 25-8.
Figure 25-2 shows the effect.

Figure 25-2. Displaying additional error data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

637

Responding to Errors Globally
All the errors I have dealt with so far in this chapter have been generated by action methods, which are the source of
most problems. However, you have seen just how many different ways there are to customize the way that Web API
dispatches requests, and all of them have the potential to throw exceptions.

Web API defines two services that can be used to deal with exceptions wherever they occur in the application: the
global exception handler and the global exception logger. I explain both in the sections that follow, and Table 25-6 puts
them into context.

Table 25-6. Putting the Global Error Services in Context

Question Answer

What are they? The global error services allow you to change the default behavior for uncaught
exceptions and to log those exceptions.

When should you use them? Use the global exception handler when you want to change the response sent for
exceptions. Use the global exception logger to record exceptions for future analysis.

What do you need to know? Change the default fallback behavior with caution because sending a 500 (Internal
Server Error) is usually the best approach for dealing with unforeseen problems.

Handling Exceptions
A global exception handler implements the IExceptionHandler interface, which is defined as follows:

using System.Threading;
using System.Threading.Tasks;

namespace System.Web.Http.ExceptionHandling {

 public interface IExceptionHandler {

 Task HandleAsync(ExceptionHandlerContext context,
 CancellationToken cancellationToken);
 }
}

The HandleAsync method is called when an exception is thrown and not handled elsewhere in the application.
The HandleAsync method accepts an instance of the ExceptionHandlerContext class, which defines the properties
described in Table 25-7.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

638

A custom global exception handler can change the default Web API behavior by setting the
ExceptionHandlerContext.Result property to an IHttpActionResult object, which is processed to create an
HttpResponseMessage that can used to send a response to the client. If a custom global exception handler doesn’t
set the Result property, then Web API uses a fallback exception handler, which generates the standard 500 (Internal
Server Error) response.

The CatchBlock property of the ExceptionHandlerContext class provides information about where the exception
originated, expressed as one of the values in Table 25-8. There are additional values that are host-specific and that are
used when an exception is encountered when sending a response to the client. I use the CatchBlock property in the
“Creating a Custom Global Exception Logger” section later in this chapter.

Table 25-8. The Values Used for the CatchBlock Property

Name Description

HttpServer The exception originated from the SendAsync method of the HttpServer class.

HttpControllerDispatcher The exception originated from the SendAsync method of the
HttpControllerDispatcher class.

IExceptionFilter The exception originated from the ExecuteAsync method of the controller.

Table 25-7. The Properties Defined by the ExceptionHandlerContext Class

Name Description

CatchBlock This property returns an ExceptionContextCatchBlock object, which describes where the
exception originated. See Table 25-8 for details.

Exception This property returns the Exception that has been thrown.

ExceptionContext This property returns an ExceptionContext object, which provides access to the
same objects as the ExceptionHandlerContext as well as the HttpActionContext and
HttpControllerContext objects associated with the current request.

Request This property returns the HttpRequestMessage object that represents the request being
dispatched.

RequestContext This property returns the HttpRequestContext object associated with the request being
dispatched.

Result This property is set by the exception handler to handle the exception and specify the
IHttpActionResult that will be used to generate the response to the client.

Creating a Custom Global Exception Handler
Before you create a custom global exception handler, I recommend you take a moment and consider the problem
you are trying to solve. Bear in mind that global exception handlers are used only for exceptions that are not handled
elsewhere in the application and that the default behavior of sending a 500 (Internal Server Error) response is usually
appropriate. After all, if there is a more appropriate response, then you should add code to your action methods that
anticipate the problem and return the appropriate response to the client.

Global exception handlers are best used to make sweeping changes to all or most unhandled exceptions, and
if you find yourself writing endless conditional statements to deal with specific exception and request types, then
you should consider a different technique that pushes the logic closer to the action method, where it is easier to
understand, test, and maintain.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

639

To demonstrate the use of a global exception handler, I added a class file called CustomExceptionHandler.cs to
the Infrastructure folder and used it to define the class shown in Listing 25-12.

Listing 25-12. The Contents of the CustomExceptionHandler.cs File

using System.Net;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.ExceptionHandling;
using System.Web.Http.Results;

namespace Dispatch.Infrastructure {
 public class CustomExceptionHandler : IExceptionHandler {

 public Task HandleAsync(ExceptionHandlerContext context,
 CancellationToken cancellationToken) {

 context.Result = new StatusCodeResult(HttpStatusCode.InternalServerError,
 context.Request);
 return Task.FromResult<object>(null);
 }
 }
}

You can set the ExceptionHandlerContext.Result property to any implementation of the IHttpActionResult
interface. I listed the built-in implementation classes from the System.Web.Http.Results namespace in Chapter 11,
but you must instantiate them directly since the convenience methods I used in that chapter are implemented
by the ApiController class and are not available to global exception handlers. In the listing, I use the
ResponseMessageResult class, which lets me create the HttpResponseMessage within the scope of an
IHttpActionResult.

The custom exception handler generates a standard 500 (Internal Server Error) response by creating an instance
of the StatusCodeResult but doesn’t include any of the additional data that comes from an HttpError object.

Registering and Testing a Custom Global Exception Handler
Global exception handlers are registered through the services collection in the WebApiConfig.cs file, as shown in
Listing 25-13.

Listing 25-13. Registering a Global Exception Handler in the WebApiConfig.cs File

using System.Web.Http;
using System.Web.Http.Controllers;
using Dispatch.Infrastructure;
using System.Web.Http.ExceptionHandling;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.Routes.MapHttpRoute(
 name: "ActionMethods",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

640

 routeTemplate: "api/nrest/{controller}/{action}/{day}",
 defaults: new { day = RouteParameter.Optional }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 //config.Services.Replace(typeof(IHttpActionSelector),
 // new PipelineActionSelector());
 //config.Filters.Add(new SayHelloAttribute { Message = "Global Filter" });
 //config.MessageHandlers.Add(new AuthenticationDispatcher());

 config.IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never;

 config.Services.Replace(typeof(IExceptionHandler),
 new CustomExceptionHandler());
 }
 }
}

There can be only one global exception handler in an application, but the built-in handler is still used as
a fallback so that it can apply the default behavior if the custom handler doesn’t set the Result property of the
ExceptionHandlerContext object.

Before I can test the custom handler, I need to create a reliable source of exceptions. Listing 25-14 shows how
I have changed the Get action method in the Products controller to remove the error handling code and throw an
exception when requests are received for data objects that don’t exist.

Listing 25-14. Throwing Exceptions in the ProductsController.cs File

...
[LogErrors]
public Product Get(int id) {
 Product product = products.Where(x => x.ProductID == id).FirstOrDefault();
 if (product == null) {
 throw new ArgumentOutOfRangeException("id");
 }
 return product;
}
...

To test the handler, start the application, use the browse to navigate to /Home/Index, and click the Get One
button. The changes that I made to the Get method mean that the URL that is requested will cause the action
method to throw an exception, which will be passed to the custom global exception handler. You can see the result in
Figure 25-3, but the effect is subtle because the only difference from the previous examples is the omission of the error
message text.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

641

Logging Exceptions
The global exception logger allows you to record the exceptions that your application encounters. This isn’t
much help at runtime, but it can be useful when diagnosing recurring problems and planning maintenance and
enhancements for future releases. Global exceptions loggers implement the IExceptionLogger interface in the
System.Web.Http.ExceptionHandling namespace, which is defined as follows:

using System.Threading;
using System.Threading.Tasks;

namespace System.Web.Http.ExceptionHandling {

 public interface IExceptionLogger {

 Task LogAsync(ExceptionLoggerContext context,
 CancellationToken cancellationToken);
 }
}

The LogAsync method is called when there is an unhandled exception and receives an instance of the
ExceptionLoggerContext class as a parameter, which defines the properties shown in Table 25-9.

Figure 25-3. Using a custom global exception handler

Table 25-9. The Properties Defined by the ExceptionLoggerContext Class

Name Description

CallsHandler This property returns true if the exception can be handled by the IExceptionHandler to
produce a response message. Some exceptions can occur after the response has started to
be sent to the client, in which case this property will return false.

CatchBlock This property returns an ExceptionContextCatchBlock object, which describes where the
exception was caught.

Exception This property returns the Exception to be logged.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

642

Creating a Custom Global Exception Logger
Unlike the global exception handler, there can be multiple global exception handlers, and each can choose which
exceptions it records and how they are recorded. To demonstrate a simple exception logger, I added a class file called
CustomExceptionLogger.cs to the Infrastructure folder and used it to define the class shown in Listing 25-15.

Listing 25-15. The Contents of the CustomExceptionLogger.cs File

using System.Diagnostics;
using System.Threading;
using System.Threading.Tasks;
using System.Web.Http.ExceptionHandling;

namespace Dispatch.Infrastructure {

 public class CustomExceptionLogger : IExceptionLogger {

 public Task LogAsync(ExceptionLoggerContext context,
 CancellationToken cancellationToken) {

 Debug.WriteLine("Log Exception Type: {0}, Originated: {1}, URL: {2}",
 context.Exception.GetType(),
 context.CatchBlock,
 context.Request.RequestUri);

 return Task.FromResult<object>(null);
 }
 }
}

The custom logger writes details of the exception, where it originated, and the requested URL to the Visual Studio
Output window.

Tip ■ Writing exceptions to the Visual Studio output window isn’t helpful for a production environment. if you do not
have an existing logging system with which to integrate, then a good place to start is the open source package elMah.
See https://code.google.com/p/elmah/ for details.

Name Description

ExceptionContext This property returns an ExceptionContext object, which provides access to the
same objects as the ExceptionHandlerContext as well as the HttpActionContext and
HttpControllerContext objects associated with the current request.

Request This property returns the HttpRequestMessage object for the request being processed when
the exception occurred.

RequestContext This property returns the HttpRequestContext object associated with the request.

Table 25-9. (continued)

www.it-ebooks.info

https://code.google.com/p/elmah/
http://www.it-ebooks.info/

Chapter 25 ■ error handling

643

Registering and Testing a Custom Exception Logger
Custom exception loggers are registered with the services collection, as shown in Listing 25-16.

Listing 25-16. Registering a Custom Global Exception Logger in the WebApiConfig.cs File

using System.Web.Http;
using System.Web.Http.Controllers;
using Dispatch.Infrastructure;
using System.Web.Http.ExceptionHandling;

namespace Dispatch {
 public static class WebApiConfig {
 public static void Register(HttpConfiguration config) {

 config.Routes.MapHttpRoute(
 name: "ActionMethods",
 routeTemplate: "api/nrest/{controller}/{action}/{day}",
 defaults: new { day = RouteParameter.Optional }
);

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 //config.Services.Replace(typeof(IHttpActionSelector),
 // new PipelineActionSelector());
 //config.Filters.Add(new SayHelloAttribute { Message = "Global Filter" });
 //config.MessageHandlers.Add(new AuthenticationDispatcher());

 config.IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never;

 config.Services.Replace(typeof(IExceptionHandler),
 new CustomExceptionHandler());
 config.Services.Add(typeof(IExceptionLogger), new CustomExceptionLogger());
 }
 }
}

Notice that I used the Add method to register the logger, rather than the Replace method I used for the global
handler. This is because there can be multiple loggers in an application, but only one handler and the service
collection class will throw an exception if you try to Add a single-instance type.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25 ■ error handling

644

To test the exception logger, start the application and use the browser to navigate to the /Home/Index URL. Click
the Get One button, and the client will request a URL that will cause an exception to be thrown in the Get action
method of the Products controller. The exception is unhandled and will be passed to the exception logger, producing
the following message in the Visual Studio Output window:

Log Exception Type: System.ArgumentOutOfRangeException, Originated: IExceptionFilter,
 URL: http://localhost:49412/api/products/2

Summary
In this chapter, I explained how errors are handled by Web API. I showed you the default exception handling behavior
and how to change it, how to use the HttpError class to control the additional data sent to a client, and, finally, how to
log the unhandled exceptions that your application encounters.

www.it-ebooks.info

http://localhost:49412/api/products/2
http://www.it-ebooks.info/

645

Chapter 26

Using OWIN

In the other chapters in this part of the book, I showed you how the Web API dispatch process works and
demonstrated how to customize it. In this, the last chapter of this book, I describe one final change to the dispatch
process: changing the hosting environment that runs the Web API application itself.

Caution ■ For this chapter, you must have an edition of Visual Studio 2013 that is capable of creating console applica-
tions. The free Visual Studio Express 2013 for Web edition that I have been using in all the previous chapters does not
include this support. You will need one of the paid-for versions or Visual Studio Express 2013 for Windows Desktop, which
can be downloaded for free from www.visualstudio.com.

Understanding OWIN
The Open Web Interface for .NET (OWIN) is a standard that defines an interface for .NET web applications. The idea
behind OWIN is to break the link between web applications and the application server—or, put another way, to allow
.NET web applications to be run outside of the traditional IIS environment.

Microsoft has embraced OWIN as a way to free ASP.NET from the System.Web assembly, which is part of the
main .NET Framework and which means that ASP.NET releases are synchronized with major .NET Framework and
Windows Server releases. It is in the early days for OWIN, but there is the potential for more flexibility in how .NET
web applications are hosted as OWIN support in ASP.NET matures, beyond today’s choices of Azure and IIS running
on Windows Server (although neither of these hosting options is going to go away).

Web API and SignalR are the first ASP.NET components to embrace OWIN and break away from the world of
System.Web. This is why every Web API class and interface I have used in this book has been different from the ones
you are familiar with in MVC framework development and why all of those types are contained in the System.Web.Http
assembly, which is under the control of the ASP.NET development teams within Microsoft and not tied to the main
.NET framework release schedule.

This is a short chapter because the range of OWIN hosting options is limited currently. The biggest limitation,
however, is that only Web API and SignalR code can be run within OWIN. If you want to use the MVC framework
to deliver static content, for example, then you will have to wait for MVC OWIN support, which will be introduced
in MVC 6. Future editions of this book won’t need to contain warnings about the different MVC and Web API
namespaces because everything will use the System.Web.Http types I have been using to create web services, but
for the moment, OWIN support and the alternative hosting options it leads to are little more than a curiosity and not
much use beyond experimentation and tinkering for most developers.

www.it-ebooks.info

http://www.visualstudio.com/
http://www.it-ebooks.info/

ChapTEr 26 ■ USIng OWIn

646

Note ■ If you become interested in OWIn, you will quickly come across references to Katana. Katana is a Microsoft
package that allows OWIn applications to be hosted by IIS or azure—or, put another way, provides a mapping between
the traditional System.Web functionality and the OWIn specification. Katana doesn’t have any bearing on this book
because, as I have demonstrated in previous chapters, Web apI can already be hosted by IIS and azure.

Creating a Self-hosted Web API Application
A self-hosted Web API application is a stand-alone process that receives and dispatches HTTP requests without
relying on an application server. This means it is possible to embed Web API into other kinds of applications or to
create small and simple Web API deployments that can run in constrained environments. In the sections that follow,
I’ll show you how to create a simple self-hosted Web API application that relies on the OWIN specification.

Creating the Project
As I noted at the start of this chapter, you need an edition of Visual Studio that is able to create console applications.
I will be using Visual Studio Express 2013 for Windows Desktop, but any of the paid-for editions will work as well.

To create the project, select File ➤ New Project and select the Console Application from the Visual C# template
section. (Visual Studio defaults to the Visual Basic template category, so be sure you get the C# template.) Set the
name of the project to SelfHost and click the OK button. Visual Studio will create the project and add a class file to it
called Program.cs.

Installing the Packages
Select Package Manager Console from the Visual Studio Tools ➤ NuGet Package Manager menu and enter the
following command:

Install-Package Microsoft.AspNet.WebApi.OwinSelfHost -Version 5.1.1

This will install the Microsoft OWIN classes for self-hosting and the Web API assemblies required to create web
services.

Creating the Model and Repository
To keep the example simple, I will create a repository that maintains a collection of data objects in memory, just like
I did in Chapter 10. I added a Models folder to the project and created the Product.cs file within it. Listing 26-1 shows
the model class I defined.

Listing 26-1. The Contents of the Product.cs File

namespace SelfHost.Models {
 public class Product {
 public int ProductID { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

ChapTEr 26 ■ USIng OWIn

647

This is a simplified version of the model class that I created for the SportsStore application in Chapter 5.
Listing 26-2 shows the contents of the Repository.cs class file that I added to the Models folder.

Listing 26-2. The Contents of the Repository.cs File

using System.Collections.Generic;

namespace SelfHost.Models {
 public class Repository {
 private Dictionary<int, Product> data;
 private static Repository repo;

 static Repository() {
 repo = new Repository();
 }

 public static Repository Current {
 get { return repo; }
 }

 public Repository() {
 Product[] products = new Product[] {
 new Product {ProductID = 1, Name = "Kayak", Price = 275M },
 new Product {ProductID = 2, Name = "Lifejacket", Price = 48.95M },
 new Product {ProductID = 3, Name = "Soccer Ball", Price = 19.50M },
 new Product {ProductID = 4, Name = "Thinking Cap", Price = 16M },
 };

 data = new Dictionary<int, Product>();

 foreach (Product prod in products) {
 data.Add(prod.ProductID, prod);
 }
 }

 public IEnumerable<Product> Products {
 get { return data.Values; }
 }

 public Product GetProduct(int id) {
 return data[id];
 }

 public Product SaveProduct(Product newProduct) {
 newProduct.ProductID = data.Keys.Count + 1;
 return data[newProduct.ProductID] = newProduct;
 }

 public Product DeleteProduct(int id) {
 Product prod = data[id];
 if (prod != null) {
 data.Remove(id);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

ChapTEr 26 ■ USIng OWIn

648

 return prod;
 }
 }
}

My example repository populates an in-memory collection with Product objects and exposes them through a
mix of properties and methods. Storing the data in memory means that the contents of the repository will be reset
when the application is restarted. There is a static Current property that returns a shared instance of the Repository
class, which I will use to obtain instances of the repository without having to implement dependency injection.

Defining the Configuration Classes
The configuration for OWIN-hosted applications is done through a class called Startup. I added a class file called
Startup.cs to the example project and used it to define the class shown in Listing 26-3.

Listing 26-3. The Contents of the Startup.cs File

using Owin;
using System.Web.Http;

namespace SelfHost {
 public class Startup {

 public void Configuration(IAppBuilder appBuilder) {

 HttpConfiguration config = new HttpConfiguration();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 appBuilder.UseWebApi(config);
 }
 }
}

As you can see from the listing, the Startup class follows the same basic approach as the WebApiConfig.cs file
that I have been relying on to configure IIS-hosted Web API applications in earlier chapters. The difference is that
I have to create an instance of the HttpConfiguration class, which I described in Chapter 10, configure it for URL
routing (as described in Chapters 20 and 21), and then call the UseWebApi method of the IAppBuilder parameter that
is passed to the Configuration method.

The Startup class isn’t the only class that is required to self-host a Web API application. I also need to add code
to the Program.cs file so that it will initialize OWIN and use the Startup class for configuration. Listing 26-4 shows the
changes I made to the Program.cs file.

www.it-ebooks.info

http://www.it-ebooks.info/

ChapTEr 26 ■ USIng OWIn

649

Listing 26-4. Defining the Self-hosting Application in the Program.cs File

using Microsoft.Owin.Hosting;
using System;

namespace SelfHost {

 class Program {

 static void Main(string[] args) {
 WebApp.Start<Startup>("http://localhost:5000/");
 Console.ReadLine();
 }
 }
}

The call to the WebApp.Start<Startup> method specifies that I want to use the Startup class to configure Web
API, and the method argument specifies the URL that will be used to listen for requests. The call to Console.ReadLine
prevents the console application exiting—if you omit this statement, then the application will terminate before the
first HTTP request is received.

Creating the Web API Controller
The final step is to create a Web API controller to define the web service. I added a Controllers folder to the project
and created within it a new class file called ProductsController.cs, the contents of which are shown in Listing 26-5.

Listing 26-5. The Contents of the ProductsController.cs File

using SelfHost.Models;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;

namespace SelfHost.Controllers {
 public class ProductsController : ApiController {

 public IEnumerable<Product> GetProducts() {
 return Repository.Current.Products;
 }

 public Product GetProduct(int id) {
 return Repository.Current.Products
 .Where(p => p.ProductID == id).FirstOrDefault();
 }

 public Product PostProduct(Product product) {
 return Repository.Current.SaveProduct(product);
 }

 public Product DeleteProduct(int id) {
 return Repository.Current.DeleteProduct(id);
 }
 }
}

www.it-ebooks.info

http://localhost:5000/
http://www.it-ebooks.info/

ChapTEr 26 ■ USIng OWIn

650

Tip ■ There is no Visual Studio scaffolding support when creating self-hosted applications, and controllers have to be
added by creating standard class files.

I have defined a RESTful controller that follows the same approach I used in Chapter 6. This controller lacks the
features that I applied throughout Chapter 6, but it demonstrates the basic Web API mechanisms and exposes the
contents of the repository to HTTP clients.

Testing the Self-hosted Web API Application
All that remains is to test the self-hosted application. I have not created a client application for the web service
because that would require a separate non-Web API project, but it is easy to perform a test using Postman.

First, start the Web API application by selecting Start Debugging from the Visual Studio Debug menu. An empty
console window will appear—do not close this because doing so will terminate the self-hosted application. Using
Postman, send a GET request to the following URL:

http://localhost:5000/api/products

All of the Web API functionality I have described in this book is available in a self-hosted Web API application,
and that includes, of course, URL routing. The URL route I defined in Listing 26-2 will map the request to the Products
controller and the request verb, and the absence of data will target the GetProducts action method. Postman will
display the following results, which correspond to the static data I defined in Listing 26-3:

[{"ProductID":1,"Name":"Kayak","Price":275.0},
 {"ProductID":2,"Name":"Lifejacket","Price":48.95},
 {"ProductID":3,"Name":"Soccer Ball","Price":19.50},
 {"ProductID":4,"Name":"Thinking Cap","Price":16.0}]

Summary
In this chapter, I gave you a brief overview of OWIN and the way it can be used to create self-hosted Web API
applications that don’t depend on IIS or Azure. It is early days for OWIN, and it remains a curiosity for the moment;
however, it is an area of investment for Microsoft, and subsequent versions of Web API—and the MVC
framework—will build on this slim foundation.

And that is all I have to teach you about ASP.NET Web API and how it can be used to create HTTP web services.
I started by creating a simple application and then took you on a comprehensive tour of the different components in
Web API, showing you how they can be configured, customized, or replaced entirely to create the web services you
need. I wish you every success in your Web API projects, and I can only hope that you have enjoyed reading this book
as much as I enjoyed writing it.

www.it-ebooks.info

http://localhost:5000/api/products
http://www.it-ebooks.info/

A, B���������
Action methods. See Controllers
Action results

action result methods, 224
custom action results, 228
HttpResponseMessage, instantiating, 227
IHttpActionResult interface, 222–223
mapping ApiController methods to HTTP status

codes, 226
negotiable action results, 239
returning model data, 230

bypassing content negotiation, 238
content negotiation process, 231
ContentNegotiationResult class, 234
custom content negotiator, 232
default behavior, 230
JsonMediaTypeFormatter class, 234
ProductInfoValueHeader class, 235

returning no result, 218
Ajax. See jQuery
ApiController. See also Controllers, Action results,

Model validation
action result methods, 224

BadRequest method, 108
context properties, 560

dispatch process, 543
HttpActionDescriptor classs, 548
HttpControllerContext class, 547
IHttpActionSelector, 547

introduction to, 100
mapping methods to HTTP status

codes, 226
methods that bypass content

negotiation, 238
model state (see Model validation)

properties defined by, 183
ResponseMessage method, 227

ApiControllerActionSelector class, 549

Application configuration, 187, 199
callback method, 200
Global.asax.cs file, 199
GlobalConfiguration.Configure method, 199
HttpConfiguration class, 201
HttpConfiguration object, 200
HttpMessageHandler, 200
WebApiConfig.cs file, 201

ASP.NET Identity, 87. See also Examples, SportsStore
access token, 136
application cookie, removing, 97
database creation, 173
configuration, 92
database context classes, 88
manager classes, 90
testing, 93
user and role classes, 87

Asynchronous methods, 35, 42
async keyword, 43
await keyword, 43
task creation, synchronous statements, 47–49
Task.FromResult method, 229, 339

Authentication. See Security, ASP.NET Identity
Authorization. See Security, ASP.NET Identity
Azure

ASP.NET Identity database creation, 173
database configuration, 177
preparing for deployment, 169
publishing, 177
publish profile, 175
Web Site, creating, 175

C���������
Configuration. See Application configuration
ContentNegotiationResult, properties defined by, 233
Context objects

ExceptionHandlerContext, 186
ExceptionLoggerContext, 186

Index

651

www.it-ebooks.info

http://www.it-ebooks.info/

HttpActionContext, 186
HttpActionDescriptor, 186
HttpActionExecutedContext, 186
HttpAuthenticationChallengeContext, 186
HttpAuthenticationContext, 186
HttpControllerContext, 185–186
HttpControllerDescriptor, 186
HttpParameterDescriptor, 186
HttpRequestContext, 184, 186
HttpRequestMessage, 184
ModelBindingContext, 186

Controllers, 537. See also Action Results, Dispatch process
Action method selection

default action method selection, 549
HTTP verbs, 551
RESTful naming convention, 549

ApiController class. See also ApiController
BadRequest method, 108
context properties, 560
properties defined by, 183

ApiController dispatch process, 543
HttpActionDescriptor classs, 548
HttpControllerContext class, 547
IHttpActionSelector, 547

built-in services and features, 541
controller-specific configuration, 563
creation, 20
custom action results, 228
custom controllers, 543
Customization, 559
ExecuteAsync method, 540
filters (see Filters)
IHttpController.ExecuteAsync method, 544
IHttpController interface, 538
Web API dispatch process, 537

D���������
Dependency injection, 202

configuration, 209
containers, 206

Castle Windsor, 206
Ninject, 121, 206, 208–209, 211, 213
StructureMap, 206
Unity, 206

DependencyResolver property, 209
IDependencyResolver.GetService

method, 236
IDependencyResolver interface, 204
IDependencyScope interface, 205
MVC framework, 211
object scopes, 209
preparation, 203
request objects, 208
scopes, 206

singleton objects, 207
transient objects, 207

Dispatchers and handlers, 189
Dispatch process. See also Controllers, Action Results,

ApiController
activating the controller, 465
changing the controller suffix, 479
controller selection, 463
custom message handlers, 468

diagnosing problems with message handlers, 474
modifying requests or responses, 471

executing the controller, 466
extension methods, 467
HttpControllerDispatcher class, 463
HttpRoutingDispatcher class, 460
HttpServer class, 459
IAssembliesResolver interface, 464
IHttpControllerTypeResolver interface, 464
message handlers, 457

chain, 457
default implementation classes, 458
SendAsync method, 457

E���������
Entity Framework

checking schema, 86
Code First, 75
connection strings, 171
context class, 77
database context class, 77
preventing database reset, 169

Error handling
controlling error detail, 635
dealing with errors, 626–627
default error handling, 626
global error handling, 637–638

CatchBlock property, 638
registering, 639

handling exceptions, 637
CatchBlock property, 638
ExceptionHandlerContext class, 638
IExceptionHandler interface, 637

HttpError class, 629
adding extra information, 632
adding model state data, 632
properties defined by, 630

logging exceptions, 641
creating a custom logger, 642
ExceptionLoggerContext class, 641
IExceptionLogger interface, 641

using the IHttpActionResult interface, 629
Examples

ExampleApp, 191
browser client, 194
HTTP web service, 193

■ index

652

Context objects (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

Index.cshtml File, 195
model and repository, 192
testing with Postman, 198

PartyInvites project, 10
ASP.NET project type, 10
Data Repository, 13
GuestResponse.cs File, 12
MVC framework application, 12
NuGet packages, 11
TCP port and URL, 12

Primer, 35
Asynchronous methods, 42
MVC framework controller, 39
NuGet Packages, 37
project type, 36
Stopwatch Class, 39
TCP port and URL, 41
Web API controller, 37
web service testing, 41

Source Code Download, 5
SportsStore, 4

administration client, 159
administration controller, 159
Ajax code, 133
ASP.NET Identity (see ASP.NET Identity)
ASP.NET project type, 71
authentication controller, 136
Azure (see Azure)
checking database schema, 86
client-side model, 135
customer client, 145
customer controller, 146
database (see Entity Framework)
database initializer class, 77
data models, 75
Dependency Injection, 121
deployment, 169
JavaScript IntelliSense setup, 132
Model Validation, 118
MVC controller, 131
NuGet packages, 72
orders controller, 142
OWIN startup class, 74
Repository pattern, 77
RESTful controller, 99, 102
Security, 109
TCP port, 75

F���������
F12 browser tools. See Google Chrome
Filters

action filters, 569
ActionFilterAttribute class, 574
applying, 573

ExecuteActionFilterAsync method, 570
HttpActionContext class, 572
HttpActionExecutedContext class, 577
IActionFilter interface, 569
request dispatch process, 570
short-circuiting, 577

authentication filters, 587
AuthenticateAsync method, 590
Authorization request header, 593
creating, 591
HttpAuthenticationChallengeContext Class, 594
HttpAuthenticationContext class, 593
IIdentity interface, 589
IPrincipal interface, 589
removing, 604

authorization filters, 600
applying, 603
AuthorizationFilterAttribute class, 607
Authorize attribute, 608
creating, 601
IAuthorizationFilter interface, 601

exception filters, 611
creating, 614
default behavior, 611
ExceptionFilterAttribute class, 616
IExceptionFilter interface, 613

FilterInfo class, 583
filter pipeline, 582
global filters, 585
IFilter interface, 568
override filters, 617

IOverrideFilter interface, 618
override filter attributes, 618
overriding built-in filters, 618
redefining filter policies, 620

scope, 584–585
System.Web.Http.Filters namespace, 568
types and interfaces, 568

FromBody attribute, 401
FromUri attribute, 355

G���������
Google Chrome, 6

cache clearing and reloading, 19
debugging, 7
download link, 6
F12 tools, 19
Measuring Network Requests, 19

H���������
HTTP

Accept header, 245, 259
Content-Type header, 245

■ index

653

www.it-ebooks.info

http://www.it-ebooks.info/

HttpActionContext class, 331, 572
HttpActionDescriptor class, 371, 420, 548
HttpControllerContext class, 538, 547. See also Context

objects, HttpControllerContext
HttpControllerDispatcher class, 463
HttpParameterBinding, 334
HttpParameterDescriptor, 336
HttpRequestContext. See Context objects,

HttpRequestContext)
HttpRequestMessage, 217. See also Context objects,

HttpRequestMessage
HTTP requests dispatch, 4
HttpResponseMessage

instantiating, 227
properties defined by, 223

HTTP responses, 4
HttpRouteCollection class, 490
HttpRoutingDispatcher class, 460
HttpServer class, 459
HTTP status codes, 107
HTTP web services, 57

native applications, 59
RESTful web service (see RESTful web service)
service applications, 60
shared-model applications, 59
simple web service

client JavaScript code, 61
tight coupling, 61

single-page applications, 58

I���������
IContentNegotiator interface, 232

IFilter interface, 568
IHttpActionResult, ExecuteAsync method, 223
IHttpActionResult interface, 222–223
IHttpController interface, 538
IHttpRouteConstraint interface, 504
IHttpRoute interface, properties and methods, 490

J���������
JavaScript Object Notation (JSON), 53. See also Media

type formatters
jQuery, 35, 49

$.ajax method, 52
$.ajaxSetup method, 134
Ajax configuration properties, 53
Ajax requests, 50
Ajax, required parameters, 134
data formats, 251

default binding behavior , 306

K, L���������
Knockout, 35, 54

bindings, 55
bindings activation, 56
client-side validation, 158
data-bind attribute, 54
data bindings, 28
ko.observable, 54
ko.observableArray, 54
model and bindings, 54
observable arrays, 28, 54

M���������
Mapping Namespaces and Types to Web API, 181
Media type formatters

BSON, 272
CanReadType method, 247
CanWriteType method, 247
custom formatter, 252

Accept-Charset header, 252
Content-Type header, 256
HttpContent.Headers property, 253
HTTP response headers, 257
ProductFormatter class, 252
SelectCharacterEncoding methods, 253
SetDefaultContentHeaders method, 255–256
StreamWriter object, 253
SupportedEncodings property, 252
System.Text.Encoding class, 253

features, 269
formatter instance creation, 264
FormUrlEncodedMediaTypeFormatter class, 403
GetPerRequestFormatterInstance method, 263
IFormatterLogger interface, 446
Index method, 270
JSON data

configuration, 282
DataContractJsonSerializer class, 282
DefaultValueHandling setting, 291
Indent property, 282
JsonMediaTypeFormatter class, 281
Microsoft date format, 288
SerializerSettings properties, 284
StringEscapeHandling enumeration, 289

match-on-type feature, 273
application/x.product format, 274
CanWriteType method, 274
constructor argument, 277
custom format negotiator, 275
DefaultContentNegotiator class, 276

■ index

654

www.it-ebooks.info

http://www.it-ebooks.info/

MediaTypeFormattingCollection, 274
WebApiConfig.cs file, 274, 277
XmlMediaTypeFormatter class, 272–273

MediaTypeFormatterCollection class, 269–270
MediaTypeHeaderValue class, 247
negotiation process, 257, 262

AddRequestHeaderMapping extension
method, 263

AddUriPathExtensionMapping method, 263
mapping extension methods, 262

parameter and model binding (see Parameter and
model binding)

registration, 249
serializing model data, 248

formatting loops, 126
SupportedMediaTypes collection, 247
System.Net.Http assembly, 271
System.Net.Http.Formatting namespace, 245
validating with, 444
Web API configuration, 272
WriteToStreamAsync method, 248
XML data, configuration, 293

MediaTypeHeaderValue class, 233
Message Handlers. See Dispatch process, message

handlers
Model binding. See Parameter and model binding
ModelBindingContext class, properties defined by, 371
ModelError class, properties defined by, 438
Model state class, 438. See also Model validation
ModelStateDictionary Class, 436
Model validation, 106

Ajax POST request, 427
ApiController class, 437–438
binding control attributes, 439
built-in validation attributes, 441
common problems, 431

over-posting data, 433
under-posting data, 431
unusable data, 434

Data transfer object (DTO), 434
data validation attributes, 441
media type formatters

IFormatterLogger interface, 446
JSON Data, 448
validating with, 444

ModelError class, 438
ModelState Class, 436, 438
ModelStateDictionary Class, 436
self-validating model classes, 443
SportsStore Example, 118
validation attributes, 119

MVC framework
Mapping Namespaces and Types to Web API, 181

N���������
Namespaces

System.Net.Http, 100
System.Web.Http, 100

Ninject. See Dependency injection
Non-RESTful web service

model objects, 125
routing configuration, 124

O���������
Open Web Interface for .NET (OWIN)

definition, 645
limitation, 645
self-hosted Web API application, 646, 650

configuration, 648
controller, 649
model creation, 646
NuGet package installation, 646

startup class (see Examples, SportsStore)

P, Q���������
Parameter and model binding

binding arrays and lists, 365
binding complex types, 312
binding key-value pairs, 366
binding multiple objects, 356
binding nested objects, 358
binding objects, 355
binding rule

definition, 316
FromBody attribute, 317
FromUri attribute, 317
HttpParameterBinding object, 316
HttpParameterDescriptor object, 316
WebApiConfig.cs file, 316

binding simple types, 314
built-in media type formatters, 401

Content-Type request header, 402
creating complex types, 404, 412
DataMember attribute, 417
FormDataCollection class, 403
FormUrlEncodedMediaTypeFormatter class, 403
FromBody attribute, 401

built-in model binders, 354
classes, 355
FromUri attribute, 355

containsPrefix method, 330
custom action value binder, creation, 424
customizing the binding process, 420–421
custom media type formatters, 393

■ index

655

www.it-ebooks.info

http://www.it-ebooks.info/

formatter structure, 397
model object, creation, 399
ReadFromStreamAsync method, 397
registering, 400

custom model binders, 368
getting model property values, 374
HttpActionContext class, 371
HttpActionDescriptor class, 371
IModelBinder interface, 370
loosely coupled binders, 372
ModelBinder attribute, 377
ModelBinderProvider class, 378
ModelBindingContext class, 371
parameter binding rule, creation, 380
registering model binders, 378
tightly coupled binders, 372

custom provider
FromBody attribute, 334
FromUri attribute, 334

default binding behavior, 302
data values, 303
HttpRequestMessage object, 312
.NET primitive types, 303
Numbers and Operation object, 311

FromUri attribute, 340
GetValue method, 330
GetValueProviderFactories method, 340
HeaderValueParameterBinding class, 345–346
HttpActionBinding class, 421
HttpActionContext class, 331
HttpActionDescriptor class, 420
HttpHeaders class, 328
HttpParameterBinding class, 334
HttpParameterDescriptor class, 336, 345
HttpRequestMessage object, 321
IActionValueBinder interface, 420
IValueProvider interface, 330, 361
JSON and XML formatting, 304
ModelBinder attribute, 377
ModelBinderProvider class, 378
ModelBindingAttribute class, 338
ParameterBindingAttribute class, 335, 338
QueryStringValueProviderFactory

class, 348
RouteDataValueProviderFactory class, 348
TryGetValues method, 321
Type Converters, 382

creating, 383
TypeConverter class, 382

ValueProvider attribute, 336
ValueProviderFactory class, 330–331
ValueProviderResult class, 331

PartyInvites. See Examples

Postman
download link, 6
HTTP Client, 6
HTTP DELETE request, 109
Interceptor extension, 7

R���������
Repository pattern, 77
Representational state transfer (REST). See RESTful

web service
Request dispatching. See Dispatch process
RESTful naming convention, 549
RESTful web service

action method convention, 103
data discovery

collection filtering, 66
collection URL, 65

design patterns, 62
example API, 66
HTTP verbs and URLs, 63

GET and POST, 64
safe and idempotent verbs, 65

non-RESTful Web Service (see Non-RESTful
web service)

serialization configuration, 104
simple dependency injection, 121

RouteAttribute class, 513

S, T���������
Security. See also ASP.NET Identity

access restriction, 110
authentication configuration, 113
authentication provider, 112
SportsStore example, 109
testing authentication, 114

Serialization. See also Media type formatters
formatting loops, 126
Services, 187

HttpConfig.Services.Replace method, 236
multiple-instance services, 187
ServicesContainer

Extension Methods, 188
methods defined by, 187

single-instance services, 187
SimpleModelBinderProvider class, 378
Single-page application, 25

client-side data model
controller functions, 28
knockout-specific features, 28–29
observable array, 28
PartyInvites example, 26–28
properties, 27

■ index

656

Parameter and model binding (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

data bindings, 32
JavaScript IntelliSense references, 26
non-JavaScript clients, 25
result summary, 33

SportsStore. See Examples
System.Net.Http namespace, 100

System.Net.Http.Formatting namespace, 245
System.Web.Http namespace, 100
System.Web.Http.Filters namespace, 568

U���������
URL routing, 486

controlling route matching, 499
built-in constraints, 507
default data values, 500
IHttpRouteConstraint interface, 504
optional segments, 501
routing constraints, 504
segment defaults, 500

convention-based routing, 492
custom templates, 496
HTTP method attributes, 494
route templates, 493

customization
custom constraints for direct routes, 529
route-specific message handlers, 525
route-wide custom constraints, 532
using data tokens, 527

defining routes, 490
direct/attribute-based routing, 483
direct routing, 512

common prefix, 515, 521
constraints, 519
controller-wide routes, 523
optional segments, 516

Route attribute, 514
RoutePrefix attribute, 515
segment scoring, 522
shorthand references for constraints, 520

HttpRequestContext.RouteData property, 486
HttpRouteCollection class, 490

collection methods, 491
extension methods, 492
methods for defining routes, 490

IHttpRoute interface, 490
important classes and

interfaces, 488
RouteAttribute class, 513
route attributes, 492

V���������
ValueProviderFactory, 331
ValueProviderResult, 331
Visual Studio, 6

Empty project (see PartyInvites project)
Empty template, 9
features, 6
JavaScript IntelliSense setup, 132
NuGet, 6
Project Templates, 6
Selecting Controller Type, 14
web version, 6

W, X, Y, Z���������
Web API

comparing MVC framework and Web API
application components, 57

overview, 3
System.Web.Http namespace, 22

■ index

657

www.it-ebooks.info

http://www.it-ebooks.info/

Expert ASP.NET Web API 2
for MVC Developers

Adam Freeman

www.it-ebooks.info

http://www.it-ebooks.info/

Expert ASP.NET Web API 2 for MVC Developers

Copyright © 2014 by Adam Freeman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0086-5

ISBN-13 (electronic): 978-1-4842-0085-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer
Lead Editor: James T. DeWolf
Development Editor: Douglas Pundick
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Kevin Walter
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http://www.it-ebooks.info/

Dedicated to my lovely wife, Jacqui Griffyth

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

About the Author ��� xxiii

About the Technical Reviewer �� xxv

Part 1: Getting Ready ■ �� 1

Chapter 1: Getting Readys ■ ���3

What Do You Need to Know? ���3

What Does Expert Mean? ��3

What Is the Structure of This Book? ��3

Part 1: Getting Ready ��� 4

Part 2: Results and Parameters ��� 4

Part 3: Dispatching Requests��� 4

Are There Lots of Examples? ���4

Where Can You Get the Example Code? ��5

How Do You Set Up a Development Environment? ��5

Getting Visual Studio�� 6

Getting Google Chrome �� 6

Summary ���7

Chapter 2: Your First Web API Application ■ ��9

Preparing the Example Project ��9

Creating the Visual Studio Project ��� 10

Adding and Updating NuGet Packages �� 11

Setting the Port and Start URL ��� 12

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

viii

Creating the MVC Application ��12

Creating the Model �� 12

Creating the MVC Controller �� 14

Creating the Views ��� 16

Using the MVC Application ��� 18

Creating the Web Service ��20

Creating the Web API Controller ��� 20

Testing the Web API Controller ��� 23

Implementing the Single-Page Client ��25

Setting Up JavaScript IntelliSense ��� 26

Defining the Client-Side Data Model and Controller �� 26

Registering the JavaScript File �� 29

Appling Data Bindings ��� 30

Testing the Single-Page Client ��� 32

Measuring the Single-Page Implementation ���33

Summary ���33

Chapter 3: Essential Techniques ■ ��35

Preparing the Example Project ��35

Adding and Updating NuGet Packages �� 37

Creating the Web API Controller ��� 37

Creating the MVC Framework Controller ��� 39

Setting the Port and Start URL ��� 41

Testing the Web Service �� 41

Understanding Asynchronous Methods ���42

Understanding the Problem Asynchronous Methods Solve ��� 42

Implementing an Asynchronous Interface ��� 44

Creating a Self-Contained Asynchronous Method Body �� 47

Returning a Task from a Synchronous Method Body ��� 48

Making Ajax Requests with jQuery ��49

Making an Ajax Request �� 50

Understanding the $�ajax Method �� 52

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

ix

Using Knockout ���54

Applying the Bindings �� 54

Summary ���56

Chapter 4: Understanding HTTP Web Services ■ ��57

Understanding ASP�NET Web API ���57

Understanding Single-Page Applications �� 58

Understanding Native Applications �� 59

Understanding Shared-Model Applications ��� 59

Understanding Service Applications �� 60

Understanding Simple Web Services ��61

Understanding RESTful Web Services ���62

Embracing HTTP �� 63

Adding Data Discovery �� 65

Summary ���67

Chapter 5: SportsStore: Preparation ■ ���69

Preparing the Example Project ��69

Adding and Updating NuGet Packages ��� 72

Creating a Prep Controller ��� 73

Creating a Razor Layout �� 73

Creating the OWIN Startup Class ��� 74

Setting the TCP Port ��� 75

Creating the Product and Order Models ��75

Defining the Model Classes ��� 75

Creating the Repository Classes �� 77

Testing the Repository ��� 82

Checking the Database Schema �� 86

Configuring ASP�NET Identity ��87

Defining the User and Role Classes ��� 87

Creating the Database Context Classes ��� 88

Creating the Manager Classes ��� 90

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

x

Adding the Configuration Statements �� 92

Testing ASP�NET Identity ��� 93

Removing the Application Cookie �� 97

Summary ���98

Chapter 6: SportsStore: A RESTful Application ■ ��99

Creating a RESTful Web Service ��99

Testing the Products Web Service ��� 101

Putting the Web Service in Context ���102

Working with Regular C# Objects ��� 102

Using the RESTful Action Method Convention �� 103

Configuring Serialization ���104

Adding Basic Data Validation ���106

Securing the Product Web Service ��109

Restricting Access to Action Method ��� 110

Authenticating Requests ��� 111

Adding Model Validation ��118

Applying Validation Attributes ��� 119

Validating the Model ��� 120

Adding Simple Dependency Injection ��121

Recapping the Problem ��� 121

Creating the Dependency Resolver ��� 121

Using the Dependency Resolver in the Controller Class ��� 123

Creating a Non-RESTful Web Service ��124

Preparing the Routing Configuration �� 124

Preparing the Model Objects ��� 125

Preventing Formatting Loops �� 126

Defining the Web API Controller �� 127

Completing the Product Controller ��128

Summary ���129

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xi

Chapter 7: SportsStore: Creating the Clients ■ ���131

Preparing the Example Project ��131

Setting Up JavaScript IntelliSense �� 132

Updating the Layout��� 132

Implementing the Common Code ��133

Defining the Ajax Layer �� 133

Defining the Model �� 135

Defining the Authentication Controller �� 136

Defining the Products Controller ��� 138

Defining the Orders Controller �� 142

Creating the Customer Client ��145

Creating the Customer Model ��� 145

Creating the Customer Controller �� 146

Creating the Views �� 149

Creating the Administration Client���159

Creating the Admin Model ��� 159

Creating the Admin Controller ��� 159

Creating the Views ��� 160

Testing the Admin Client ��� 165

Summary ���167

Chapter 8: SportsStore: Deployment ■ ���169

Preparing the SportsStore Application ��169

Preventing the Product Database from Resetting ��� 169

Adding Database Connection Strings �� 171

Preparing Azure ���172

Creating the Databases ��� 172

Creating the Web Site �� 175

Downloading the Publish Profile �� 175

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xii

Deploying the Application ���176

Configuring the Databases �� 177

Publishing the Application ��177

Summary ���178

Part 2: Results and Parameters ■ �� 179

Chapter 9: The Anatomy of ASP�NET Web API ■ ��181

Understanding the Web API Namespaces and Types ���181

Understanding the Web API Context Objects ���183

Getting Information About the Request ��� 184

Getting Information About the Controller ��� 185

Getting Information About Everything Else �� 186

Understanding the Web API Components ��186

Application Configuration �� 187

Controllers, Actions, and Results ��� 187

Services ��� 187

Dispatchers and Handlers ��� 189

Summary ���190

Chapter 10: Creating and Configuring a Web API Application ■ ���������������������������������������191

Preparing the Example Project ��191

Creating the Model and Repository ��� 192

Creating an HTTP Web Service �� 193

Creating the Browser Client ��� 194

Testing the Example Application �� 197

Configuring a Web API Application ��199

Configuring Web API Through the ASP�NET Platform �� 199

Understanding the Configuration Object �� 201

Configuring Web API Dependency Injection ���202

Preparing for Dependency Injection �� 203

Understanding the Web API Dependency Interfaces �� 204

Installing the Dependency Injection Container �� 206

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xiii

Implementing the Dependency Interfaces ��� 206

Configuring Web API �� 209

Configuring Dependency Injection for Web API and MVC ��210

Declaring the Dependency ��� 210

Installing the Dependency Injection Packages �� 211

Adding MVC Support to the Resolver ��� 211

Configuring the MVC Framework ��� 213

Summary ���214

Chapter 11: Action Method Results ■ ���215

Preparing the Example Project ��215

Understanding Action Method Results ���217

Returning No Result ���218

Consuming a No Result Action Method ��� 219

Returning an Action Result ���222

Understanding the IHttpActionResult Interface ��� 223

Using the ApiController Action Result Methods ��� 224

Returning Other Status Codes ��� 226

Creating a Custom Action Result ��� 228

Returning Model Data ���230

Understanding the Default Behavior ��� 230

Understanding the Content Negotiation Process ��� 231

Implementing a Custom Content Negotiator ��� 232

Bypassing Content Negotiation ��� 238

Returning Negotiable Action Results ��239

Creating Negotiable Action Results ��� 239

Summary ���241

Chapter 12: Creating Media Type Formatters ■ ��243

Preparing the Example Project ��244

Creating a Media Type Formatter ��245

Implementing a Basic Media Type Formatter �� 246

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xiv

Refining the Custom Formatter ���252

Supporting Content Encodings �� 252

Setting the HTTP Response Headers ��� 255

Participating in the Negotiation Process ���257

Creating a Media Type Mapping �� 258

Using the Mapping Extension Methods ��� 261

Creating Per-Request Media Type Formatters ���263

Creating the Formatter Instance �� 264

Testing the Per-Request Formatter ��� 265

Summary ���266

Chapter 13: Using the Built-in Media Formatters ■ ��267

Preparing the Example Project ��268

Working with the Built-in Media Type Formatters ���269

Listing the Built-in Media Type Formatters �� 269

Dealing with Type Matching During Negotiation �� 272

Working with the JSON Media Type Formatter ���281

Configuring the JSON Media Type Formatter��� 282

Configuring Json�Net ��� 284

Using the XML Media Type Formatter��293

Configuring the XML Media Type Formatter ��� 293

Getting the Xml Media Type Formatter Working ��� 294

Summary ���296

Chapter 14: Understanding Parameter and Model Binding ■ ���297

Preparing the Example Project ��298

Creating the Controller ��� 298

Creating the Client �� 298

Adding a New Route ��� 300

Testing the Example Application ��� 301

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xv

Understanding the Default Binding Behavior ���302

Understanding Parameter Binding �� 303

Understanding Model Binding ��� 307

Performing Binding Customizations ���312

Binding Complex Types from the Request URL �� 312

Binding Simple Types from the Request Body ��� 314

Defining a Binding Rule ��� 316

Manually Obtaining Request Values ��318

Handling POST Requests �� 322

Summary ���324

Chapter 15: Binding Simple Data Types ■ ���325

Preparing the Example Project ��325

Preparing the Common Code ��328

Working with Value Providers and Value Provider Factories ���329

Understanding Value Providers and Value Provider Factories ��� 330

Creating a Custom Value Provider and Factory �� 332

Applying a Custom Value Provider and Factory ��334

Understanding How Web API Looks for Values ��� 334

Applying a Value Provider Factory with an Attribute ��� 335

Extending the Default Behavior ��� 340

Creating a Parameter Binding Rule �� 344

Summary ���350

Chapter 16: Binding Complex Data Types Part I ■ ��351

Preparing the Example Project ��351

Using the Built-in Model Binders ���354

Binding Objects ��� 355

Broadening the Source of Binding Values �� 359

Binding Collections and Arrays �� 362

Binding Key-Value Pairs �� 366

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xvi

Working with Custom Model Binders ��368

Preparing the Application �� 368

Understanding Model Binders �� 370

Creating a Custom Model Binder ��� 372

Applying a Custom Model Binder �� 376

Using Type Converters ���382

Understanding Type Converters �� 382

Creating a Type Converter�� 383

Applying a Type Converter ��� 384

Summary ���387

Chapter 17: Binding Complex Data Types Part II ■ ���389

Preparing the Example Project ��390

Testing the Application �� 392

Creating a Custom Media Type Formatter ���393

Preparing the Client ��� 394

Creating the Media Type Formatter ��� 395

Registering and Testing the Media Type Formatter ��� 400

Using the Built-in Media Type Formatters ���401

Handling URL-Encoded Data �� 402

Handling JSON Requests ��� 411

Handling XML Requests �� 414

Customizing the Model Binding Process ���420

Changing the Behavior of the Default Action Value Binder �� 421

Creating a Custom Action Value Binder ��� 424

Summary ���425

Chapter 18: Model Validation ■ ��427

Preparing the Example Project ��427

Testing the Changes �� 430

Understanding Common Data Problems ���431

Understanding Under-Posting �� 431

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xvii

Understanding Over-Posting �� 433

Understanding Bad Data �� 434

Using Web API Model Validation ��436

Understanding Model State ��� 436

Testing the Model State ��� 438

Removing the Debug Output Code ��� 439

Using the Binding Control Attributes ���439

Performing Validation with Validation Attributes ���441

Using the Built-in Validation Attributes �� 441

Creating a Self-validating Model Class ���443

Performing Validation in a Media Type Formatter ���444

Creating a Validating Media Type Formatter �� 445

Registering and Using the Custom Media Type Formatter �� 447

Summary ���448

Part 3: Dispatching Requests ■ ��� 449

Chapter 19: Dispatching Requests ■ ��451

Preparing the Example Project ��451

Creating the Model Class ��� 452

Creating the Web API Web Service �� 452

Creating the MVC Controller and View ��� 453

Testing the Example Application �� 456

Understanding Request Dispatching ���457

Understanding the HttpServer Class ��� 459

Understanding the HttpRoutingDispatcher Class��� 460

Understanding the HttpControllerDispatcher Class ��� 463

Customizing the Dispatch Process ��467

Creating Custom Message Handlers ��� 468

Customizing Other Dispatch Components ��� 474

Summary ���481

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xviii

Chapter 20: URL Routing: Part I ■ ���483

Preparing the Example Project ��483

Testing the Application Changes �� 486

Understanding URL Routing ���486

Understanding the Routing Classes and Interfaces ��� 488

Working with Convention-Based Routing ��492

Using Route Templates �� 493

Routing to the New Controller ��� 494

Controlling Route Matching ��499

Using Routing Data Default Values �� 500

Using Routing Constraints ��� 504

Summary ���509

Chapter 21: URL Routing: Part II ■ ��511

Preparing the Example Project ��511

Understanding Direct Routing ���512

Creating a Direct Route ��� 513

Creating a Controller-wide Direct Route �� 523

Customizing URL Routing ��525

Using a Route-Specific Message Handler ��� 525

Applying Custom Constraints to Direct Routes �� 529

Summary ���533

Chapter 22: Controllers and Actions ■ ��535

Preparing the Example Project ��535

Understanding Controllers ���537

Creating a Controller �� 538

Using Built-in Services and Features �� 541

Understanding the ApiController Dispatch Process ���543

Preparing the Example Controller �� 545

Understanding the Action Selection Process ��� 547

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xix

Understanding the RESTful/Non-RESTful Routing Problem ��� 554

Understanding Filters �� 558

Understanding the Action Method Execution Process ��� 559

Customizing the Controller Dispatch Process ���559

Creating a Custom IHttpActionInvoker Implementation ��� 560

Creating a Custom IHttpActionSelector Implementation ��� 562

Creating a Controller-Specific Configuration �� 563

Summary ���565

Chapter 23: Filters Part I ■ ���567

Preparing the Example Project ��567

Understanding Filters ��567

Working with Action Filters ���569

Creating an Action Filter by Implementing IActionFilter �� 570

Using the Convenience Action Filter Base Class �� 574

Creating a Short-Circuiting Action Filter �� 577

Understanding the Filter Pipeline ��582

Displaying the Filter Pipeline ��� 582

Understanding Filter Scope ��� 584

Working with Authentication Filters ��587

Preparing for Authentication �� 588

Understanding Authentication Filters �� 590

Creating an Authentication Filter ��� 591

Viewing the Filter Pipeline ��� 596

Summary ���598

Chapter 24: Filters Part II ■ ��599

Preparing the Example Project ��599

Reviewing Filters in the Dispatch Process ���599

Working with Authorization Filters ��600

Understanding Authorization Filters �� 601

Creating an Authorization Filter ��� 601

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xx

Appling the Authorization Filter �� 603

Removing the Authentication Filter ��� 604

Using the Built-in Authorization Filter Attributes ��� 607

Reworking the Authentication Filter ��� 609

Working with Exception Filters ��611

Understanding the Default Behavior ��� 611

Understanding Exception Filters ��� 613

Creating an Exception Filter �� 614

Deriving the Filter from the ExceptionFilterAttribute Class ��� 615

Working with Override Filters ��617

Overriding Built-in Filter Types �� 618

Redefining Filter Policies ��� 620

Summary ���621

Chapter 25: Error Handling ■ ��623

Preparing the Example Project ��623

Dealing with Errors ��626

Relying on the Default Behavior ��� 626

Using an Implementation of the IHttpActionResult Interface ��� 629

Using the HttpError Class ��629

Using an Error Response and an HttpError Object ��� 630

Adding Extra Information to the HttpError Object �� 632

Including Model State Errors in the HTTP Response ��� 632

Controlling Error Detail �� 635

Displaying HttpError Information in the Client ��� 636

Responding to Errors Globally ��637

Handling Exceptions �� 637

Logging Exceptions ��� 641

Summary ���644

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xxi

Chapter 26: Using OWIN ■ ���645

Understanding OWIN ���645

Creating a Self-hosted Web API Application ��646

Creating the Project �� 646

Installing the Packages ��� 646

Creating the Model and Repository ��� 646

Defining the Configuration Classes ��� 648

Creating the Web API Controller ��� 649

Testing the Self-hosted Web API Application �� 650

Summary ���650

Index ���651

www.it-ebooks.info

http://www.it-ebooks.info/

xxiii

About the Author

Adam Freeman is an experienced IT professional who has held senior positions
in a range of companies, most recently serving as chief technology officer and
chief operating officer of a global bank. Now retired, he spends his time writing
and running.

www.it-ebooks.info

http://www.it-ebooks.info/

xxv

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft technologies. He
works at BluArancio SpA (www.bluarancio.com) as Senior Analyst/Developer and Microsoft Dynamics CRM Specialist.
He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application Developer for .NET, a
Microsoft Certified Professional, and a prolific author and technical reviewer. Over the past ten years, he’s written
articles for Italian and international magazines and coauthored more than ten books on a variety of computer topics.

www.it-ebooks.info

http://www.bluarancio.com
http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Part I: Getting Ready
	Chapter 1: Getting Readys
	What Do You Need to Know?
	What Does Expert Mean?
	What Is the Structure of This Book?
	Part 1: Getting Ready
	Part 2: Results and Parameters
	Part 3: Dispatching Requests

	Are There Lots of Examples?
	Where Can You Get the Example Code?
	How Do You Set Up a Development Environment?
	Getting Visual Studio
	Preparing Visual Studio

	Getting Google Chrome
	Selecting Chrome for Debugging

	Summary

	Chapter 2: Your First Web API Application
	Preparing the Example Project
	Creating the Visual Studio Project
	Adding and Updating NuGet Packages
	Setting the Port and Start URL

	Creating the MVC Application
	Creating the Model
	Creating the MVC Controller
	Creating the Views
	Using the MVC Application

	Creating the Web Service
	Creating the Web API Controller
	Testing the Web API Controller

	Implementing the Single-Page Client
	Setting Up JavaScript IntelliSense
	Defining the Client-Side Data Model and Controller
	Defining the Model
	Defining the Controller
	Initializing Knockout

	Registering the JavaScript File
	Appling Data Bindings
	Testing the Single-Page Client

	Measuring the Single-Page Implementation
	Summary

	Chapter 3: Essential Techniques
	Preparing the Example Project
	Adding and Updating NuGet Packages
	Creating the Web API Controller
	Creating the MVC Framework Controller
	Setting the Port and Start URL
	Testing the Web Service

	Understanding Asynchronous Methods
	Understanding the Problem Asynchronous Methods Solve
	Implementing an Asynchronous Interface
	Dealing with Cancellation

	Creating a Self-Contained Asynchronous Method Body
	Returning a Task from a Synchronous Method Body

	Making Ajax Requests with jQuery
	Making an Ajax Request
	Understanding the $.ajax Method

	Using Knockout
	Applying the Bindings
	Activating the Bindings

	Summary

	Chapter 4: Understanding HTTP Web Services
	Understanding ASP.NET Web API
	Understanding Single-Page Applications
	Understanding Native Applications
	Understanding Shared-Model Applications
	Understanding Service Applications

	Understanding Simple Web Services
	Understanding RESTful Web Services
	Embracing HTTP
	Adding Data Discovery
	Filtering the Collection

	Summary

	Chapter 5: SportsStore: Preparation
	Preparing the Example Project
	Adding and Updating NuGet Packages
	Creating a Prep Controller
	Creating a Razor Layout
	Creating the OWIN Startup Class
	Setting the TCP Port

	Creating the Product and Order Models
	Defining the Model Classes
	Creating the Repository Classes
	Defining the Repository Interface
	Creating the Database Context and Initializer Classes
	Defining the Repository Class

	Testing the Repository
	Checking the Database Schema

	Configuring ASP.NET Identity
	Defining the User and Role Classes
	Creating the Database Context Classes
	Creating the Manager Classes
	Adding the Configuration Statements
	Testing ASP.NET Identity
	Removing the Application Cookie

	Summary

	Chapter 6: SportsStore: A RESTful Application
	Creating a RESTful Web Service
	Testing the Products Web Service

	Putting the Web Service in Context
	Working with Regular C# Objects
	Using the RESTful Action Method Convention

	Configuring Serialization
	Adding Basic Data Validation
	Using Action Results

	Securing the Product Web Service
	Restricting Access to Action Method
	Authenticating Requests
	Defining the Authentication Provider
	Configuring Authentication
	Testing Authentication

	Adding Model Validation
	Applying Validation Attributes
	Validating the Model

	Adding Simple Dependency Injection
	Recapping the Problem
	Creating the Dependency Resolver
	Registering the Dependency Resolver

	Using the Dependency Resolver in the Controller Class

	Creating a Non-RESTful Web Service
	Preparing the Routing Configuration
	Preparing the Model Objects
	Preventing Formatting Loops
	Defining the Web API Controller

	Completing the Product Controller
	Summary

	Chapter 7: SportsStore: Creating the Clients
	Preparing the Example Project
	Setting Up JavaScript IntelliSense
	Updating the Layout

	Implementing the Common Code
	Defining the Ajax Layer
	Defining the Model
	Defining the Authentication Controller
	Testing Authentication

	Defining the Products Controller
	Testing the Products Controllers

	Defining the Orders Controller
	Testing the Orders Controller

	Creating the Customer Client
	Creating the Customer Model
	Creating the Customer Controller
	Creating the Views
	Creating the Placeholders
	Creating the Index View
	Creating the Product List View
	Creating the Cart View
	Creating the Cart Widget
	Creating the Checkout View

	Creating the Administration Client
	Creating the Admin Model
	Creating the Admin Controller
	Creating the Views
	Defining the MVC Controller and Top-Level View
	Defining the Product List View
	Defining the Order List View
	Defining the Create Product View

	Testing the Admin Client

	Summary

	Chapter 8: SportsStore: Deployment
	Preparing the SportsStore Application
	Preventing the Product Database from Resetting
	Adding Database Connection Strings

	Preparing Azure
	Creating the Databases
	Create the Product Database
	Create the Identity Database
	Getting the Server Name

	Creating the Web Site
	Downloading the Publish Profile

	Deploying the Application
	Configuring the Databases
	Configuring the ProductDbContext(SportsStoreDb) Entry
	Configuring the SportsStoreIdentityDb Entry
	Configuring the StoreIdentityDbContext Entry

	Publishing the Application
	Summary

	Part 2: Results and Parameters
	Chapter 9: The Anatomy of ASP.NET Web API
	Understanding the Web API Namespaces and Types
	Understanding the Web API Context Objects
	Getting Information About the Request
	Getting Information About the Controller
	Getting Information About Everything Else

	Understanding the Web API Components
	Application Configuration
	Controllers, Actions, and Results
	Services
	Dispatchers and Handlers

	Summary

	Chapter 10: Creating and Configuring a Web API Application
	Preparing the Example Project
	Creating the Model and Repository
	Creating an HTTP Web Service
	Creating the Browser Client
	Testing the Example Application

	Configuring a Web API Application
	Configuring Web API Through the ASP.NET Platform
	Understanding the Configuration Object

	Configuring Web API Dependency Injection
	Preparing for Dependency Injection
	Understanding the Web API Dependency Interfaces
	Installing the Dependency Injection Container
	Implementing the Dependency Interfaces
	Configuring Web API

	Configuring Dependency Injection for Web API and MVC
	Declaring the Dependency
	Installing the Dependency Injection Packages
	Adding MVC Support to the Resolver
	Configuring the MVC Framework

	Summary

	Chapter 11: Action Method Results
	Preparing the Example Project
	Understanding Action Method Results
	Returning No Result
	Consuming a No Result Action Method

	Returning an Action Result
	Understanding the IHttpActionResult Interface
	Using the ApiController Action Result Methods
	Returning Other Status Codes
	Creating a StatusCodeResult Object
	Creating an HttpResponseMessage Object

	Creating a Custom Action Result

	Returning Model Data
	Understanding the Default Behavior
	Understanding the Content Negotiation Process
	Implementing a Custom Content Negotiator
	Configuring the Content Negotiator
	Testing the Content Negotiator

	Bypassing Content Negotiation

	Returning Negotiable Action Results
	Creating Negotiable Action Results

	Summary

	Chapter 12: Creating Media Type Formatters
	Preparing the Example Project
	Creating a Media Type Formatter
	Implementing a Basic Media Type Formatter
	Indicating Type Support
	Serializing Model Data
	Registering the Media Type Formatter
	Using the Custom Formatter
	Consuming the Formatted Data with jQuery

	Refining the Custom Formatter
	Supporting Content Encodings
	Setting the HTTP Response Headers

	Participating in the Negotiation Process
	Creating a Media Type Mapping
	Testing the Negotiation Process
	Adding Headers to jQuery Ajax Requests

	Using the Mapping Extension Methods

	Creating Per-Request Media Type Formatters
	Creating the Formatter Instance
	Testing the Per-Request Formatter

	Summary

	Chapter 13: Using the Built-in Media Formatters
	Preparing the Example Project
	Working with the Built-in Media Type Formatters
	Listing the Built-in Media Type Formatters
	Dealing with Type Matching During Negotiation
	Changing the Media Formatter Order
	Disabling the Match-on-Type Feature
	Handling a Not Acceptable Response in the Client

	Working with the JSON Media Type Formatter
	Configuring the JSON Media Type Formatter
	Changing the Underlying JSON Serializer
	Indenting the JSON Data

	Configuring Json.Net
	Creating the Example Controller and Client
	Handling JSON Dates
	Handling String Escaping
	Handling Default Values

	Using the XML Media Type Formatter
	Configuring the XML Media Type Formatter
	Getting the Xml Media Type Formatter Working
	Updating the Web API Controller
	Updating the Client JavaScript Code

	Summary

	Chapter 14: Understanding Parameter and Model Binding
	Preparing the Example Project
	Creating the Controller
	Creating the Client
	Adding a New Route
	Testing the Example Application

	Understanding the Default Binding Behavior
	Understanding Parameter Binding
	Understanding the Parameter Binding Pitfall

	Understanding Model Binding
	Understanding the Model Binding Pitfall

	Performing Binding Customizations
	Binding Complex Types from the Request URL
	Binding Simple Types from the Request Body
	Defining a Binding Rule
	Updating the Controller and Client

	Manually Obtaining Request Values
	Handling POST Requests

	Summary

	Chapter 15: Binding Simple Data Types
	Preparing the Example Project
	Preparing the Common Code
	Working with Value Providers and Value Provider Factories
	Understanding Value Providers and Value Provider Factories
	Creating a Custom Value Provider and Factory

	Applying a Custom Value Provider and Factory
	Understanding How Web API Looks for Values
	Applying a Value Provider Factory with an Attribute
	Using the Built-in Parameter Binding Attribute
	Creating a Custom Attribute Based on the ModelBindingAttribute Class
	Creating a Custom Attribute Based on the ParameterBindingAttribute Class

	Extending the Default Behavior
	Registering the Value Provider Factory
	Updating the Controller

	Creating a Parameter Binding Rule
	Relying on the Parameter Name
	Handling All Simple Type Values

	Summary

	Chapter 16: Binding Complex Data Types Part I
	Preparing the Example Project
	Using the Built-in Model Binders
	Binding Objects
	Binding Multiple Objects
	Binding Nested Objects

	Broadening the Source of Binding Values
	Binding Collections and Arrays
	Binding Arrays and Lists of Complex Types

	Binding Key-Value Pairs

	Working with Custom Model Binders
	Preparing the Application
	Testing the Preparations

	Understanding Model Binders
	Creating a Custom Model Binder
	Getting Model Property Values from the Value Provider
	Checking Values
	Creating the Model Object

	Applying a Custom Model Binder
	Applying a Custom Binder Directly to the Parameter
	Registering the Model Binder with the Services Collection
	Applying a Binder to the Model Class
	Creating a Parameter Binding Rule

	Using Type Converters
	Understanding Type Converters
	Creating a Type Converter
	Applying a Type Converter

	Summary

	Chapter 17: Binding Complex Data Types Part II
	Preparing the Example Project
	Testing the Application

	Creating a Custom Media Type Formatter
	Preparing the Client
	Creating the Media Type Formatter
	Defining the Formatter Structure
	Getting the Request Data
	Creating the Model Object

	Registering and Testing the Media Type Formatter

	Using the Built-in Media Type Formatters
	Handling URL-Encoded Data
	Handling URL-Encoded Requests
	Creating Complex Types from URL-Encoded Requests
	Instantiating Difficult Types Using URL-Encoded Data
	Simplifying the Custom Media Type Formatter

	Handling JSON Requests
	Creating Complex Types

	Handling XML Requests
	Creating Complex Types from XML Data

	Customizing the Model Binding Process
	Changing the Behavior of the Default Action Value Binder
	Creating a Custom Action Value Binder

	Summary

	Chapter 18: Model Validation
	Preparing the Example Project
	Testing the Changes

	Understanding Common Data Problems
	Understanding Under- Posting
	Understanding Over- Posting
	Understanding Bad Data

	Using Web API Model Validation
	Understanding Model State
	Testing the Model State
	Removing the Debug Output Code

	Using the Binding Control Attributes
	Performing Validation with Validation Attributes
	Using the Built-in Validation Attributes

	Creating a Self-validating Model Class
	Performing Validation in a Media Type Formatter
	Creating a Validating Media Type Formatter
	Registering and Using the Custom Media Type Formatter

	Summary

	Part 3: Dispatching Requests
	Chapter 19: Dispatching Requests
	Preparing the Example Project
	Creating the Model Class
	Creating the Web API Web Service
	Creating the MVC Controller and View
	Testing the Example Application

	Understanding Request Dispatching
	Understanding the HttpServer Class
	Understanding the HttpRoutingDispatcher Class
	Understanding the Default URL Routing Configuration

	Understanding the HttpControllerDispatcher Class
	Selecting the Controller
	Activating the Controller
	Executing the Controller

	Customizing the Dispatch Process
	Creating Custom Message Handlers
	Modifying Requests or Responses in a Message Handler
	Using Message Handlers as Diagnostic Tools

	Customizing Other Dispatch Components
	Implementing the Interfaces
	Registering the Interface Implementations
	Creating a Controller with the New Suffix
	Taking the Simpler Path

	Summary

	Chapter 20: URL Routing: Part I
	Preparing the Example Project
	Testing the Application Changes

	Understanding URL Routing
	Understanding the Routing Classes and Interfaces
	Understanding the IHttpRouteData Interface
	Understanding the IHttpRoute Interface
	Understanding the HttpRouteCollection Class
	Understanding the Route Attributes

	Working with Convention-Based Routing
	Using Route Templates
	Routing to the New Controller
	Mapping Request Verbs to Action Methods
	Creating a Custom Route Template

	Controlling Route Matching
	Using Routing Data Default Values
	Using Segment Defaults to Restrict Matches
	Using Optional Segments to Widen Matches
	Using Default Segment Values to Widen Matches

	Using Routing Constraints
	Understanding Constraints
	Creating a Custom Constraint
	Using the Built-in Constraints

	Summary

	Chapter 21: URL Routing: Part II
	Preparing the Example Project
	Understanding Direct Routing
	Creating a Direct Route
	Applying the Route Attribute
	Defining a Common Prefix
	Defining Optional Segments
	Defining a Default Segment Value
	Applying a Constraint to a Direct Route
	Ordering Direct Routes in a Controller

	Creating a Controller-wide Direct Route

	Customizing URL Routing
	Using a Route-Specific Message Handler
	Registering the Route and Handler
	Using Data Tokens

	Applying Custom Constraints to Direct Routes
	Registering and Using the Constraint Shorthand Name
	Applying a Route-wide Custom Constraint

	Summary

	Chapter 22: Controllers and Actions
	Preparing the Example Project
	Understanding Controllers
	Creating a Controller
	Using Built-in Services and Features

	Understanding the ApiController Dispatch Process
	Preparing the Example Controller
	Understanding the Action Selection Process
	Understanding the Default Action Method Selection Process
	Understanding the RESTful Naming Convention
	Explicitly Specifying HTTP Verbs

	Understanding the RESTful/Non-RESTful Routing Problem
	Understanding the Problem
	Solving the Problem with Route Specificity
	Solving the Problem with a Route Template Prefix

	Understanding Filters
	Understanding the Action Method Execution Process

	Customizing the Controller Dispatch Process
	Creating a Custom IHttpActionInvoker Implementation
	Creating a Custom IHttpActionSelector Implementation
	Creating a Controller-Specific Configuration
	Creating a Custom IControllerConfiguration Interface

	Summary

	Chapter 23: Filters Part I
	Preparing the Example Project
	Understanding Filters
	Working with Action Filters
	Creating an Action Filter by Implementing IActionFilter
	Applying an Action Filter

	Using the Convenience Action Filter Base Class
	Creating a Short-Circuiting Action Filter
	Testing the Short-Circuiting Filter
	Deriving the Filter from the ActionFilterAttribute Class

	Understanding the Filter Pipeline
	Displaying the Filter Pipeline
	Understanding Filter Scope
	Creating a Global Filter

	Working with Authentication Filters
	Preparing for Authentication
	Understanding Authentication Filters
	Creating an Authentication Filter
	Checking the Request
	Adding the Response Challenge
	Applying and Testing the Authentication Filter

	Viewing the Filter Pipeline

	Summary

	Chapter 24: Filters Part II
	Preparing the Example Project
	Reviewing Filters in the Dispatch Process
	Working with Authorization Filters
	Understanding Authorization Filters
	Creating an Authorization Filter
	Appling the Authorization Filter
	Testing the Authorization Filter

	Removing the Authentication Filter
	Retesting the Authorization Filter

	Using the Built-in Authorization Filter Attributes
	Using the Authorize Attribute

	Reworking the Authentication Filter

	Working with Exception Filters
	Understanding the Default Behavior
	Understanding Exception Filters
	Creating an Exception Filter
	Deriving the Filter from the ExceptionFilterAttribute Class

	Working with Override Filters
	Overriding Built-in Filter Types
	Redefining Filter Policies

	Summary

	Chapter 25: Error Handling
	Preparing the Example Project
	Dealing with Errors
	Relying on the Default Behavior
	Throwing a Special Exception

	Using an Implementation of the IHttpActionResult Interface

	Using the HttpError Class
	Using an Error Response and an HttpError Object
	Adding Extra Information to the HttpError Object
	Including Model State Errors in the HTTP Response
	Controlling Error Detail
	Displaying HttpError Information in the Client

	Responding to Errors Globally
	Handling Exceptions
	Creating a Custom Global Exception Handler
	Registering and Testing a Custom Global Exception Handler

	Logging Exceptions
	Creating a Custom Global Exception Logger
	Registering and Testing a Custom Exception Logger

	Summary

	Chapter 26: Using OWIN
	Understanding OWIN
	Creating a Self-hosted Web API Application
	Creating the Project
	Installing the Packages
	Creating the Model and Repository
	Defining the Configuration Classes
	Creating the Web API Controller
	Testing the Self-hosted Web API Application

	Summary

	Index

